- 1. Sapendo che il problema del vuoto è decidibile, si dimostri che è decidibile anche il problema dell'equivalenza per gli automi a stati finiti (DFA).
- 3. Si dimostri che NTIME(n⁵) è incluso in SPACE(n⁵).

Sol. 1

Sappiamo che per due insiemi X e Y, X=Y sse X \subseteq Y e Y \subseteq X e che X \subseteq Y sse X \cap ¬Y = \varnothing . Dati due DFA A e A', per le proprietà di chiusura dei DFA siamo in grado di costruire un DFA B tale che L(B) = (L(A) \cap ¬ L(A')) \cup (L(A') \cap ¬ L(A)). B è tale che L(B) = \varnothing sse L(A) = L(A').

Quindi applicando l'algoritmo per il problema del vuoto a B decidiamo se A e A' sono equivalenti.

Abbiamo ridotto il problema dell'equivalenza al problema del vuoto.

Sol. 2

Una riduzione da A_{TM} a WE_{TM} deve associare a istanze di A_{TM} istanze di WE_{TM} in modo tale che a istanze sì di A_{TM} corrispondano istanze sì di WE_{TM} e a istanze no di A_{TM} istanze no di WE_{TM} .

Un'istanza di A_{TM} è una coppia formata da una TM e da un suo input, $\langle M, w \rangle$, e dobbiamo <u>costruire</u> un'istanza di WE_{TM} , cioè una TM T, in modo tale che $L(T) = \{\epsilon\}$ sse w è in L(M). Allora potremmo fare in modo che la macchina T non accetti parole diverse dalla vuota e che il suo comportamento sulla parola vuota dipenda da quello di M su w. Per ottenere questo risultato dobbiamo definire la TM R che calcola la funzione di riduzione come segue:

R: input <M,w>
Output <T>
T: input x
se x è una parola non vuota allora rifiuta altrimenti
esegui M su w
se M accetta w accetta x
se M rifiuta w rifiuta x

Controlliamo la correttezza di R:

Se <M,w> è in A_{TM} allora M accetta w e quindi L(T) = $\{\epsilon\}$, perchè rifiuta ogni parola e accetta ϵ solo se M accetta w. Quindi <T> è in WE_{TM} . Se invece <M,w> non è in A_{TM} allora M rifiuta anche ϵ o non si ferma su ϵ e allora L(T) = \varnothing , dunque <T> non è in WE_{TM} .

Sol. 3

Si tratta di analizzare la TM T a 4 nastri che riconosce lo stesso linguaggio della NTM M data, ricordando che il tempo limita lo spazio e che la TM utilizza un quarto nastro per rifiutare correttamente. T utilizza O(n) spazio sul primo nastro, visto che contiene solo l'input, $O(n^5)$ sul nastro di lavoro, visto che esegue una delle possibili computazioni sull'input x di dimensione n, $O(n^5)$ sul terzo nastro perché le stringhe guida che consentono di eseguire una alla volta le scelte possibili nondeterministicamente sono lunghe al più $O(n^5)$, e infine il quarto nastro contiene il numero delle foglie dell'albero completo di altezza $O(n^5)$, che sono $2^{O(n^5)}$ che in binario occupa spazio $O(n^5)$. Poiché passando a una TM a un solo nastro l'occupazione in spazio non cambia, otteniamo che $NTIME(n^5) \subseteq SPACE(n^5)$.