Laurea triennale in INFORMATICA, Corso di ${f CALCOLO}$ ${f DELLE}$ ${f PROBABILIT}$ ${f \lambda}$ COMPITO - 15 novembre 2012 - FOGLIO RISPOSTE

NOME e COGNOME	
-	

CANALE: G. Nappo VOTO:	
N.B. BARRARE i punti non risolti degli esercizi. Scrivere le risposte dei vari punti degli esercizi	
oppure, in mancanza di tempo e/o di spazio. METTERE UNA CROCE sui punti risolti degli esercizi.	

ATTENZIONE ALLE DOMANDE CON L'ASTERISCO *

Esercizio	1.		
<i>i)</i> □ *			
<i>ii)</i> □ *	(a)	(b)	
iii)			
$iv)$ \square	(a)	(b)	 -
v) □ *	(a)	(b)	
Esercizio 2	2		
	(a)	(b)	
<i>ii)</i> □ *	(a)	(b)	
iii)			
$iv)$ \square	(a)	(b)	 -
$v)$ \square	(a)	(b)	
Esercizio 3			
<i>i)</i> □ *			
<i>ii)</i> □ *			
$iii)$ \square	(a)	(b)	
$iv)$ \square	(a)	(b)	

v) 🗆 _____

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ

Prof. G. Nappo – COMPITO - 15 NOVEMBRE 2012

NOME e COGNOME (scri	rivere in stampatello)	
NOME e COGNOME (scr	ivere in stampatello)	

N.B. Scrivere, giustificando brevemente i passaggi svolti, le soluzioni degli esercizi su questi fogli

ATTENZIONE: NON È NECESSARIO svolgere tutti i calcoli fino in fondo. Tuttavia dovete esplicitare i coefficienti binomiali e cercare di semplificare i calcoli al massimo

Esercizio 1.

In una partita con le carte francesi, ossia un mazzo di 52 carte con 4 semi (cuori, quadri, fiori e picche) e tredici carte ciascuna (1=asso, 2,...,12,13), il mazzo viene diviso (a caso) tra quattro giocatori, Alberto, Benedetto, Carlo e Daniele, ciascuno dei quali riceve quindi 13 carte. Posto A, l'evento Alberto riceve 2 assi (ossia esattamente due assi) e similmente per gli eventi <math>B, C e D, calcolare le probabilità dei seguenti eventi:

- i) * Alberto riceve 2 assi,
- ii) * (a) sia Alberto che Benedetto ricevono 2 assi, (b) almeno uno tra Alberto e Benedetto riceve 2 assi,
- iii) (a) almeno uno tra Alberto, Benedetto e Carlo riceve 2 assi,
 - (b) nessuno tra Alberto, Benedetto e Carlo riceve 2 assi.
- iv) Sapendo che almeno uno tra Alberto e Benedetto ha ricevuto 2 assi, calcolare la probabilità che Carlo riceva 2 assi

Posto X_A il numero di assi ricevuti da Alberto,

v) * (a) individuare il tipo di distribuzione di X_A , (b) calcolare il valore atteso di X_A .

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ

Prof. G. Nappo - COMPITO - 15 NOVEMBRE 2012

NOME e COGNOME (scrivere in stampatello)

N.B. Scrivere, giustificando brevemente i passaggi svolti, le soluzioni degli esercizi su questi fogli.

ATTENZIONE: È necessario svolgere tutti i calcoli fino in fondo.

Esercizio 2.

Una prima urna contiene 6 palline rosse e 2 bianche. Una seconda urna contiene 5 palline rosse e 3 bianche. Si lancia un dado e si sceglie l'urna 1 se escono 5 o 6 e la seconda altrimenti. Successivamente, dall'urna scelta (SEMPRE LA STESSA) vengono estratte le palline ad una ad una CON REINSERIMENTO. Siano H_1 l'evento {viene scelta l'urna 1} e H_2 l'evento viene scelta l'urna 2. Per ogni $n \ge 1$, si indichi con R_n l'evento {all'estrazione n-sima viene estratta una pallina rossa} e con H_n l'evento {all'estrazione H_n -sima viene estratta una pallina bianca}.

- i) * (a) Calcolare la probabilità di B_1 e (b) calcolare la probabilità di B_2 .
- ii) * (a) Sapendo che la prima pallina estratta è bianca, calcolare la probabilità che sia stata scelta l'urna 1.
 - (b) Sapendo che la seconda pallina estratta è bianca (ATTENZIONE il colore della prima pallina estratta non è noto), calcolare la probabilità che sia stata scelta l'urna 1.

Per ogni $m \ge 1$, si indichi con X_m il numero di palline rosse estratte nelle prime m estrazioni e con T il numero di estrazioni necessarie per ottenere per la prima volta una pallina rossa. Dopo aver scritto in termini degli eventi B_n , R_n e H_k gli eventi $\{X_2 = 0\}$ e $\{T = 2\}$, rispondere alle seguenti domande

- iii) Sapendo che $X_2 = 0$, calcolare la probabilità che sia stata scelta l'urna 1.
- iv) (a) Gli eventi $\{X_2 = 0\}$ e $\{T = 2\}$ sono incompatibili? (b) Gli eventi $\{X_2 = 0\}$ e $\{T = 2\}$ sono indipendenti?
- v) (a) Calcolare la densità discreta di X_2 (b) Calcolare il valore atteso di X_2

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ

Prof. G. Nappo - COMPITO - 15 NOVEMBRE 2012

NOME e COGNOME (scrivere in stampatello)

N.B. Scrivere, giustificando brevemente i passaggi svolti, le soluzioni degli esercizi su questi fogli.

ATTENZIONE: Svolgere tutti i calcoli fino in fondo.

Esercizio 3.

Sia U una variabile aleatoria a valori in $\{0, +2\}$ e V una variabile aleatoria a valori in $\{-1, 0, +1\}$ tali che

$$P(U=0,V=-1) = P(U=0,V=0) = P(U=2,V=0) = P(U=2,V=1) = 1/6 e P(U=0,V=1) = 0$$

- i) * Calcolare P(U=2, V=-1).
- ii) * Calcolare la densità discreta di V e il suo valore atteso e la sua varianza.
- iii) (a) Calcolare Cov(U,V). (b) Le variabili aleatorie U e V sono indipendenti?
- iv) Calcolare (a) la probabilità che U-2V sia uguale a 0 e (b) la probabilità che U=0 dato che U-2V=0.
- v) Se X_n , $n \ge 1$ sono variabili aleatorie indipendenti con la stessa legge di V, e $S_n = X_1 + X_2 + \cdots + X_n$ trovare una approssimazione per $P(S_{900} \le -(300 + 15\sqrt{5}))$