
giorgio.richelli@uniroma1.it

Sockets

giorgio.richelli@uniroma1.it

Sockets

File I/O:
● open, close, read, write, seek, fcntl, ...

Network communication:
● developers extended set of file descriptors to include network

connections.

● extended read/write to work on these new file descriptors.

● but other required functionality did not fit into the
‘open-read-write-close’ paradigm.

 → Socket API

giorgio.richelli@uniroma1.it

Basics

The basic building block for communication is the socket.

A socket is an endpoint of communication to which a name may
be bound.

Each socket in use has a type and one or more associated
processes.

giorgio.richelli@uniroma1.it

Domains

Sockets exist within communication domains.

A communication domain is an abstraction introduced to bundle
common properties of processes communicating through
sockets, e.g. socket name.

For example, in the UNIX communication domain sockets are
named with UNIX path names; e.g. a socket may be named
‘‘/dev/foo’’.

Sockets normally exchange data only with sockets in the same
domain

giorgio.richelli@uniroma1.it

Socket Types

Sockets are typed according to the communication properties
visible to a user.

Processes are presumed to communicate only between sockets of
the same type

Four types of sockets currently are available

giorgio.richelli@uniroma1.it

Stream Sockets

A stream socket provides for the bidirectional, reliable,
sequenced, and unduplicated flow of data without record
boundaries.

Aside from the bidirectionality of data flow, a pair of connected
stream sockets provides an interface nearly identical to that of
pipes

giorgio.richelli@uniroma1.it

Datagram Sockets

A datagram socket supports bidirectional flow of data which is not
promised to be sequenced, reliable, or unduplicated.

Messages may be dropped, duplicated, and, possibly, delivered in
an order different from the order in which they were was sent.

An important characteristic of a datagram socket is that record
boundaries in data are preserved.

giorgio.richelli@uniroma1.it

Raw Sockets

A raw socket provides users access to the underlying
communication protocols which support socket abstractions.

These sockets are normally datagram oriented,

Not intended for the general user; they have been provided mainly
for those interested in developing new communication
protocols, or for gaining access to some of the more esoteric
facilities of an existing protocol.

giorgio.richelli@uniroma1.it

Socket Creation

s = socket(domain, type, protocol);

Create a socket in the specified domain and of the specified type.

A particular protocol may also be requested.

If the protocol is left unspecified (a value of 0), the system will
select an appropriate protocol. from those protocols which
comprise the communication domain and which

giorgio.richelli@uniroma1.it

Socket Creation

s = socket(domain, type, protocol);

The user is returned a descriptor (a small integer number) which
may be used in later system calls which operate on sockets.

giorgio.richelli@uniroma1.it

Socket Creation

s = socket(domain, type, protocol);

The domain is specified as one of:
● AF_UNIX (Unix Domain)

● AF_INET (Internet Domain)

● AF_NS (NS Domain)

 The socket types are:
● SOCK_STREAM

● SOCK_DGRAM

● SOCK_RAW

● SOCK_SEQPACKET

giorgio.richelli@uniroma1.it

Examples

s = socket(AF_INET, SOCK_STREAM, 0);

Creates a stream socket in the Internet domain

s = socket(AF_UNIX, SOCK_DGRAM, 0);

Creates a datagram socket for on-machine use (Unix Domain)

The default protocol (last argument to the socket call is 0) should
be correct for almost every situation

giorgio.richelli@uniroma1.it

Socket Names

A socket is created without a name.

Until a name is bound to a socket, processes have no way to
reference it and, consequently, no messages may be received
on it.

Communicating processes are bound by an association. In the
Internet (and NS) domains, an association is composed of local
and foreign addresses, and local and foreign ports.

In the UNIX domain, an association is composed of local and
foreign path names.

giorgio.richelli@uniroma1.it

Socket Names

● In the Internet domain there may never be duplicate
<protocol, local address, local port, foreign address, foreign port>
tuples.

● UNIX domain sockets need not always be bound to a name,
but when bound there may never be duplicate
<protocol, local pathname, foreign pathname>
tuples.

giorgio.richelli@uniroma1.it

Binding Names

bind(s, name, namelen);

The bind() system call allows a process to specify half of an
association, <local address, local port> (or <local pathname>).

The connect() and accept() primitives are used to complete a
socket’s association.

The bound name is a variable length byte string which is
interpreted by the supporting protocol(s).

giorgio.richelli@uniroma1.it

Binding Names

In the Internet domain names contain an Internet address and port
number.

In the UNIX domain, names contain a path name and a family,
which is always AF_UNIX.

giorgio.richelli@uniroma1.it

Example

#include <sys/un.h>
...
struct sockaddr_un addr;
...
strcpy(addr.sun_path, "/tmp/foo");
addr.sun_family = AF_UNIX;
len = strlen(addr.sun_path) +

sizeof (addr.sun_family)
bind(s, (struct sockaddr *) &addr, len);

giorgio.richelli@uniroma1.it

Binding Names

File name referred to in addr.sun_path is created as a socket in
the system file space.

The caller must, therefore, have write permission in the directory
where addr.sun_path is to reside, and this file should be deleted
by the caller when it is no longer needed.

giorgio.richelli@uniroma1.it

Example

#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in sin;
...
bind(s, (struct sockaddr *) &sin, sizeof (sin));

giorgio.richelli@uniroma1.it

Connecting Sockets

Connection establishment is usually asymmetric, with one process
a ‘‘client’’ and the other a‘‘server’’.

The server binds a socket to a well-known address and then
passively ‘‘listens’’

The client requests services from the server by initiating a
‘‘connection’’ to the server’s socket.

On the client side the connect call is used to initiate a connection.

giorgio.richelli@uniroma1.it

Connecting Sockets

struct sockaddr_un server; // Unix Domain
...
connect(s, (struct sockaddr *)&server,
strlen(server.sun_path) +
sizeof(server.sun_family));

--
struct sockaddr_in server; // Internet Domain
...
connect(s,(struct sockaddr *)&server,
sizeof(server));

giorgio.richelli@uniroma1.it

Connecting Sockets

server would contain either:

● UNIX pathname

● internet address + port number

of the server to which the client process wishes to speak.

If the client process’s socket is unbound at the time of the connect
call, the system will automatically select and bind a name to the
socket if necessary

giorgio.richelli@uniroma1.it

Connecting Sockets

An error is returned if the connection was unsuccessful (any name
automatically bound by the system, however, remains).

Otherwise, the socket is associated with the server and data
transfer may begin.

giorgio.richelli@uniroma1.it

Server Side

For the server to receive a client’s connection it must perform two
steps after binding its socket.

listen(s, 5);

Means that the server is willing to listen for incoming connection
requests

The second parameter specifies the maximum number of
outstanding connections which may be queued awaiting
acceptance

giorgio.richelli@uniroma1.it

Server Side

A server may accept a connection:
struct sockaddr_in from;
...
fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from,
&fromlen);

giorgio.richelli@uniroma1.it

Server Side

A new descriptor is returned on receipt of a connection (along with
a new socket).

fromlen:

● input; how much space is associated with from
● output: size of the name

The second parameter may be a null pointer.

giorgio.richelli@uniroma1.it

Sockets

Accept will not return until a connection is available or the system
call is interrupted by a signal to the process.

Further, there is no way for a process to indicate it will accept
connections from only a specific source

giorgio.richelli@uniroma1.it

Data Transfer

Normal read and write system calls are usable:
write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

But also:
send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

giorgio.richelli@uniroma1.it

Data Transfer

send()/recv() flags:
● MSG_OOB send/receive out of band data
● MSG_PEEK look at data without reading
● MSG_DONTROUTE send data without routing packets

When MSG_PEEK is specified with a recv call, any data present
is returned to the user, but treated as still ‘‘unread’’.

Next read or recv call applied to the socket will return the data
previously previewed.

giorgio.richelli@uniroma1.it

Closing

Once a socket is no longer of interest, it may be discarded

shutdown(s, how);

close(s);

Where, how could be:
● SHUT_RD
● SHUT_WR
● SHUT_RDWR

giorgio.richelli@uniroma1.it

Shutdown

 /* Sample Client Code */
 s=connect(...);
 If(!fork()){ /* Child copies stdin to the socket */
 while(gets(buffer) >0) write(s,buffer,strlen(buffer));
 close(s);
 exit(0);
 }
 else { /* Parent receives answers */
 while((l=read(s,buffer,sizeof(buffer)) {
 if (l>0) do_something(l,buffer);
 }
 wait(0); /* Wait for the child to exit */
 exit(0);
 }

giorgio.richelli@uniroma1.it

Shutdown (2)

 /* Sample Client Code */
 s=connect(...);
 If(!fork()){ /* Child copies stdin to the socket */
 while(gets(buffer) >0) write(s,buf,strlen(buffer));
 shutdown(s,SHUT_WR); /* Break the connection */
 close(s);
 exit(0);
 }
 else { /* Parent receives answers */
 while((l=read(s,buffer,sizeof(buffer)) {
 if (l>0) do_something(l,buffer);
 }
 wait(0); /* Wait for the child to exit */
 exit(0);
 }

giorgio.richelli@uniroma1.it

Socket Calls Flow

giorgio.richelli@uniroma1.it

Datagram Sockets

connect() on datagram sockets returns immediately

The system simply records the peer’s address

On a stream socket a connect request initiates the connection.

● Only one connected address is permitted for each socket at
one time

● A second connect will change the destination

● accept() and listen() are not used with datagram
sockets.

giorgio.richelli@uniroma1.it

Connectionless Sockets

Only with datagram sockets (!)

● sendto() allows to specify a destination address

sts=sendto(s, buf, buflen, flags,
 (struct sockaddr *)&to, tolen);

to and tolen indicate the address of recipient

giorgio.richelli@uniroma1.it

Connectionless Sockets

recvfrom() receives messages on an unconnected datagram
socket

sts=recvfrom(s, buf, buflen, flags,
(struct sockaddr *)&from, &fromlen)

● to and tolen indicate the address of recipient

giorgio.richelli@uniroma1.it

netdb

Routines for
● mapping host names to network addresses, network names to

network numbers

● protocol names to protocol numbers

● service names to port numbers and the appropriate protocol

The file <netdb.h> must be included

giorgio.richelli@uniroma1.it

Host Names

Internet host name to address mapping
struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* addr. type(e.g.,AF_INET) */
int h_length; /* length of address */
char **h_addr_list;/* Addr.list, NULL terminated */

};

#define h_addr h_addr_list[0]
/* first address,network byte order */

giorgio.richelli@uniroma1.it

Host Names

gethostbyname(const char *name)

● takes an host name and returns a hostent structure

gethostbyaddr(const char *addr,int len,int type)

● maps Internet host addresses (AF_INET, AF_INET6) into a
hostent structure

giorgio.richelli@uniroma1.it

Network Names

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
int n_net; /* network number,

 host byte order */
};

getnetbyname(const char *name);
getnetbynumber(long net,int type);

giorgio.richelli@uniroma1.it

Protocol Names

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};
getprotobyname(const char *name)
getprotobynumber(int proto);

giorgio.richelli@uniroma1.it

Service Names

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port#,net.byte order */
char *s_proto; /* protocol to use */

};
getservbyname(const char *name,

const char *proto);
getservbyport(int port, const char *proto);
sp = getservbyname("telnet", (char *) 0));
sp = getservbyname("telnet", "tcp");

giorgio.richelli@uniroma1.it

Network Byte Order

htonl(val)

● convert 32-bit quantity from host to network byte order
htons(val)

● convert 16-bit quantity from host to network byte order

giorgio.richelli@uniroma1.it

Network Byte Order

ntohl(val)
● convert 32-bit quantity from network to host byte order

ntohs(val)
● convert 16-bit quantity from network to host byte order

giorgio.richelli@uniroma1.it

Example

#include <stdio.h>
#include <netdb.h>
#include <stdlib.h>
unsigned long ResolveName(char name[])
{
struct hostent *host;
if ((host = gethostbyname(name)) == NULL){

fprintf(stderr, "gethostbyname() failed");
exit(1);

}
return *((unsigned long *)host->h_addr_list[0]);

}

giorgio.richelli@uniroma1.it

Example

unsigned short ResolveService(char service[],
 char protocol[])

{
struct servent *serv;
unsigned short port;

if (!(serv = getservbyname(service, protocol))){
fprintf(stderr, "getservbyname() failed");
exit(1);

}
port = serv->s_port;
return port;

}

giorgio.richelli@uniroma1.it

Multiplexing

select()
● Allows multiplexing I/O requests among multiple sockets and/or files

giorgio.richelli@uniroma1.it

select

#include <sys/time.h>
#include <sys/types.h>
...
fd_set readmask, writemask, exceptmask;
struct timeval timeout;
...
select(nfds, &readmask, &writemask, &exceptmask,
&timeout);

giorgio.richelli@uniroma1.it

select

select()takes pointers to three sets of descriptors:

● for which the caller wishes to be able to read data on

● to which data is to be written
● where exceptional conditions are pending

– out-of-band data is the only exceptional condition currently
implemented by the socket

If the user is not interested in certain conditions the
corresponding argument should be NULL.

giorgio.richelli@uniroma1.it

select

Each set is actually a structure containing an array of long integer
bit masks

● The size of the array is set by the definition FD_SETSIZE
● The macros
FD_SET(fd, &mask)
FD_CLR(fd, &mask)

allow adding and removing file descriptor fd in the set mask.

giorgio.richelli@uniroma1.it

select

The set should be zeroed before use
FD_ZERO(&mask)

nfds specifies the range of file descriptors (i.e. one plus the
value of the largest descriptor) to be examined

giorgio.richelli@uniroma1.it

select

● A timeout value may be specified

● If timeout(struct timeval) is set to 0, select returns
immediately

● If the last parameter is a NULL pointer, the selection will block
indefinitely, returning only when a descriptor is selectable or
when a signal is dispatched

giorgio.richelli@uniroma1.it

select

select()returns:

● the number of file descriptors selected

● 0 if the select call returns due to the timeout expiring

● -1 if terminated because of an error or interruption

giorgio.richelli@uniroma1.it

select

The status of a file descriptor may be tested with:
FD_ISSET(fd, &mask)

Which returns:

● non-zero value if fd is a member of the set mask

● 0 if it is not

giorgio.richelli@uniroma1.it

Example

#include <sys/time.h>
#include <sys/types.h>
...
fd_set read_template;
struct timeval wait;
...

giorgio.richelli@uniroma1.it

Example

for (;;) {
wait.tv_sec = 1; /* one second */
wait.tv_usec = 0;
FD_ZERO(&read_template);
FD_SET(s1, &read_template);
FD_SET(s2, &read_template);
nb = select(FD_SETSIZE, &read_template,
(fd_set *) 0, (fd_set *) 0, &wait);

giorgio.richelli@uniroma1.it

Example

if (nb <= 0) {
if (nb<0) perror(“select”)
else printf(“Timeout.\n);
continue;

}
if (FD_ISSET(s1, &read_template)) {

sts=ReadDataFromSocket(s1)
}
if (FD_ISSET(s2, &read_template)) {

sts=ReadDataFromSocket(s2)
}

}

giorgio.richelli@uniroma1.it

select

● select() provides a synchronous multiplexing scheme.

● Asynchronous notification of output completion, input availability,
and exceptional conditions is possible through use of signals
(SIGIO and SIGURG)

giorgio.richelli@uniroma1.it

setsockopt/getsockopt

int setsockopt(int s, int level, int optname,
const void *optval, int optlen);

int getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen)M

● Manipulate the options associated with a socket.
● Options may exist at multiple protocol levels; they are always

present at the uppermost socket level (SOL_SOCKET)

giorgio.richelli@uniroma1.it

setsockopt/getsockopt

● A server waits 2 MSL (maximum segment lifetime) for old
connection.

● If not properly terminated, a further bind() will return
EADDRINUSE.

giorgio.richelli@uniroma1.it

setsockopt/getsockopt

So, before bind():

int opt=1;
setsockopt(s, SOL_SOCKET,SO_REUSEADDR,
 (char *)&opt, sizeof(opt));

Other options:
● SO_ERROR get error status

● SO_KEEPALIVE send periodic keep-alives

● SO_LINGER close() on non-empty buffer

● SO_SNDBUF sets send buffer size

● SO_RCVBUF sets receive buffer size

giorgio.richelli@uniroma1.it

Non Blocking I/O

● A socket may be marked as non-blocking

#include <fcntl.h>
...

int s;
s = socket(AF_INET, SOCK_STREAM, 0);
if (fcntl(s, F_SETFL, FNDELAY) < 0){

perror("fcntl F_SETFL, FNDELAY");
exit(1);

}

giorgio.richelli@uniroma1.it

NonBlocking I/O

● If an operation, such as a send, cannot be done in its entirety
the data that can be sent immediately will be processed, and
the return value will indicate the amount actually sent

● NB: must check for errno==EWOULDBLOCK

giorgio.richelli@uniroma1.it

SIGIO

Allows a process to be notified via a signal when a socket (or
more generally, a file descriptor) has data waiting to be read

Three steps:
● set up a SIGIO signal handler

● set the process id (or process group id) which is to receive
notification of pending input to itself

● enable asynchronous notification of pending I/O (another
fcntl() call)

giorgio.richelli@uniroma1.it

Example

#include <fcntl.h>
...

int io_handler();
...

signal(SIGIO, io_handler);
if (fcntl(s, F_SETOWN, getpid()) < 0) {

perror("fcntl F_SETOWN");
exit(1);

}
if (fcntl(s, F_SETFL, FASYNC) < 0) {

perror("fcntl F_SETFL, FASYNC");
exit(1);

}

giorgio.richelli@uniroma1.it

Sockets & Signals

When a signal is sent to a process while performing a sockets
function, several things may occur depending on whether the
socket function is defined as a slow function.

A slow function is a function that can block indefinitely:
write(), recv(), send(), recvfrom(),
recvmsg(), sendmsg(), accept().

All other sockets functions are fast

giorgio.richelli@uniroma1.it

Sockets & Signals

Fast functions are not interrupted by a signal

The signal is raised when these socket functions exit.

giorgio.richelli@uniroma1.it

Sockets & Signals

Slow functions are interrupted by a signal if they are blocked
waiting for IO (if they are processing IO, they are not
interrupted).

They are interrupted in the middle of processing by the raising of a
signal.

They stop what processing they are doing and return the error
EINTR.

They do not complete the IO that was initiated.

The user program must re-initiate any desired IO explicitly.

giorgio.richelli@uniroma1.it

Sockets & Signals

There are three signals that can be generated by actions on a
socket:

● SIGPIPE
● SIGURG
● SIGIO

giorgio.richelli@uniroma1.it

Sockets & Signals

A SIGPIPE is generated when a send()/write() operation is
attempted on a broken socket.

E.g. a socket which has been shutdown().

● The default action is to terminate the process.
● The target of the signal is the process attempting the

send()/write().

giorgio.richelli@uniroma1.it

Sockets & Signals

SIGIO is somewhat more complex to set up :

fcntl(..,F_SETFL,FASYNC) to enable Async. I/O

fnctl(..,F_SETOWN, pid) to set target process (group) id.

A SIGIO signal is generated whenever new I/O can complete on a
socket

giorgio.richelli@uniroma1.it

Sockets & Signals

SIGIO signal is generated when

new data arrives at the socket

data can again be sent on the socket

the socket is either partially or completely shutdown or when

a listen socket has a connection request posted on it

...

giorgio.richelli@uniroma1.it

Sockets & Signals

A SIGURG indicates that an urgent condition is present on a
socket.

Either the arrival of out of band data or the presence of control
status information

fnctl(..,F_SETOWN, pid) to set target process (group) id.

	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

