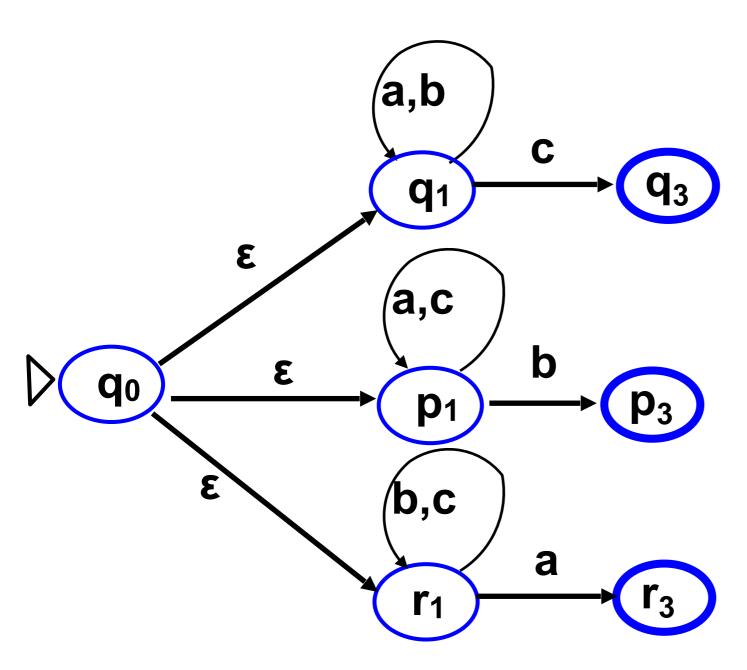
Esercizi 1.1

Si costruisca un NFA che accetta tutte le stringhe in {a,b,c}* che terminano con una lettera che non compare nel resto della parola. Per esempio abbaabc è nel linguaggio, mentre acbbac no.

Esercizi 2.1

Si dimostri che L= {0ⁿ1^m2^{n-m} con n≥m≥0} non è regolare

Soluzione 1.1



Poiché non possiamo determinare la posizione dell'occorrenza dell'ultima lettera di w, usiamo gli stati per ricordare quale occorrenza non ammettere nella parola e sceglierla come finale. In q₁ assumiamo che l'occorrenza è c. Quindi l'automa resta nello stato q₁ finché legge una parola in cui non occorre c, poi se legge c e c e l'ultima lettera allora accetta. Gli altri casi sono analoghi

Soluzione 2.1

Si dimostri che L= {0ⁿ1^m2^{n-m} con n≥m≥0} non è regolare

Sol. Per ogni n prendiamo w = 0ⁿ1ⁿ. La parola w è in L e di lunghezza maggiore di n. Facciamo vedere che comunque scomposta in tre sottoparole x,y e z, con la condizione che |xy| ≤n e |y|>0, esiste un i tale che xyⁱz non è in L.

Sia x = 0^r, y = 0^s e z = 0^t1ⁿ, con r,t≥0 e s>0, e r+s+t = n, bisogna trovare un valore di i tale che r+is+t sia minore di n, così da uscire dal linguaggio le cui parole sono costituite da un numero di 0 maggiore o uguale al numero degli 1, senza considerare i 2. Basta prendere i=0 e la parola xy⁰z =xz = 0^r 0^t1ⁿ, con r+t<n perché s >0, non è in L e quindi L non è regolare.

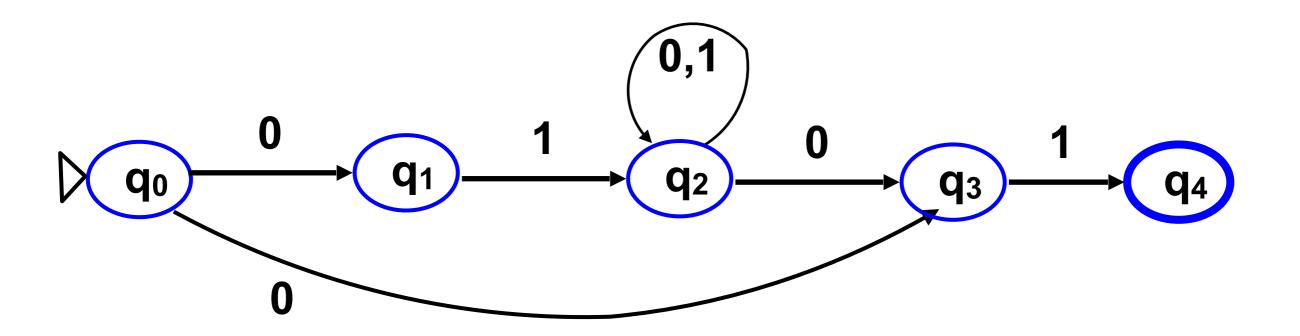
Esercizio 1.2

Si costruisca un NFA che accetta il linguaggio delle parole sull'alfabeto {0,1} che cominciano e finiscono con 01. Per esempio 011 non è nel linguaggio, mentre 01000001 sì.

Soluzione 2.2

Si dimostri che L= {w1ⁿ | w è in {0,1}*, n ≥ 0 e |w| = n} non è regolare

Soluzione 1.2



L'automa ha bisogno di quattro stati per leggere la parola 0101 dallo stato iniziale. Consentendo di leggere nello stato q₂ una qualsiasi parola l'automa accetta parole del tipo 01x01, per x in {0,1}*. Per accettare anche 01 dallo stato iniziale non deterministicamente si va nello stato dal quale leggendo 1 l'automa va nello stato finale.

Soluzione 2.2

Si dimostri che L= {w1ⁿ | w è in {0,1}*, n ≥ 0 e |w| = n} non è regolare

Sol. Per ogni n prendiamo w = 0ⁿ1ⁿ. La parola w è in L e di lunghezza maggiore di n. Facciamo vedere che comunque scomposta in tre sottoparole x,y e z, con la condizione che |xy| ≤n e |y|>0, esiste un i tale che xyⁱz non è in L.

Sia x = 0^r, y = 0^s e z = 0^t1ⁿ, con r,t≥0 e s>0, e r+s+t=n, bisogna trovare un valore di i tale che r+is+t sia minore di n, così da uscire dal linguaggio le cui parole sono costituite da un numero di 1 pari alla lunghezza del prefisso. Basta prendere i=2 e la parola xy²z = 0^r 0^s 0^s 0^t1ⁿ, con r+2s+t>n perché s >0, non è in L e quindi L non è regolare.

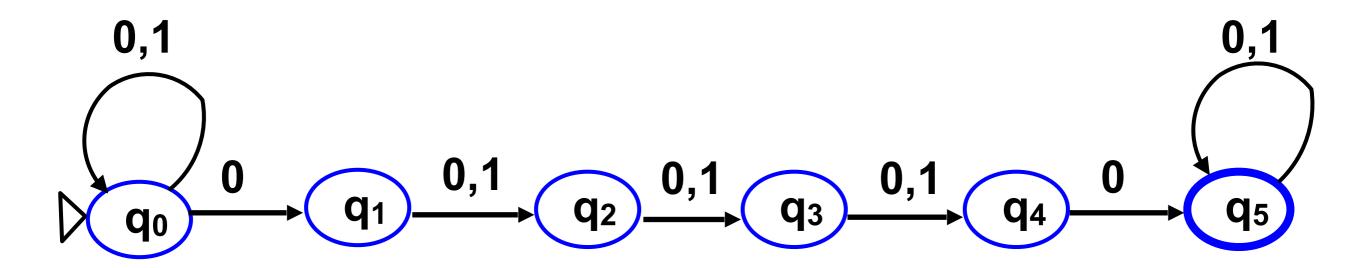
Esercizio 1.3

Si costruisca un NFA che accetta il linguaggio delle parole sull'alfabeto {0,1} che contengono due occorrenze di 0 a distanza 3, cioè tali che ci siano esattamente tre altre lettere tra di loro. Per esempio 101011 non è nel linguaggio perché il secondo 0 si trova a distanza 1 dal primo, mentre 101010 sì perché la parola 101 tra la prima e l'ultima occorrenza di 0 è lunga 3.

Esercizio 2.3

Si dimostri che L= $\{w\underline{w} \mid w \text{ è in } \{0,1\}^*, \text{ e } \underline{w} \text{ è ottenuto da w sostituendo ogni 1 con 0 e viceversa } non è regolare$

Soluzione 1.3



Una volta costruito l'automa che accetta 0x0, con x in $\{0,1\}^*$ e |x|=3, con i 6 stati necessari, aggiungiamo le transizioni su tutti e due gli input possibili nello stato iniziale e in quello finale, in modo da accettare y0x0z, con y e z qualunque su $\{0,1\}$, sempre con x in $\{0,1\}^*$ e |x|=3.

Esercizio 2.3

Si dimostri che L= $\{w\underline{w} \mid w \text{ è in } \{0,1\}^*, \text{ e } \underline{w} \text{ è ottenuto da w sostituendo ogni 1 con 0 e viceversa } non è regolare$

Sol. Per ogni n prendiamo w = 0ⁿ1ⁿ. La parola w è in L e di lunghezza maggiore di n. Facciamo vedere che comunque scomposta in tre sottoparole x,y e z, con la condizione che |xy| ≤n e |y|>0, esiste un i tale che xyⁱz non è in L.

Sia x = 0^r, y = 0^s e z = 0^t1ⁿ, con r,t≥0 e s>0, e r+s+t=n, bisogna trovare un valore di i tale che r+is+t sia minore di n, così da uscire dal linguaggio. Basta prendere i=0 e la parola xy⁰z =xz = 0^r0^t1ⁿ, con r+t<n perché s >0, non è in L perché dovrei avere solo r+t 1 e non n 1, quindi L non è regolare.