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Abstract. Generalized sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for
many high performance graph algorithms as well as for some linear solvers, such as algebraic multi-
grid. Here we show that SpGEMM also yields efficient algorithms for general sparse-matrix indexing
in distributed memory, provided that the underlying SpGEMM implementation is sufficiently flexible
and scalable. We demonstrate that our parallel SpGEMM methods, which use two-dimensional block
data distributions with serial hypersparse kernels, are indeed highly flexible, scalable, and memory-
efficient in the general case. This algorithm is the first to yield increasing speedup on an unbounded
number of processors; our experiments show scaling up to thousands of processors in a variety of test
scenarios.
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1. Introduction. We describe scalable parallel implementations of two sparse
matrix kernels. The first, generalized sparse matrix-matrix multiplication (SpGEMM),
computes the product of two sparse matrices over a general semiring. The second,
SpRef, performs generalized indexing into a sparse matrix: Given vectors I and J of
row and column indices, SpRef extracts the submatrix A(I, J). Our novel approach to
SpRef uses SpGEMM as its key subroutine, which regularizes the computation and
data access patterns; conversely, applying SpGEMM to SpRef emphasizes the im-
portance of an SpGEMM implementation that handles arbitrary matrix shapes and
sparsity patterns, and a complexity analysis that applies to the general case.

Our main contributions in this paper are as follows: first, we show that SpGEMM
leads to a simple and efficient implementation of SpRef; second, we describe a
distributed-memory implementation of SpGEMM that is more general in application
and more flexible in processor layout than before; and, third, we report on extensive
experiments with the performance of SpGEMM and SpRef. We also describe an al-
gorithm for sparse matrix assignment (SpAsgn) and report its parallel performance.
The SpAsgn operation, formally A(I, J) = B, assigns a sparse matrix to a submatrix
of another sparse matrix. It can be used to perform streaming batch updates to a
graph.
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Parallel algorithms for SpGEMM and SpRef, as well as their theoretical per-
formance, are described in sections 3 and 4. We present the general SpGEMM
algorithm and its parallel complexity before SpRef since the latter uses SpGEMM
as a subroutine and its analysis uses results from the SpGEMM analysis. Section 3.1
summarizes our earlier results on the complexity of various SpGEMM algorithms on
distributed memory. Section 3.3 presents our algorithm of choice, Sparse SUMMA,
in a more formal way than before, including a pseudocode general enough to handle
different blocking parameters, rectangular matrices, and rectangular processor grids.
The reader interested only in parallel SpRef can skip these sections and go directly
to section 4, where we describe our SpRef algorithm, its novel parallelization, and its
analysis. Section 5 gives an extensive performance evaluation of these two primitives
using large scale parallel experiments, including a performance comparison with sim-
ilar primitives from the Trilinos package. Various implementation decisions and their
effects on performance are also detailed.

2. Notation. Let A ∈ S
m×n be a sparse rectangular matrix of elements from a

semiring S. We use nnz(A) to denote the number of nonzero elements in A. When
the matrix is clear from the context, we drop the parentheses and simply use nnz . For
sparse matrix indexing, we use the convenient MATLAB colon notation, where A(:, i)
denotes the ith column, A(i, :) denotes the ith row, and A(i, j) denotes the element at
the (i, j)th position of matrixA. Array and vector indices are 1-based throughout this
paper. The length of an array I, denoted by len(I), is equal to its number of elements.
For one-dimensional (1D) arrays, I(i) denotes the ith component of the array. We
use flops(A · B), pronounced “flops,” to denote the number of nonzero arithmetic
operations required when computing the product of matrices A and B. Since the
flops required to form the matrix triple product differ depending on the order of
multiplication, flops((AB) ·C) and flops(A · (BC)) mean different things. The former
is the flops needed to multiply the product AB with C, whereas the latter is the flops
needed to multiply A with the product BC. When the operation and the operands
are clear from context, we simply use flops. The MATLAB sparse(i,j,v,m,n)

function, which is used in some of the pseudocode, creates an m× n sparse matrix A
with nonzeros A(i(k), j(k)) = v(k).

In our analyses of parallel running time, the latency of sending a message over
the communication interconnect is α, and the inverse bandwidth is β, both expressed
in terms of time for a floating-point operation (also accounting for the cost of cache
misses and memory indirections associated with that floating point operation). f(x) =
Θ(g(x)) means that f is bounded asymptotically by g both above and below.

3. Sparse matrix-matrix multiplication. SpGEMM is a building block for
many high-performance graph algorithms, including graph contraction [25], breadth-
first search from multiple source vertices [10], peer pressure clustering [34], recursive
all-pairs shortest-paths [19], matching [33], and cycle detection [38]. It is a subroutine
in more traditional scientific computing applications such as multigrid interpolation
and restriction [5] and Schur complement methods in hybrid linear solvers [37]. It also
has applications in general computing, including parsing context-free languages [32]
and colored intersection searching [29].

The classical serial SpGEMM algorithm for general sparse matrices was first de-
scribed by Gustavson [26] and was subsequently used in MATLAB [24] and CSparse [20].
That algorithm, shown in Figure 3.1, runs in O(flops + nnz +n) time, which is opti-
mal for flops ≥ max{nnz , n}. It uses the popular compressed sparse column (CSC)
format for representing its sparse matrices. Algorithm 1 gives the pseudocode for this
columnwise serial algorithm for SpGEMM.
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Fig. 3.1. Multiplication of sparse matrices stored by columns [11]. Columns of A are accumu-
lated as specified by the nonzero entries in a column of B using a sparse accumulator or SPA [24].
The contents of the SPA are stored into a column of C once all required columns are accumulated.

Algorithm 1 Columnwise formulation of serial matrix multiplication

1: procedure Columnwise-SpGEMM(A,B,C)
2: for j ← 1 to n do
3: for k where B(k, j) �= 0 do
4: C(:, j)← C(:, j) +A(:, k) ·B(k, j)

3.1. Distributed memory SpGEMM. The first question for distributed mem-
ory algorithms is ‘Where is the data?” In parallel SpGEMM, we consider two ways
of distributing data to processors. In 1D algorithms, each processor stores a block
of m/p rows of an m-by-n sparse matrix. In two-dimensional (2D) algorithms, pro-
cessors are logically organized as a rectangular p = pr × pc grid, so that a typical
processor is named P (i, j). Submatrices are assigned to processors according to a
2D block decomposition: processor P (i, j) stores the submatrix Aij of dimensions
(m/pr)×(n/pc) in its local memory. We extend the colon notation to slices of subma-
trices: Ai: denotes the (m/pr)× n slice of A collectively owned by all the processors
along the ith processor row, and A:j denotes the m × (n/pc) slice of A collectively
owned by all the processors along the jth processor column.

We have previously shown that known 1D SpGEMM algorithms are not scalable
to thousands of processors [7], while 2D algorithms can potentially speed up indefi-
nitely, albeit with decreasing efficiency. There are two reasons that the 1D algorithms
do not scale: First, their auxiliary data structures cannot be loaded and unloaded
quickly enough to amortize their costs. This loading and unloading is necessary be-
cause the 1D algorithms proceed in stages in which only one processor broadcasts its
submatrix to the others in order to avoid running out of memory. Second, and more
fundamentally, the communication costs of 1D algorithms are not scalable regardless
of data structures. Each processor receives nnz (of either A or B) data in the worst
case, which implies that communication cost is on the same order as computation,
prohibiting speedup beyond a fixed number of processors. This leaves us with 2D
algorithms for a scalable solution.

Our previous work [8] shows that the standard compressed sparse column or row
(CSC or CSR) data structures are too wasteful for storing the local submatrices arising
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from a 2D decomposition. This is because the local submatrices are hypersparse,
meaning that the ratio of nonzeros to dimension is asymptotically zero. The total
memory across all processors for CSC format would be O(n

√
p+ nnz ), as opposed to

O(n+ nnz ) memory to store the whole matrix in CSC on a single processor. Thus a
scalable parallel 2D data structure must respect hypersparsity.

Similarly, any algorithm whose complexity depends on matrix dimension, such as
Gustavson’s serial SpGEMM algorithm, is asymptotically too wasteful to be used as
a computational kernel for multiplying the hypersparse submatrices. Our Hyper-

SparseGEMM [6, 8], on the other hand, operates on the strictly O(nnz ) doubly
compressed sparse column (DCSC) data structure, and its time complexity does
not depend on the matrix dimension. Section 3.2 gives a succinct summary of
DCSC.

Our HyperSparseGEMM uses an outer-product formulation whose time complex-
ity is O(nzc(A) + nzr(B) + flops · lg ni), where nzc(A) is the number of columns of
A that are not entirely zero, nzr(B) is the number of rows of B that are not entirely
zero, and ni is the number of indices i for which A(:, i) �= ∅ and B(i, :) �= ∅. The
extra lg ni factor at the time complexity originates from the priority queue that is
used to merge ni outer products on the fly. The overall memory requirement of this
algorithm is the asymptotically optimal O(nnz (A)+nnz (B)+nnz (C)), independent
of either matrix dimensions or flops.

3.2. DCSC data structure. DCSC [8] is a further compressed version of CSC
where repetitions in the column pointers array, which arise from empty columns, are
not allowed. Only columns that have at least one nonzero are represented, together
with their column indices.

For example, consider the 9-by-9 matrix with four nonzeros as in Figure 3.3.
Figure 3.2 shows its CSC storage, which includes repetitions and redundancies in the
column pointers array (CP). Our new data structure compresses this column pointers
array to avoid repetitions, giving CP of DCSC as in Figure 3.4. DCSC is essentially
a sparse array of sparse columns, whereas CSC is a dense array of sparse columns.

After removing repetitions, CP(i) no longer refers to the ith column. A new
JC array, which is parallel to CP, gives us the column numbers. Although our
Hypersparse GEMM algorithm does not need column indexing, DCSC can sup-
port fast column indexing by building an AUX array that contains pointers to nonzero
columns (columns that have at least one nonzero element) in linear time.

Fig. 3.2. Matrix A in CSC format.

Fig. 3.3. Matrix A in Triples format.
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Fig. 3.4. Matrix A in DCSC format.

3.3. Sparse SUMMA algorithm. Our parallel algorithm is inspired by the
dense matrix-matrix multiplication algorithm SUMMA [23], used in parallel BLAS [16].
SUMMA is memory efficient and easy to generalize to nonsquare matrices and pro-
cessor grids.

The pseudocode of our 2D algorithm, SparseSUMMA [7], is shown in
Algorithm 2 in its most general form. The coarseness of the algorithm can be adjusted
by changing the block size 1 ≤ b ≤ gcd(k/pr, k/pc). For the first time, we present the
algorithm in a form general enough to handle rectangular processor grids and a wide
range of blocking parameter choices. The pseudocode, however, requires b to evenly
divide k/pr and k/pc for ease of presentation. This requirement can be dropped at the
expense of having potentially multiple broadcasters along a given processor row and
column during one iteration of the loop starting at line 4. The for . . . in parallel do
construct indicates that all of the do code blocks execute in parallel by all the pro-
cessors. The execution of the algorithm on a rectangular grid with rectangular sparse
matrices is illustrated in Figure 3.5. We refer the reader to the Combinatorial BLAS
source code [2] for additional details.

Algorithm 2 Operation C← AB using Sparse SUMMA

Input: A ∈ S
m×k,B ∈ S

k×n: sparse matrices distributed on a pr × pc processor grid
Output: C ∈ S

m×n: the product AB, similarly distributed.
1: procedure SparseSUMMA(A,B,C)
2: for all processors P (i, j) in parallel do
3: Bij ← (Bij)

T

4: for q = 1 to k/b do � blocking parameter b evenly divides k/pr and k/pc
5: c = (q · b)/pc � c is the broadcasting processor column
6: r = (q · b)/pr � r is the broadcasting processor row
7: lcols = (q · b) mod pc : ((q + 1) · b) mod pc � local column range
8: lrows = (q · b) mod pr : ((q + 1) · b) mod pr � local row range
9: Arem ← Broadcast(Aic(:, lcols), P (i, :))

10: Brem ← Broadcast(Brj(:, lrows), P (:, j))
11: Cij ← Cij +HyperSparseGEMM(Arem,Brem)

12: Bij ← (Bij)
T � Restore the original B

The Broadcast(Aic, P (i, :)) syntax means that the owner of Aic becomes the
root and broadcasts its submatrix to all the processors on the ith processor row.
Similarly for Broadcast(Brj , P (:, j)), the owner of Brj broadcasts its submatrix
to all the processors on the jth processor column. In lines 7–8, we find the local
column (for A) and row (for B) ranges for matrices that are to be broadcast during
that iteration. They are significant only at the broadcasting processors, which can
be determined implicitly from the first parameter of Broadcast. We index B by
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Fig. 3.5. Execution of the Sparse SUMMA algorithm for sparse matrix-matrix multiplication
C = A ·B. The example shows the first stage of the algorithm execution (the broadcast and the local
update by processor P (i, j)). The two rectangular sparse operands A and B are of sizes m-by-100K
and 100K-by-n, distributed on a 5× 4 processor grid. Block size b is chosen to be 5K.

columns as opposed to rows because it has already been locally transposed in line 3.
This makes indexing faster since local submatrices are stored in the column-based
DCSC sparse data structure. Using DCSC, the expected cost of fetching b consecutive
columns of a matrixA is b plus the size (number of nonzeros) of the output. Therefore,
the algorithm asymptotically has the same computation cost for all values of b.

For our complexity analysis, we assume that nonzeros of input sparse matri-
ces are independently and identically distributed, input matrices are n-by-n, with
d > 0 nonzeros per row and column on the average. The sparsity parameter d
simplifies our analysis by making different terms in the complexity comparable to
each other. For example, if A and B both have sparsity d, then nnz (A) = dn and
flops(AB) = d2n.

The communication cost of the Sparse SUMMA algorithm, for the case of pr =
pc =

√
p, is

(3.1) Tcomm =
√
p

(
2α+ β

(
nnz (A) + nnz(B)

p

))
= Θ

(
α
√
p+

β dn√
p

)
,

and its computation cost is

(3.2) Tcomp = O

(
dn√
p
+

d2n

p
lg

(
d2n

p
√
p

)
+

d2n lg
√
p

p

)
= O

(
dn√
p
+

d2n

p
lg

(
d2n

p

))

(see [6]).
We see that although scalability is not perfect and efficiency deteriorates as p

increases, the achievable speedup is not bounded. Since lg(d2n/p) becomes negligible
as p increases, the bottlenecks for scalability are the β dn/

√
p term of Tcomm and

the dn/
√
p term of Tcomp, which scale with

√
p. Consequently, two different scaling

regimes are likely to be present—a close to linear scaling regime, until those terms
start to dominate, and a

√
p-scaling regime afterward.

4. Sparse matrix indexing and subgraph selection. Given a sparse matrix
A and two vectors I and J of indices, SpRef extracts a submatrix and stores it as
another sparse matrix, B = A(I, J). Matrix B contains the elements in rows I(i) and
columns J(j) of A for i = 1, . . . , len(I) and j = 1, . . . , len(J), respecting the order of
indices. If A is the adjacency matrix of a graph, SpRef(A, I, I) selects an induced
subgraph. SpRef can also be used to randomly permute the rows and columns of a
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sparse matrix, a primitive in parallel matrix computation commonly used for load
balancing [31].

Simple cases such as row (A(i, :)), column (A(:, i)), and element (A(i, j)) indexing
are often handled by special purpose subroutines [11]. A parallel algorithm for the
general case, where I and J are arbitrary vectors of indices, does not exist in the
literature. We propose an algorithm that uses parallel SpGEMM. Our algorithm is
amenable to performance analysis for the general case.

A related kernel is SpAsgn, or sparse matrix assignment. This operation assigns
a sparse matrix to a submatrix of another sparse matrix, A(I, J) = B. A variation of
SpAsgn is A(I, J) = A(I, J) + B, which is similar to Liu’s extend-add operation [30]
in finite element matrix assembly. Here we describe the sequential SpAsgn algorithm
and its analysis, and we report large-scale performance results in section 5.2.

4.1. Sequential algorithms for SpRef and SpAsgn. Performing SpRef by
a triple sparse-matrix product is illustrated in Figure 4.1. The algorithm can be
described concisely in MATLAB notation as follows:

1 function B = spref(A,I,J)
2

3 [m,n] = size(A);
4 R = sparse(1:len(I),I,1,len(I),m);
5 Q = sparse(J,1:len(J),1,n,len(J));
6 B = R*A*Q;

The sequential complexity of this algorithm is flops(R · A) + flops((RA) · Q).
Due to the special structure of the permutation matrices, the number of nonzero
operations required to form the product R · A is equal to the number of nonzero
elements in the product. That is, flops(R · A) = nnz (RA) ≤ nnz (A). Similarly,
flops((RA) ·Q) ≤ nnz(A), making the overall complexity O(nnz (A)) for any I and J.
This is optimal in general, since just writing down the result of a matrix permutation
B = A(r, r) requires Ω(nnz (A)) operations.

Performing SpAsgn by two triple sparse-matrix products and additions is illus-
trated in Figure 4.2. We create two temporary sparse matrices of the same dimensions
as A. These matrices contain nonzeros only for the A(I, J) part and zeros elsewhere.
The first triple product embeds B into a bigger sparse matrix that we add to A. The
second triple product embeds A(I, J) into an identically sized sparse matrix so that
we can zero out the A(I, J) portion by subtracting it from A. Since general semiring
axioms do not require additive inverses to exist, we implement this piece of the al-
gorithm slightly differently than stated in the pseudocode. We still form the SAT

Fig. 4.1. Sparse matrix indexing (SpRef) using mixed-mode SpGEMM. On an m-by-n matrix
A, the SpRef operation A(I, J) extracts a len(I)-by-len(J) submatrix, where I is a vector of row
indices and J is a vector of column indices. The example shows B = A([2, 4], [1, 2, 3]). It performs
two SpGEMM operations between a boolean matrix and a general-type matrix.
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Fig. 4.2. Illustration of SpAsgn (A(I, J) = B) for rings where additive inverses are defined.
For simplicity, the vector indices I and J are shown as contiguous, but they need not be.

product, but, instead of using subtraction, we use the generalized sparse elementwise
multiplication function of the Combinatorial BLAS [10] to zero out theA(I, J) portion.
In particular, we first perform an elementwise multiplication of A with the negation
of SAT without explicitly forming the negated matrix, which can be dense. Thanks
to this direct support for the implicit negation operation, the complexity bounds are
identical to the version that uses subtraction. The negation does not assume additive
inverses: it sets all zero entries to one and all nonzeros entries to zero. The algorithm
can be described concisely in MATLAB notation as follows:

1 function C = spasgn(A,I,J,B)
2 % A = spasgn(A,I,J,B) performs A(I,J) = B
3

4 [ma,na] = size(A);
5 [mb,nb] = size(B);
6 R = sparse(I,1:mb,1,ma,mb);
7 Q = sparse(1:nb,J,1,nb,na);
8 S = sparse(I,I,1,ma,ma);
9 T = sparse(J,J,1,na,na);

10 C = A + R*B*Q - S*A*T;

Liu’s extend-add operation is similar to SpAsgn but simpler; it just omits sub-
tracting the SAT term.

Let us analyze the complexity of SpAsgn. GivenA ∈ S
m×n and B ∈ S

len(I)×len(J),
the intermediate boolean matrices have the following properties:

R is m-by-len(I) rectangular with len(I) nonzeros, one in each column.

Q is len(J)-by-n rectangular with len(J) nonzeros, one in each row.

S is m-by-m symmetric with len(I) nonzeros, all located along the diagonal.

T is n-by-n symmetric with len(J) nonzeros, all located along the diagonal.

Theorem 4.1. The sequential SpAsgn algorithm takes O(nnz (A) + nnz (B) +
len(I) + len(J)) time using an optimal Θ(flops) SpGEMM subroutine.

Proof. The product R ·B requires flops(R ·B) = nnz(RB) = nnz (B) operations
because there is a one-to-one relationship between nonzeros in the output and flops
performed. Similarly, flops((RB) ·Q) = nnz(RBQ) = nnz (B), yielding Θ(nnz(B))
complexity for the first triple product. The product S ·A requires only len(I) flops
since it does not need to touch nonzeros of A that do not contribute to A(I, :). Simi-
larly, (SA) ·T requires only len(J) flops. The number of nonzeros in the second triple
product is nnz (SAT) = O(len(I)+ len(J)). The final pointwise addition and subtrac-
tion (or generalized elementwise multiplication in the absence of additive inverses)
operations take time on the order of the total number of nonzeros in all operands [11],
which is O(nnz (A) + nnz(B) + len(I) + len(J)).

4.2. SpRef in parallel. The parallelization of SpRef poses several challenges.
The boolean matrices have only one nonzero per row or column. For the parallel
2D algorithm to scale well with an increasing number of processors, data structures
and algorithms should respect hypersparsity [8]. Communication should ideally take
place along a single processor dimension to save a factor of

√
p in communication
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Fig. 4.3. Parallel forming of the left-hand side boolean matrix R from the index vector I on
nine processors in a logical 3× 3 grid. R will be subsequently multiplied with A to extract six rows
out of nine from A and order them as {7, 2, 5, 8, 1, 3}.

volume. As before, we assume a uniform distribution of nonzeros to processors in our
analysis.

The communication cost of forming theRmatrix in parallel is the cost of Scatter
along the processor column. For the case of vector I distributed to

√
p diagonal

processors, scattering can be implemented with an average communication cost of
Θ(α · lg p + β · (len(I)/√p) [14]. This process is illustrated in Figure 4.3. The QT

matrix can be constructed identically, followed by a Transpose(QT) operation where
each processor P (i, j) receives nnz (Q)/p = len(J)/p words of data from its diagonal
neighbor P (j, i). Note that the communication cost of the transposition is dominated
by the cost of forming QT via Scatter.

While the analysis of our parallel SpRef algorithm assumes that the index vectors
are distributed only on diagonal processors, the asymptotic costs are identical in the
2D case, where the vectors are distributed across all the processors [12]. This is
because the number of elements (the amount of data) received by a given processor
stays the same with the only difference in the algorithm being the use of theAlltoall

operation instead of Scatter during the formation of the R and Q matrices.

The parallel performance of SpGEMM is a complicated function of the matrix
nonzero structures [7, 9]. For SpRef, however, the special structure makes our analysis
more precise. Suppose that the triple product is evaluated from left to right: B =
(R ·A) ·Q. A similar analysis can be applied to the reverse evaluation. A conservative
estimate of ni(R,A), the number of indices i for which R(:, i) �= ∅ and A(i, :) �= ∅, is
nnz (R) = len(I).

Using our HyperSparseGEMM [6, 8] as the computational kernel, time to com-
pute the product RA (excluding the communication costs) is

Tmult = max
i,j

√
p∑

k=1

(
nzc(Rik) + nzr(Akj) + flops(Rik ·Akj) · lg ni(Rik,Akj)

)
,

where the maximum over all (i, j) pairs is equal to the average, due to the uniform
nonzero distribution assumption.

Recall from the sequential analysis that flops(R ·A) ≤ nnz(A) since each nonzero
in A contributes at most once to the overall flop count. We also know that nzc(R) =
len(I) and nzr(A) ≤ nnz (A). Together with the uniformity assumption, these identi-
ties yield the following results:
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flops(Rik ·Akj) =
nnz(A)

p
√
p

,

ni(Rik ·Akj) ≤ nnz(Rik) =
len(I)

p
,

√
p∑

k=1

nzc(Rik) = nzc(Ri:) =
len(I)√

p
,

√
p∑

k=1

nzr(Aik) = nzr(Ai:) ≤ nnz (A)√
p

.

In addition to the multiplication costs, adding intermediate triples in
√
p stages

costs an extra flops(Ri: · A:j) lg
√
p = (nnz (A)/p) lg

√
p operations per processor.

Thus, we have the following estimates of computation and communication costs for
computing the product RA:

Tcomp(R ·A) = O

(
len(I) + nnz (A)√

p
+

nnz (A)

p
· lg

(
len(I)

p
+
√
p

))
,

Tcomm(R ·A) = Θ

(
α · √p+ β · nnz(A)√

p

)
.

Given that nnz (RA) ≤ nnz (A), the analysis of multiplying the intermediate
product RA with Q is similar. Combined with the cost of forming auxiliary matrices
R and Q and the costs of transposition of QT, the total cost of the parallel SpRef
algorithm becomes

Tcomp = O

(
len(I) + len(J) + nnz (A)√

p
+

nnz(A)

p
· lg

(
len(I) + len(J)

p
+
√
p

))
,

Tcomm = Θ

(
α · √p+ β · nnz (A) + len(I) + len(J)√

p

)
.

We see that SpGEMM costs dominate the cost of SpRef. The asymptotic speedup
is limited to Θ(

√
p), as in the case of SpGEMM.

5. Experimental results. We ran experiments on NERSC’s Franklin system [1],
a 9660-node Cray XT4. Each XT4 node contains a quad-core 2.3 GHz AMD Opteron
processor, attached to the XT4 interconnect via a Cray SeaStar2 ASIC using a Hyper-
Transport 2 interface capable of 6.4 GB/s. The SeaStar2 routing ASICs are connected
in a three-dimensional torus topology, and each link is capable of 7.6 GB/s peak bidi-
rectional bandwidth. Our algorithms perform similarly well on a fat tree topology, as
evidenced by our experimental results on the Ranger platform that are included in
an earlier technical report [9].

We used the GNU C/C++ compilers (version 4.5) and Cray’s MPI implementa-
tion, which is based on MPICH2. We incorporated our code into the Combinatorial
BLAS framework [10]. We experimented with core counts that are perfect squares,
because the Combinatorial BLAS currently uses a square

√
p×√p processor grid. We

compared performance with the Trilinos package (version 10.6.2.0) [28], which uses a
1D decomposition for its sparse matrices.

In the majority of our experiments, we used synthetically generated R-MAT ma-
trices rather than Erdős–Rényi [22] “flat” random matrices, as these are more realistic
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for many graph analysis applications. R-MAT [13], the Recursive MATrix genera-
tor, generates graphs with skewed degree distributions that approximate a power-
law. A scale n R-MAT matrix is 2n-by-2n. Our R-MAT matrices have an average
of eight nonzeros per row and column. R-MAT seed parameters are a = .6, and
b = c = d = .4/3. We applied a random symmetric permutation to the input matri-
ces to balance the memory and the computational load. In other words, instead of
storing and computing C = AB, we compute PCPT = (PAPT)(PBPT). All of our
experiments are performed on double-precision floating-point inputs.

Since algebraic multigrid on graphs coming from physical problems is an im-
portant case, we included two more matrices from the Florida Sparse Matrix col-
lection [21] to our experimental analysis in section 5.3.2, where we benchmark a
restriction operation that is used in algebraic multigrid. The first such matrix is a
large circuit problem (Freescale1) with 17 million nonzeros and 3.42 million rows and
columns. The second matrix comes from a structural problem (GHS psdef/ldoor) and
has 42.5 million nonzeros and 952, 203 rows and columns.

5.1. Parallel scaling of SpRef. Our first set of experiments randomly per-
mutes the rows and columns of A as an example case study for matrix reordering and
partitioning. This operation corresponds to relabeling vertices of a graph. Our second
set of experiments explores subgraph extraction by generating a random permutation
of 1 : n and dividing it into k 	 n chunks r1, . . . , rk. We then performed k SpRef
operations of the form A(ri, ri), one after another (with a barrier in between). In
both cases, the sequential reference is our algorithm itself.

The performance and parallel scaling of the symmetric random permutation is
shown in Figure 5.1. The input is an R-MAT matrix of scale 22 with approximately
32 million nonzeros in a square matrix of dimension 222. Speedup and runtime are
plotted on different vertical axes. We see that scaling is close to linear up to about
64 processors, and proportional to

√
p afterward, agreeing with our analysis.

The performance of subgraph extraction for k = 10 induced subgraphs, each with
n/k randomly chosen vertices, is shown in Figure 5.2. The algorithm performs well
in this case, too. The observed scaling is slightly less than the case of applying a
single big permutation, which is to be expected since the multiple small subgraph
extractions increase span and decrease available parallelism.

Fig. 5.1. Performance and parallel scaling of applying a random symmetric permutation to an
R-MAT matrix of scale 22. The x-axis uses a log scale.



SPARSE MATRIX INDEXING AND MULTIPLICATION C181

Fig. 5.2. Performance and parallel scaling of extracting 10 induced subgraphs from an R-MAT
matrix of scale 22. The x-axis uses a log scale.

5.2. Parallel scaling of SpAsgn. We benchmarked our parallel SpAsgn code
by replacing a portion of the input matrix (A) with a structurally similar right-hand
side matrix (B). This operation is akin to replacing a portion of the graph due to a
streaming update. The subset of vertices (row and column indices ofA) to be updated
is chosen randomly. In all the tests, the original graph is an R-MAT matrix of scale
22 with 32 million nonzeros. The right-hand side (replacement) matrix is also an
R-MAT matrix of scales 21, 20, and 19, in three subsequent experiments, replacing
50%, 25%, and 12.5% of the original graph, respectively. The average numbers of
nonzeros per row and column are also adjusted for the right-hand side matrices to
match the nonzero density of the subgraphs they are replacing.

The performance of this sparse matrix assignment operation is shown in
Figure 5.3. Our implementation uses a small number of Combinatorial BLAS
routines: these are a sparse matrix constructor from distributed vectors, essentially
a parallel version of MATLAB’s sparse routine, the generalized elementwise multi-
plication with direct support for negation, and parallel SpGEMM implemented using
Sparse SUMMA.

5.3. Parallel scaling of sparse SUMMA. We implemented two versions of
the 2D parallel SpGEMM algorithms in C++ using MPI. The first is directly based on
Sparse SUMMA and is synchronous in nature, using blocking broadcasts. The second
is asynchronous and uses one-sided communication in MPI-2. We found the asynchro-
nous implementation to be consistently slower than the broadcast-based synchronous
implementation due to inefficient implementation of one-sided communication rou-
tines in MPI. Therefore, we report only the performance of the synchronous implemen-
tation. The motivation behind the asynchronous approach, performance comparisons,
and implementation details can be found in our technical report [9, section 7]. On
more than four cores of Franklin, synchronous implementation consistently outper-
formed the asynchronous implementation by 38–57%.

Our sequential HyperSparseGEMM routines return a set of intermediate
triples that are kept in memory up to a certain threshold without being merged
immediately. This permits more balanced merging, eliminating some unnecessary
scans that degraded performance in a preliminary implementation [7].
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Fig. 5.3. Observed scaling of the SpAsgn operation A(I, I) = B where A ∈ R
n×n is an R-MAT

matrix of scale 22 and B is another R-MAT matrix whose scale is shown in the figure legend. I is
a duplicate-free sequence with entries randomly selected from the range 1...n; its length matches the
dimensions of B. Both axes are log scale.

5.3.1. Square sparse matrix multiplication. In the first set of experiments,
we multiply two structurally similar R-MAT matrices. This square multiplication is
representative of the expansion operation used in the Markov clustering algorithm [36].
It is also a challenging case for our implementation due to the highly skewed nonzero
distribution. We performed strong scaling experiments for matrix dimensions ranging
from 221 to 224.

Figure 5.4 shows the speedup we achieved. The graph shows linear speedup until
around 100 processors; afterward the speedup is proportional to the square root of the
number of processors. Both results agree with the theoretical analysis. To illustrate
how the scaling transitions from linear to

√
p, we drew trend lines on the scale 21

results. As shown in Figure 5.5, the slope of the log-log curve is 0.85 (close to linear)
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Fig. 5.4. Observed scaling of synchronous Sparse SUMMA for the R-MAT × R-MAT product
on matrices having dimensions 221 − 224. Both axes are log scale.
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Fig. 5.5. Demonstration of two scaling regimes for scale 21 R-MAT product.

Fig. 5.6. Performance and scaling of Sparse SUMMA at lower concurrencies (scale 21 inputs).
The x-axis uses a log scale.

until 121 cores, and the slope afterward is 0.47 (close to
√
p). Figure 5.6 zooms

to the linear speedup regime and shows the performance of our algorithm at lower
concurrencies. The speedup and timings are plotted on different y-axes of the same
graph.

Our implementation of Sparse SUMMA achieves over 2 billion “useful flops” (in
double precision) per second on 8100 cores when multiplying scale 24 R-MATmatrices.
Since useful flops are highly dependent on the matrix structure and sparsity, we
provide additional statistics for this operation in Table 5.1. Using matrices with more
nonzeros per row and column will certainly yield higher performance rates (in useful
flops). The gains from sparsity are clear if one considers dense flops that would be
needed if these matrices were stored in a dense format. For example, multiplying two
dense scale 24 matrices requires 9444 exaflops.

Figure 5.7 breaks down the time spent in communication and computation when
multiplying two R-MAT graphs of scale 24. We see that computation scales much
better than communication (over 90x reduction when going from 36 to 8100 cores),
implying that SpGEMM is communication bound for large concurrencies. For exam-
ple, on 8100 cores, 83% of the time is spent in communication. Communication times
include the overheads due to synchronization and load imbalance.

Figure 5.7 also shows the effect of different blocking sizes. Remember that each
processor owns a submatrix of size n/

√
p-by-n/

√
p. On the left, the algorithm com-
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Table 5.1

Statistics about R-MAT product C = A ·B. All numbers (except scale) are in millions.

Scale nnz(A) nnz(B) nnz (C) flops
21 16.3 16.3 123.9 253.2
22 32.8 32.8 257.1 523.7
23 65.8 65.8 504.3 1021.3
24 132.1 132.1 1056.9 2137.4

pletes in
√
p stages, each time broadcasting its whole local matrix. On the right, the

algorithm completes in 2
√
p stages, each time broadcasting half of its local matrix.

We see that while communication costs are not affected, the computation slows down
by 1–6% when doubling the number of stages. This difference is due to the costs of
splitting the input matrices before the multiplication and reassembling them after-
ward, which is small because splitting and reassembling are simple scans over the data
whose costs are dominated by the cost of multiplication itself.

5.3.2. Multiplication with the restriction operator. Multilevel methods
are widely used in the solution of numerical and combinatorial problems [35]. Such
methods construct smaller problems by successive coarsening. The simplest coars-
ening is graph contraction: a contraction step chooses two or more vertices in the
original graph G to become a single aggregate vertex in the contracted graph G′.
The edges of G that used to be incident to any of the vertices forming the aggregate
become incident to the new aggregate vertex in G′.

Constructing a coarse grid during the V-cycle of algebraic multigrid [5] or graph
partitioning [27] is a generalized graph contraction operation. Different algorithms
need different coarsening operators. For example, a weighted aggregation [15] might
be preferred for partitioning problems. In general, coarsening can be represented as
multiplication of the matrix representing the original fine domain (grid, graph, or
hypergraph) by the restriction operator.

In these experiments, we use a simple restriction operation to perform graph
contraction. Gilbert, Reinhardt, and Shah [25] describe how to perform contraction
using SpGEMM. Their algorithm creates a special sparse matrix S with n nonzeros.
The triple product SAST contracts the whole graph at once. Making S smaller in the
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Fig. 5.8. Strong scaling of B← AST, multiplying scale 23 R-MAT matrices with the restriction
operator on the right. The x-axis uses a log scale.

Fig. 5.9. Normalized communication and computation breakdown for multiplying scale 23
R-MAT matrices with the restriction operator of order 4.

first dimension while keeping the number of nonzeros the same changes the restriction
order. For example, we contract the graph by half by using S having dimensions
n/2× n, which is said to be of order 2.

Figure 5.8 shows “strong scaling” of the AST operation for R-MAT graphs of
scale 23. We used restrictions of order 2, 4, and 8. Changing the interpolation order
results in minor (less than 5%) changes in performance, as shown by the overlapping
curves. This is further evidence that our algorithm’s complexity is independent of the
matrix dimension, because interpolation order has a profound effect on the dimension
of the right-hand side matrix, but it does not change the expected flops and numbers
of nonzeros in the inputs (it may slightly decrease the number of nonzeros in the
output). The experiment shows scaling up to 4096 processors. Figure 5.9 shows
the breakdown of time (as percentages) spent on remote communication and local
computation steps.

Figures 5.10a and 5.10b show strong scaling of the full restriction operation SAST

of order 8, using different parenthesizing for the triple product. The results show that
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Fig. 5.10. The full restriction operation of order 8 applied to a scale 23 R-MAT matrix.

Fig. 5.11. Performance and strong scaling of Sparse SUMMA implementation for the full
restriction of order 2 (SAST) on real matrices from physical problems.

our code achieves 110× speedup on 1024-way concurrency and 163× speedup on 4096-
way concurrency, and the performance is not affected by the different parenthesizing.

Figure 5.11 shows the performance of full operation on real matrices from phys-
ical problems. Both matrices have a full diagonal that remains full after symmetric
permutation. Due to the 2D decomposition, processors responsible for the diagonal
blocks typically have more work to do. For load-balancing and performance reasons,
we split these matrices into two pieces: A = D+L, where D is the diagonal piece and
L is the off-diagonal piece. The restriction of rows becomes SA = SD+ SL. Scaling
the columns of S with the diagonal of D performs the former multiplication, and the
latter multiplication uses the Sparse SUMMA algorithm described in our paper. This
splitting approach especially improved the scalability of restriction on the Freescale1
matrix, because it is much sparser than GHS psdef/ldoor, which does not face severe
load balancing issues. Order 2 restriction shrinks the number of nonzeros from 17.0
to 15.3 million for Freescale1, and from 42.5 to 42.0 million for GHS psdef/ldoor.

5.3.3. Tall skinny right-hand side matrix. The last set of experiments mul-
tiplies R-MAT matrices by tall skinny matrices of varying sparsity. This computa-
tion is representative of the parallel breadth-first search that lies at the heart of our
distributed-memory betweenness centrality implementation [10]. This set indirectly
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examines the sensitivity to sparsity as well, because we vary the sparsity of the right-
hand side matrix from approximately 1 to 105 nonzeros per column in powers of 10.
In this way, we imitate the patterns of the level-synchronous breadth-first search from
multiple source vertices where the current frontier can range from a few vertices to
hundreds of thousands [12].

For our experiments, the R-MAT matrices on the left-hand side have d1 = 8
nonzeros per column, and their dimensions vary from n = 220 to n = 226. The
right-hand side is an Erdős–Rényi matrix of dimensions n-by-k, and the number of
nonzeros per column, d2, is varied from 1 to 105, in powers of 10. The right-hand side
matrix’s width k varies from 128 to 8192, growing proportionally to its length n, hence
keeping the matrix aspect ratio constant at n/k = 8192. Except for the d2 = 105

case, the R-MAT matrix has more nonzeros than the right-hand side matrix. In this
computation, the total work is W = O(d1d2k), the total memory consumption is
M = O(d1n+ d2k), and the total bandwidth requirement is O(M

√
p).

We performed weak scaling experiments where memory consumption per proces-
sor is constant. Since M = O(d1n+ d2k), this is achieved by keeping both n/p = 214

and k/p = 2 constant. Work per processor is also constant. However, per-processor
bandwidth requirements of this algorithm increases by a factor of

√
p.

Figure 5.12 shows a performance graph in three dimensions. The timings for each
slice along the XZ-plane (i.e., for every d2 = {1, 10, . . . , 105} contour) are normalized
to the running time on 64 processors. We do not cross-compare the absolute perfor-
mances for different d2 values, as our focus in this section is parallel scaling. In line
with the theory, we observe the expected

√
p slowdown due to communication costs.

The performance we achieved for these large-scale experiments, where we ran our
code on up to 4096 processors, is remarkable. It also shows that our implementation
does not incur any significant overhead since it does not deviate from the

√
p curve.

Fig. 5.12. Weak scaling of R-MAT times a tall skinny Erdős–Rényi matrix. X (processors)
and Y (nonzeros per column on fringe) axes are logarithmic, whereas Z (normalized time) axis is
linear.
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Fig. 5.13. Comparison of SpGEMM implementation of Trilinos’s EpetraExt package with our
Sparse SUMMA implementation using synthetically generated matrices. The data labels on the plots
show the speedup of Sparse SUMMA over EpetraExt.

Fig. 5.14. Comparison of Trilinos’s EpetraExt package with our Sparse SUMMA implementa-
tion for the full restriction of order 2 (SAST) on real matrices. The data labels on the plots show
the speedup of Sparse SUMMA over EpetraExt.

5.4. Comparison with Trilinos. The EpetraExt package of Trilinos can mul-
tiply two distributed sparse matrices in parallel. Trilinos can also permute matrices
and extract submatrices through its Epetra Import and Epetra Export classes. These
packages of Trilinos use a 1D data layout.

For SpGEMM, we compared the performance of Trilinos’s EpetraExt package with
ours on two scenarios. In the first scenario, we multiplied two R-MAT matrices as
described in section 5.3.1, and in the second scenario, we multiplied an R-MAT matrix
with the restriction operator of order 8 on the right as described in section 5.3.2.

Trilinos ran out of memory when multiplying R-MAT matrices of scale larger than
21, or when using more than 256 processors. Figure 5.13a shows SpGEMM timings
for up to 256 processors on scale 21 data. Sparse SUMMA is consistently faster
than Trilinos’s implementation, with the gap increasing with the processor count,
reaching 66× on 256-way concurrency. Sparse SUMMA is also more memory efficient
as Trilinos’s matrix multiplication ran out of memory for p = 1 and p = 4 cores.
The sweet spot for Trilinos seems to be around 120 cores, after which its performance
degrades significantly.
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In the case of multiplying with the restriction operator, the speed and scalability
of our implementation over EpetraExt is even more pronounced. This is shown in
Figure 5.13b, where our code is 65X faster even on just 121 processors. Remark-
ably, our codes scales up to 4096 cores on this problem, as shown in section 5.3.2,
while EpetraExt starts to slow down just beyond 16 cores. We also compared Sparse
SUMMA with EpetraExt on matrices coming from physical problems, and the results
for the full restriction operation (SAST) are shown in Figures 5.14.

In order to benchmark Trilinos’s sparse matrix indexing capabilities, we used Epe-
traExt’s permutation class that can permute row or columns of an Epetra CrsMatrix
by creating a map defined by the permutation, followed by an Epetra Export oper-
ation to move data from the input object into the permuted object. We applied a
random symmetric permutation on an R-MAT matrix, as done in section 5.1. Trilinos
shows good scaling up to 121 cores, but then it starts slowing down as concurrency
increases, eventually becoming over 10× slower than our SpRef implementation at
169 cores.

6. Conclusions and future work. We presented a flexible parallel sparse
matrix-matrix multiplication (SpGEMM) algorithm, Sparse SUMMA, which scales
to thousands of processors in distributed memory. We used Sparse SUMMA as a
building block to design and implement scalable parallel routines for sparse matrix
indexing (SpRef) and assignment (SpAsgn). These operations are important in the
context of graph operations. They yield elegant algorithms for coarsening graphs by
edge contraction as in Figure 6.1, extracting subgraphs, performing parallel breadth-
first search from multiple source vertices, and performing batch updates to a graph.

We performed parallel complexity analyses of our primitives. In particular, us-
ing SpGEMM as a building block enabled the most general analysis of SpRef. Our
extensive experiments confirmed that our implementation achieves the performance
predicted by our analyses.

Our SpGEMM routine might be extended to handle matrix chain products. In
particular, the sparse matrix triple product is used in the coarsening phase of algebraic
multigrid [3]. Sparse matrix indexing and parallel graph contraction also require
sparse matrix triple products [25]. Providing a first-class primitive for sparse matrix
chain products would eliminate temporary intermediate products and allow more
optimization, such as performing structure prediction [17] and determining the best
order of multiplication based on the sparsity structure of the matrices.

As we show in section 5.3, our implementation spends more than 75% of its time
in internode communication after 2000 processors. Scaling to higher concurrencies
requires asymptotic reductions in communication volume. We are working on devel-
oping practical communication-avoiding algorithms [4] for sparse matrix-matrix multi-
plication (and consequently for sparse matrix indexing and assignment), which might
require inventing efficient novel sparse data structures to support such algorithms.

Fig. 6.1. Example of graph coarsening using edge contraction, which can be implemented via a
triple sparse matrix product SAST where S is the restriction operator.
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Our preliminary experiments suggest that synchronous algorithms for SpGEMM
cause considerably higher load imbalance than asynchronous ones [9, section 7]. In
particular, a truly one-sided implementation can perform up to 46% faster when mul-
tiplying two R-MAT matrices of scale 20 using 4000 processors. We will experiment
with partitioned global address space (PGAS) languages, such as UPC [18], because
the current implementations of one-sided MPI-2 were not able to deliver satisfactory
performance when used to implement asynchronous versions of our algorithms.

As the number of cores per node increases due to multicore scaling, so does the
contention on the network interface card. Without hierarchical parallelism that ex-
ploits the faster on-chip network, the flat MPI parallelism will be unscalable because
more processes will be competing for the same network link. Therefore, designing hi-
erarchically parallel SpGEMM and SpRef algorithms is an important future direction
of our work.
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[9] A. Buluç and J. R. Gilbert, Highly Parallel Sparse Matrix-Matrix Multiplication, Technical
report UCSB-CS-2010-10, Computer Science Department, University of California, Santa
Barbara, CA, 2010.
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[22] P. Erdös and A. Rényi, On random graphs, Publicationes Mathematicae, 6 (1959), pp. 290–

297.
[23] R. A. van de Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication algo-

rithm, Concurrency Comput. Practice Experience, 9 (1997), pp. 255–274.
[24] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design and

implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.
[25] J. R. Gilbert, S. Reinhardt, and V. B. Shah, A unified framework for numerical and

combinatorial computing, Comput. Sci. Engrg., 10 (2008), pp. 20–25.
[26] F. G. Gustavson, Two fast algorithms for sparse matrices: Multiplication and permuted trans-

position, ACM Trans. Math. Software, 4 (1978), pp. 250–269.
[27] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Supercom-

puting ’95: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, ACM,
New York, IEEE, Washington, DC, 1995, p. 28.

[28] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,

R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.

Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley,
An overview of the Trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397–423.

[29] H. Kaplan, M. Sharir, and E. Verbin, Colored intersection searching via sparse rectangular
matrix multiplication, in Proceedings of the 22nd Annual Symposium on Computational
Geometry, ACM, New York, 2006, pp. 52–60.

[30] J. W. H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM
Rev., 34 (1992), pp. 82–109.

[31] A. T. Ogielski and W. Aiello, Sparse matrix computations on parallel processor arrays,
SIAM J. Sci. Comput., 14 (1993), pp. 519–530.

[32] G. Penn, Efficient transitive closure of sparse matrices over closed semirings, Theoret. Com-
put. Sci., 354 (2006), pp. 72–81.

[33] M. O. Rabin and V. V. Vazirani, Maximum matchings in general graphs through randomiza-
tion, J. Algorithms, 10 (1989), pp. 557–567.

[34] V. B. Shah, An Interactive System for Combinatorial Scientific Computing with an Emphasis
on Programmer Productivity, Ph.D. thesis, University of California, Santa Barbara, CA,
2007.

[35] S.-H. Teng, Coarsening, sampling, and smoothing: Elements of the multilevel method, in
Parallel Processing, IMA Vol. Math. Appl., 105, Springer-Verlag, Berlin, 1999, pp. 247–
276.

[36] S. Van Dongen, Graph clustering via a discrete uncoupling process, SIAM J. Matrix Anal.
Appl., 30 (2008), pp. 121–141.

[37] I. Yamazaki and X. Li, On techniques to improve robustness and scalability of a parallel hy-
brid linear solver, in High Performance Computing for Computational Science, VECPAR,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 421–434.

[38] R. Yuster and U. Zwick, Detecting short directed cycles using rectangular matrix multipli-
cation and dynamic programming, in Proceedings of the 15th Annual ACM–SIAM Sym-
posium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2004, pp. 254–260.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


