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System V IPCSystem V IPC

Common Elements:
● Key: resource ID
● Creator: UID/GID
● Owner: UID/GID
● Permissions: r/w/x for owner/group/others

Resources are persistent and not automatically destroyed
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SemaphoresSemaphores

✔ A resource (variable) used for “signaling”
✔ No relationship with signal() IPC
✔ If a process is waiting for a <signal>, it is suspended until that 

<signal> is sent
✔ <wait> and <signal> operations cannot be interrupted (they are 

atomic)
✔ Queue is used to hold processes waiting on the semaphore
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SemaphoreSemaphore

int semget(key_t key, int count, int flag);
✔ Returns the identifier of semaphore <set> associated with key.
✔ count: 

- Number of semaphores in the <set>
✔ key :

- ftok()
- IPC_PRIVATE

✔ flag :
- IPC_CREAT, ...
- Access permissions (least 9 bits)



Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoreSemaphore
int semop(int semid, struct sembuf *sops, unsigned 
nsops); 
✔ Performs operations on selected members of the semaphore set 

indicated by semid.  
✔ Each of the nsops elements in the array pointed to by sops 

specifies an operation to be performed on a semaphore

    struct sembuf {
 unsigned short sem_num;
 short sem_op; 
 short sem_flg;

  }
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SemaphoreSemaphore
✔ The  set of operations contained in sops is performed in array 

order, and atomically

✔ The operations are performed either as a complete unit, or not at 
all

✔ The behavior of the system call depends on the presence of the 
IPC_NOWAIT in the individual sem_flg field.
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SemaphoreSemaphore
✔ unsigned short sem_num

- semaphore number (in set semid)
✔ short sem_flg:

- IPC_NOWAIT: don't block, returns -1 and set errno to EAGAIN
- IPC_UNDO: undo operation(s) when process exits
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SemaphoreSemaphore
✔ short sem_op

- >0 :  add sem_op to the value & eventually wake up suspended 
processes

- 0 :  block until value gets equal to 0 (unless IPC_NOWAIT)
- <0 :  block (unless IPC_NOWAIT) until the value becomes greater 

than or equal to the absolute value of sem_op, then subtract 
sem_op from that value 
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SemaphoreSemaphore

int semctl(int semid, int snum, int cmd, ...);
✔ Performs  the  operation specified by cmd on hore set identified by 
semid, or on the snum-th semaphore

✔ E.g.:
- IPC_SETVAL/IPC_GETVAL: set, get the value of the semaphore
- IPC_RMID: Remove semaphore set
- ....
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DeadLock DeadLock 

S2

Proc BS1

Proc A

lock

lock
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Producer/Consumer ProblemProducer/Consumer Problem
✔ One or more producers are generating data and placing these in a 

buffer

✔ One or more consumers are taking items out of the buffer one at 
time

✔ The buffer is must be kept coherent: only one producer or 
consumer may access the buffer at any given time
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P/V OperationsP/V Operations

Wait:
  P() { s=s-1; if (s<0) block(); }

Signal:
  V() { s=s+1; if (s>=0) wake(); }
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Producer/Consumer ProblemProducer/Consumer Problem

✔ How many semaphores ?
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Producer/Consumer ProblemProducer/Consumer Problem

✔ We need three semaphores:
- Amount of items in the buffer
- Number of free entries in the buffer
- Right to use the buffer
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Producer Function - PseudocodeProducer Function - Pseudocode
semaphore s=1, n=0, e=SIZE
void producer(void)
{
   while (1){
      produce_item();
      P(e);
      P(s);
      enter_item();
      V(s);
      V(n);
   }
}
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Consumer Function - PseudocodeConsumer Function - Pseudocode
semaphore s=1, n=0, e=SIZE
void consumer(void)
{
   while (1){
      P(n);
      P(s);
      remove_item();
      V(s);
      V(e);
   }
}
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Readers/WritersReaders/Writers
✔ Two kinds of threads: readers and writers. 

- Readers can inspect items in the buffer, but cannot change their 
value. 

- Writers can both read the values and change them. 
✔ The problem allows any number of concurrent reader threads, but 

a writer thread must have exclusiver access to the buffer.
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Readers/WritersReaders/Writers

Writer()

{

   while (1) {

      P(writing);

      <<< perform write >>>

      V (writing);

   }

}
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Readers/WritersReaders/Writers
 Reader() 

 {

    while (1) {

         P(mutex);

         rd_count++;

         if (rd_count==1) P(writing); /* First reader gets the write lock */

         V(mutex); 

         <<< perform read >>>

         P(mutex)

         rd_count--;

         If (!rd_count) V(writing); /* Last reader unlocks writers */  

         V(mutex);

     } 

 }
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Dining PhilosopersDining Philosopers

✔ K philosophers are seated around a 
circular table with one chopstick 
between each pair of philosophers. 

✔ There is one chopstick between each 
philosopher. 

✔ A philosopher may eat if he can 
pickup the two chopsticks adjacent to 
him. 

✔ One chopstick may be picked up by 
any one of its adjacent followers but 
not both.

Source: www.geeksforgeeks.org
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Sleeping BarberSleeping Barber
✔ The barber shop has:

- one barber
- one barber chair
- N chairs for waiting for customers .

✔ If there is no customer, then the barber sleeps in his own chair.
✔ When a customer arrives, he wakes up the barber.
✔ If there are many customers and the barber is cutting a customer’s 

hair, then the remaining customers either wait if there are empty 
chairs in the waiting room or they leave if no chairs are empty.

Source: www.geeksforgeeks.org
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IPC with shared memoryIPC with shared memory

P1 P2

kernel

Shared memory
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Shared MemoryShared Memory

A portion of physical memory shared between multiple processes.

Process A Process B

0x30000

0x50000 0x50000

0x70000Shared memory

region
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Shared Memory APIShared Memory API

int shmget(key_t key, size_t size, int flag);
✔ returns the identifier of the shared memory segment associated 

with key
- key: IPC_PRIVATE, ...
- size: size of shared area
- flag: IPC_CREATE, permissions, ..
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Shared MemoryShared Memory

Shared memory segments are:
✔ inherited after fork()
✔ detached but not destroyed, after exec() or exit()

Use specific command for manage resources:
✔ ipcs, ipcrm, ..
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Shared Memory APIShared Memory API

void *shmat(int shmid, void * shmaddr, int shmflag);
✔ attaches the shared memory segment identified by shmid to the 

address space of the calling process
✔ does not modify the brk

✔ shmaddr : usually NULL, otherwise address requested for 
segment

✔ shmflag: SHM_RDONLY, SHM_RND, ...
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Shared Memory APIShared Memory API

int shmdt(void *shmaddr);
✔ Detaches the shared memory segment at shmaddr from address 

space of calling process.
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Shared Memory APIShared Memory API

int shmctl(int shmid, int cmd, struct shmid_ds *buf);
✔ performs operation indicated by cmd on shared memory segment 

identified by shmid

✔ cmd: IPC_RMID, ...
✔ buf: address of struct to hold information about segment
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Shared Memory APIShared Memory API
✔ Shared memory segments must be explicitly removed (IPC_RMID)
✔ The segment is then marked as removed, but it will be destroyed 

only when the last process call shmdt()

✔ So it is common to:
- create the segment (one process)
- map the shared memory region (all processes)
- remove the  segment (one process)

✔ In order to avoid to leave unused segments, e.g. in case of 
crashes
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ftokftok

IPC key can be correlated to a file name

key_t ftok(char *pathname, int ndx)
✔ builds a key based on:

- pathname:  an existing, accessible file
- ndx: least significant 8 bits

✔
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SecuritySecurity

If a process holds  the key, it might access the resource. 
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Message QueuesMessage Queues

✔ Somewhat similar to pipes, but (unlike pipes):
- processes can send and receive messages in an arbitrary order 
- each message has an explicit length
- messages can be assigned a specific type

✔ However, they are not much used in the real world
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Message QueuesMessage Queues
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Message QueueMessage Queue

int = msgget(key_t key, int flag);

returns the message queue identifier associated with the value of the 
key argument

✔ key: IPC_PRIVATE, ..
✔ flag: IPC_CREAT, ...
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Message QueueMessage Queue

int msgsnd(int msgqid, struct msgbufp *msgp, size_t 
size, int flag)

appends a copy of the message pointed to by msgp  to  the 
message queue whose identifier is specified by msqid
✔ msgqid: message queue identifier
✔ msgp, size: pointer and size of message to send
✔ flag: IPC_NOWAIT, ..
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Message QueueMessage Queue

struct msgbuf {
      long mtype;    /* message type */
      char mtext[MSGSZ]; /* message text of length MSGSZ */
};
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Message QueueMessage Queue

count =msgrcv(int msgqid, struct msgbuf *msgp, size_t 
size, long type, int flag)

reads a message from the message queue specified by msqid into 
the buffer pointed to msgp 
✔ size: maximum size (in bytes) for the mtext member 
of msgp

✔ type: 0, [type], - [type]
✔ flag: IPC_NOWAIT, MSG_NOERROR, MSG_EXCEPT
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Message QueueMessage Queue

✔ If msgtyp:
- ==0 → the first message in the queue is read.
- >0 → the first message in the queue of type msgtyp is read, 

unless msgflg==MSG_EXCEPT, in which case the first message in 
the queue of type not equal to msgtyp  will  be read.

- <0 → the first message in the queue with the lowest type less 
than or equal to the absolute value of msgtyp will be read.
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Message QueueMessage Queue

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

performs  the  control operation specified by cmd on the message 
queue with identifier msqid
✔ msgqid: msg queue identifier
✔ cmd: IPC_RMID, .…
✔ buf: address of buffer



Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

struct msqid_ds {

  struct ipc_perm msg_perm;     /* Ownership and permissions */

  time_t     msg_stime;    /* Time of last msgsnd(2) */

  time_t     msg_rtime;    /* Time of last msgrcv(2) */

  time_t     msg_ctime;    /* Time of last change */

  unsigned long   __msg_cbytes; /* Current number of bytes in queue */

  msgqnum_t msg_qnum;    /* Current number of messages in queue */

  msglen_t  msg_qbytes;  /* Maximum number of bytes allowed in queue */

  pid_t     msg_lspid;  /* PID of last msgsnd(2) */
  pid_t    msg_lrpid;    /* PID of last msgrcv(2) */

};
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Message QueueMessage Queue

struct
msgqid_ds

msg msgmsg

P

senders

P

receivers

PP

Kernel 
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Kernel Message Queue Data StructureKernel Message Queue Data Structure

msqid
msg_perm;
msg_first;
msg_last;
msg_cbytes;
msg_qbytes;
msg_qnum;

Link
Type=100
Length=1
data

Link
Type=200
Length=2

Data

NULL
Type=300
Length=3

Data

msqid_ds
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