
Intensive Computation 2020-2021
17th March 2021

HOMEWORK 2
Linear Systems

1) Write a C program where you implement GENP (Gaussian Elimination without pivoting)
and GE*P (Gaussian Elimination with either Partial, Complete or Rook pivoting – choose one)
to solve linear systems.
Run the two procedures on randomly generated linear systems 𝐴𝑥 = 𝑏 considering different
sizes 𝑛 approximately between 1000 and 10000.
For each matrix size, run a number of tests in order to obtain sufficient statistical confidence.
For each test and for each algorithm, consider the execution time and the error 𝜖 = ||𝐴 𝑥̃ −

𝑏||, where 𝑥̃ is your computed solution.

Make two graphs using any plotting platform showing how errors and execution times change
with the growth of the system size 𝑛 for both methods.

Your program should look something like this:

runTests:
for n = 1000:1000:10000

for ex = 1:noExperiments
 generate random A nxn and b nx1;
 run GEPP on Ax=b
 store execution time and error
 run GE*P on Ax=b
 store execution time and error
end

end

2) Write a C program for the solving randomly generated linear systems using the Cholesky
decomposition.
Test the algorithm over randomly generated linear systems 𝐴𝑥 = 𝑏 of size 𝑛 approximately
between 1000 and 10000. When you generate the linear systems, make sure 𝐴 is symmetric
and strictly diagonally dominant, with positive entries in its principal diagonal. This will
ensure convergence. An example of symmetric, strictly diagonally domaninat matrix with
positive entries in its principal diagonal is:

A = 3 1 0 -1

1 8 -4 -2
 0 -4 10 3
 -1 -2 3 8

Compare the results that you get in terms of computational time and solution with the output
of the LAPACK function *posv. Implement a similar scheme as runTests.

For comparing the solutions obtained by your Cholesky implementation and Lapack’s,
compute 𝜖 = ||𝑥̃ − 𝑥𝐿||, where 𝑥̃ is your solution and 𝑥𝐿 is the solution obtained by Lapack.

Plot your results.

Installing LAPACK and compiling

Go to: http://www.netlib.org/lapack/
Click on software and download the library.
install with cmake and make (follow the instruction on the README). You will be needing a
fortran compiler (gfortran).

To compile your project, project.c, use the following line:

gcc -O3 project.c -o project -lcblas -llapacke -llapack

LAPACK documentation: http://www.netlib.org/lapack/explore-html/

LAPACK documentation for the dposv function:
http://www.netlib.org/lapack/explore-
html/dc/de9/group__double_p_osolve_ga9ce56acceb70eb6484a768eaa841f70d.html -
ga9ce56acceb70eb6484a768eaa841f70d

OTHERWISE:
You might want to use the Intel MKL (Math Kernel Library).
You need to install the Intel oneAPI toolkit:
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-
toolkit/download.html
And follow the installation instructions.

To compile your project, project.c, use the following lines:

>> source <oneapi_install_dir>/setvars.sh
>> gcc -O3 -DMKL_ILP64 project.c -o project -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential -lm

Line advisor for linking:
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemk
l/link-line-advisor.html

MKL documentation:
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-
developer-reference-c/top.html

MKL documentation for the *posv function:
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-
developer-reference-c/top/lapack-routines/lapack-linear-equation-routines/lapack-linear-
equation-driver-routines/posv.html

SEE ATTACHED FILES geLapack.c and geMKL.c for example including Lapack and MKL calls to
the dgesv function for solving linear systems with the Gaussian Elimination.

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/#_software
http://www.netlib.org/lapack/explore-html/
http://www.netlib.org/lapack/explore-html/dc/de9/group__double_p_osolve_ga9ce56acceb70eb6484a768eaa841f70d.html#ga9ce56acceb70eb6484a768eaa841f70d
http://www.netlib.org/lapack/explore-html/dc/de9/group__double_p_osolve_ga9ce56acceb70eb6484a768eaa841f70d.html#ga9ce56acceb70eb6484a768eaa841f70d
http://www.netlib.org/lapack/explore-html/dc/de9/group__double_p_osolve_ga9ce56acceb70eb6484a768eaa841f70d.html#ga9ce56acceb70eb6484a768eaa841f70d
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/lapack-routines/lapack-linear-equation-routines/lapack-linear-equation-driver-routines/posv.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/lapack-routines/lapack-linear-equation-routines/lapack-linear-equation-driver-routines/posv.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/lapack-routines/lapack-linear-equation-routines/lapack-linear-equation-driver-routines/posv.html

