
Giorgio Richelli
giorgio.richelli@uniroma1.it

System V IPCSystem V IPC

Common Elements:
● Key: resource ID
● Creator: UID/GID
● Owner: UID/GID
● Permissions: r/w/x for owner/group/others

Resources are persistent and not automatically destroyed

Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoresSemaphores

✔ A resource (variable) used for “signaling”
✔ No relationship with signal() IPC
✔ If a process is waiting for a <signal>, it is suspended until that

<signal> is sent
✔ <wait> and <signal> operations cannot be interrupted (they are

atomic)
✔ Queue is used to hold processes waiting on the semaphore

Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoreSemaphore

int semget(key_t key, int count, int flag);
✔ Returns the identifier of semaphore <set> associated with key.
✔ count:

- Number of semaphores in the <set>
✔ key :

- ftok()
- IPC_PRIVATE

✔ flag :
- IPC_CREAT, ...
- Access permissions (least 9 bits)

Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoreSemaphore
int semop(int semid, struct sembuf *sops, unsigned
nsops);
✔ Performs operations on selected members of the semaphore set

indicated by semid.
✔ Each of the nsops elements in the array pointed to by sops

specifies an operation to be performed on a semaphore

 struct sembuf {
 unsigned short sem_num;
 short sem_op;
 short sem_flg;

 }

Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoreSemaphore
✔ The set of operations contained in sops is performed in array

order, and atomically

✔ The operations are performed either as a complete unit, or not at
all

✔ The behavior of the system call depends on the presence of the
IPC_NOWAIT in the individual sem_flg field.

Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoreSemaphore
✔ unsigned short sem_num

- semaphore number (in set semid)
✔ short sem_flg:

- IPC_NOWAIT: don't block, returns -1 and set errno to EAGAIN
- IPC_UNDO: undo operation(s) when process exits

Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoreSemaphore
✔ short sem_op

- >0 : add sem_op to the value & eventually wake up suspended
processes

- 0 : block until value gets equal to 0 (unless IPC_NOWAIT)
- <0 : block (unless IPC_NOWAIT) until the value becomes greater

than or equal to the absolute value of sem_op, then subtract
sem_op from that value

Giorgio Richelli
giorgio.richelli@uniroma1.it

SemaphoreSemaphore

int semctl(int semid, int snum, int cmd, ...);
✔ Performs the operation specified by cmd on hore set identified by
semid, or on the snum-th semaphore

✔ E.g.:
- IPC_SETVAL/IPC_GETVAL: set, get the value of the semaphore
- IPC_RMID: Remove semaphore set
-

Giorgio Richelli
giorgio.richelli@uniroma1.it

DeadLock DeadLock

S2

Proc BS1

Proc A

lock

lock

Giorgio Richelli
giorgio.richelli@uniroma1.it

Producer/Consumer ProblemProducer/Consumer Problem
✔ One or more producers are generating data and placing these in a

buffer

✔ One or more consumers are taking items out of the buffer one at
time

✔ The buffer is must be kept coherent: only one producer or
consumer may access the buffer at any given time

Giorgio Richelli
giorgio.richelli@uniroma1.it

P/V OperationsP/V Operations

Wait:
 P() { s=s-1; if (s<0) block(); }

Signal:
 V() { s=s+1; if (s>=0) wake(); }

Giorgio Richelli
giorgio.richelli@uniroma1.it

Producer/Consumer ProblemProducer/Consumer Problem

✔ How many semaphores ?

Giorgio Richelli
giorgio.richelli@uniroma1.it

Producer/Consumer ProblemProducer/Consumer Problem

✔ We need three semaphores:
- Amount of items in the buffer
- Number of free entries in the buffer
- Right to use the buffer

Giorgio Richelli
giorgio.richelli@uniroma1.it

Producer Function - PseudocodeProducer Function - Pseudocode
semaphore s=1, n=0, e=SIZE
void producer(void)
{
 while (1){
 produce_item();
 P(e);
 P(s);
 enter_item();
 V(s);
 V(n);
 }
}

Giorgio Richelli
giorgio.richelli@uniroma1.it

Consumer Function - PseudocodeConsumer Function - Pseudocode
semaphore s=1, n=0, e=SIZE
void consumer(void)
{
 while (1){
 P(n);
 P(s);
 remove_item();
 V(s);
 V(e);
 }
}

Giorgio Richelli
giorgio.richelli@uniroma1.it

Readers/WritersReaders/Writers
✔ Two kinds of threads: readers and writers.

- Readers can inspect items in the buffer, but cannot change their
value.

- Writers can both read the values and change them.
✔ The problem allows any number of concurrent reader threads, but

a writer thread must have exclusiver access to the buffer.

Giorgio Richelli
giorgio.richelli@uniroma1.it

Readers/WritersReaders/Writers

Writer()

{

 while (1) {

 P(writing);

 <<< perform write >>>

 V (writing);

 }

}

Giorgio Richelli
giorgio.richelli@uniroma1.it

Readers/WritersReaders/Writers
 Reader()

 {

 while (1) {

 P(mutex);

 rd_count++;

 if (rd_count==1) P(writing); /* First reader gets the write lock */

 V(mutex);

 <<< perform read >>>

 P(mutex)

 rd_count--;

 If (!rd_count) V(writing); /* Last reader unlocks writers */

 V(mutex);

 }

 }

Giorgio Richelli
giorgio.richelli@uniroma1.it

Dining PhilosopersDining Philosopers

✔ K philosophers are seated around a
circular table with one chopstick
between each pair of philosophers.

✔ There is one chopstick between each
philosopher.

✔ A philosopher may eat if he can
pickup the two chopsticks adjacent to
him.

✔ One chopstick may be picked up by
any one of its adjacent followers but
not both.

Source: www.geeksforgeeks.org

Giorgio Richelli
giorgio.richelli@uniroma1.it

Sleeping BarberSleeping Barber
✔ The barber shop has:

- one barber
- one barber chair
- N chairs for waiting for customers .

✔ If there is no customer, then the barber sleeps in his own chair.
✔ When a customer arrives, he wakes up the barber.
✔ If there are many customers and the barber is cutting a customer’s

hair, then the remaining customers either wait if there are empty
chairs in the waiting room or they leave if no chairs are empty.

Source: www.geeksforgeeks.org

Giorgio Richelli
giorgio.richelli@uniroma1.it

IPC with shared memoryIPC with shared memory

P1 P2

kernel

Shared memory

Giorgio Richelli
giorgio.richelli@uniroma1.it

Shared MemoryShared Memory

A portion of physical memory shared between multiple processes.

Process A Process B

0x30000

0x50000 0x50000

0x70000Shared memory

region

Giorgio Richelli
giorgio.richelli@uniroma1.it

Shared Memory APIShared Memory API

int shmget(key_t key, size_t size, int flag);
✔ returns the identifier of the shared memory segment associated

with key
- key: IPC_PRIVATE, ...
- size: size of shared area
- flag: IPC_CREATE, permissions, ..

Giorgio Richelli
giorgio.richelli@uniroma1.it

Shared MemoryShared Memory

Shared memory segments are:
✔ inherited after fork()
✔ detached but not destroyed, after exec() or exit()

Use specific command for manage resources:
✔ ipcs, ipcrm, ..

Giorgio Richelli
giorgio.richelli@uniroma1.it

Shared Memory APIShared Memory API

void *shmat(int shmid, void * shmaddr, int shmflag);
✔ attaches the shared memory segment identified by shmid to the

address space of the calling process
✔ does not modify the brk

✔ shmaddr : usually NULL, otherwise address requested for
segment

✔ shmflag: SHM_RDONLY, SHM_RND, ...

Giorgio Richelli
giorgio.richelli@uniroma1.it

Shared Memory APIShared Memory API

int shmdt(void *shmaddr);
✔ Detaches the shared memory segment at shmaddr from address

space of calling process.

Giorgio Richelli
giorgio.richelli@uniroma1.it

Shared Memory APIShared Memory API

int shmctl(int shmid, int cmd, struct shmid_ds *buf);
✔ performs operation indicated by cmd on shared memory segment

identified by shmid

✔ cmd: IPC_RMID, ...
✔ buf: address of struct to hold information about segment

Giorgio Richelli
giorgio.richelli@uniroma1.it

Shared Memory APIShared Memory API
✔ Shared memory segments must be explicitly removed (IPC_RMID)
✔ The segment is then marked as removed, but it will be destroyed

only when the last process call shmdt()

✔ So it is common to:
- create the segment (one process)
- map the shared memory region (all processes)
- remove the segment (one process)

✔ In order to avoid to leave unused segments, e.g. in case of
crashes

Giorgio Richelli
giorgio.richelli@uniroma1.it

ftokftok

IPC key can be correlated to a file name

key_t ftok(char *pathname, int ndx)
✔ builds a key based on:

- pathname: an existing, accessible file
- ndx: least significant 8 bits

✔

Giorgio Richelli
giorgio.richelli@uniroma1.it

SecuritySecurity

If a process holds the key, it might access the resource.

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueuesMessage Queues

✔ Somewhat similar to pipes, but (unlike pipes):
- processes can send and receive messages in an arbitrary order
- each message has an explicit length
- messages can be assigned a specific type

✔ However, they are not much used in the real world

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueuesMessage Queues

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

int = msgget(key_t key, int flag);

returns the message queue identifier associated with the value of the
key argument

✔ key: IPC_PRIVATE, ..
✔ flag: IPC_CREAT, ...

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

int msgsnd(int msgqid, struct msgbufp *msgp, size_t
size, int flag)

appends a copy of the message pointed to by msgp to the
message queue whose identifier is specified by msqid
✔ msgqid: message queue identifier
✔ msgp, size: pointer and size of message to send
✔ flag: IPC_NOWAIT, ..

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

struct msgbuf {
 long mtype; /* message type */
 char mtext[MSGSZ]; /* message text of length MSGSZ */
};

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

count =msgrcv(int msgqid, struct msgbuf *msgp, size_t
size, long type, int flag)

reads a message from the message queue specified by msqid into
the buffer pointed to msgp
✔ size: maximum size (in bytes) for the mtext member
of msgp

✔ type: 0, [type], - [type]
✔ flag: IPC_NOWAIT, MSG_NOERROR, MSG_EXCEPT

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

✔ If msgtyp:
- ==0 → the first message in the queue is read.
- >0 → the first message in the queue of type msgtyp is read,

unless msgflg==MSG_EXCEPT, in which case the first message in
the queue of type not equal to msgtyp will be read.

- <0 → the first message in the queue with the lowest type less
than or equal to the absolute value of msgtyp will be read.

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

performs the control operation specified by cmd on the message
queue with identifier msqid
✔ msgqid: msg queue identifier
✔ cmd: IPC_RMID, .…
✔ buf: address of buffer

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

struct msqid_ds {

 struct ipc_perm msg_perm; /* Ownership and permissions */

 time_t msg_stime; /* Time of last msgsnd(2) */

 time_t msg_rtime; /* Time of last msgrcv(2) */

 time_t msg_ctime; /* Time of last change */

 unsigned long __msg_cbytes; /* Current number of bytes in queue */

 msgqnum_t msg_qnum; /* Current number of messages in queue */

 msglen_t msg_qbytes; /* Maximum number of bytes allowed in queue */

 pid_t msg_lspid; /* PID of last msgsnd(2) */
 pid_t msg_lrpid; /* PID of last msgrcv(2) */

};

Giorgio Richelli
giorgio.richelli@uniroma1.it

Message QueueMessage Queue

struct
msgqid_ds

msg msgmsg

P

senders

P

receivers

PP

Kernel

Giorgio Richelli
giorgio.richelli@uniroma1.it

Kernel Message Queue Data StructureKernel Message Queue Data Structure

msqid
msg_perm;
msg_first;
msg_last;
msg_cbytes;
msg_qbytes;
msg_qnum;

Link
Type=100
Length=1
data

Link
Type=200
Length=2

Data

NULL
Type=300
Length=3

Data

msqid_ds

	6.3 System V IPC
	Semaphores
	Semaphore
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Dead lock of semaphore
	Producer/Consumer Problem
	P/V Operations
	Slide 41
	Slide 42
	Producer Function
	Consumer Function
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Client/server with shared memory
	Shared memory
	Using the shared memory
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Discussion
	Slide 59
	Slide 60
	Slide 61
	Message Queue
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Using a message queue
	An example of a msq

