
Journal of Computational Physics 227 (2008) 8508–8522
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Multiple extremal eigenpairs by the power method

J.E. Gubernatis a,*, T.E. Booth b

a Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
b Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 November 2007
Accepted 9 June 2008
Available online 17 June 2008

Keywords:
Numerical methods
Large matrices
Multiple extremal eigenvalues
Power method
0021-9991/$ - see front matter � 2008 Published b
doi:10.1016/j.jcp.2008.06.001

* Corresponding author. Tel.: +1 505 667 6727; fa
E-mail address: jg@lanl.gov (J.E. Gubernatis).
We report the production and benchmarking of several refinements of the power method
that enable the computation of multiple extremal eigenpairs of very large matrices. In
these refinements we used an observation by Booth that has made possible the calculation
of up to the 10th eigenpair for simple test problems simulating the transport of neutrons in
the steady state of a nuclear reactor. Here, we summarize our techniques and efforts to-
date on determining mainly just the two largest or two smallest eigenpairs. To illustrate
the effectiveness of the techniques, we determined the two extremal eigenpairs of a cyclic
matrix, the transfer matrix of the two-dimensional Ising model, and the Hamiltonian
matrix of the one-dimensional Hubbard model.

� 2008 Published by Elsevier Inc.
1. Introduction

Computing eigenpairs of large matrices is a ubiquitous problem in computational physics. In this paper, we present sev-
eral refinements of the basic power method that enable the efficient and accurate computation of multiple extremal eigen-
values of very large matrices. Ultimately, our objective is producing Monte Carlo versions of such methods for matrices
whose orders are so large that even the eigenvectors cannot be stored in computer memory. For such problems, the compu-
tation of a basic vector quantity as the inner product is generally either very inefficient or impractical. It can be impractical,
for instance, because the nature of Monte Carlo sampling means most components of these vectors are unknown. Here, we
focus on the basic algorithms developed to date, noting they work well when used deterministically. Novel will be the illus-
tration of how the power method can be expanded to compute several extremal eigenpairs simultaneously rather than just
one at a time. While various versions of the power method often compute very well the dominant eigenvalue k1, the one with
largest absolute value, computing subdominant eigenvalues k2; k3; . . . has often proven much more difficult and is much less
frequently attempted.

The algorithms to be presented use some recent insights of Booth [1,2] that were developed for Monte Carlo simulations
of steady state neutron transport in nuclear reactors. Initially, he proposed a novel modification of the power method that
has produced up to 10 eigenpairs for simple test problems. Here, we present refinements of these insights and focus on
determining just k1 and k2, plus their eigenvectors. The convergence of the power method is well known to slow as the ratio
k2=k1, sometimes called the dominance ratio, approaches unity. As such, this ratio is an indicator of solution difficulty and
acceptability. As we will illustrate, an advantage of computing two dominant eigenpairs simultaneously is often improved
convergence to the first one. An advantage of the present techniques is the ease in getting both eigenfunctions along with
their eigenvalues.

It is important to note that various areas of science and engineering seek multiple eigenpairs for reasons other than algo-
rithmic gains. In nuclear engineering, a dominance ratio distinct from unity is an acceptance qualifier for various nuclear
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criticality safety assessments and nuclear reactor designs [3]. In statistical physics, a dominance ratio nearing unity, on the
other hand, is often a condition sought. Near a continuous phase transition, k2 ! k1, and k2=k1 controls the microscopic spa-
tial correlations among physical degrees of freedom [4]. Today, an important topic in quantum statistical mechanics is quan-
tum critical phenomena, phase transitions driven by zero-point motion at zero temperature [5]. Here, it is the two smallest
eigenvalues of the Hamiltonian matrix describing the physical system that are of interest. The quantum critical phenomenon
construct, while supplemented by a few exact solutions to some very simple problems, is largely phenomenological in part
because of the inability to compute k2 for models of direct physical relevance.

In the next section, Section 2, we summarize some basic notions about the power method and our refined procedures. For
simplicity, we will assume the two largest extremal eigenpairs are sought. Also we restrict attention to systems with real
eigenvectors and eigenvalues, but our methods can be applied to complex systems as well. In Section 3, we apply these tech-
niques to determination of a few eigenpairs of three problems. The first is the cyclic matrix that results from the discretiza-
tion of the gradient operator on a circle, the second is the transfer matrix of the two-dimensional Ising model, and the third is
the Hamiltonian matrix of the one-dimensional Hubbard model. For the first and third problems, we determine the smallest
two eigenpairs (ground-state and first excited state) instead of the largest ones to illustrate the flexibility of the techniques.
The second and third problems counterpose in their computational challenges in a number of ways: The transfer matrix for
the Ising model is non-symmetric, positive, and dense. Its eigenvalues are known analytically and all its matrix elements
follow a single simple analytic expression. The Hamiltonian matrix for the Hubbard model is symmetric, indefinite, and
sparse. Its two smallest eigenvalues are not known analytically, and its matrix elements, while easy to compute, lack a sim-
ple expression. In Section 4, the final section, we will discuss extensions of the techniques to broader classes of problems,
including those involving continuous operators.

2. Methodology

We first summarize the power method, and then we discuss ways to refine it so convergence is to the two largest extre-
mal eigenpairs simultaneously. We conclude this section with two refinements of the power method: one is necessary for
the reduction of round-off error and the other improves the convergence rate to the dominant eigenpair while simulta-
neously calculating the second extremal eigenpair.

2.1. A. Power method basics

For some real-valued N � N matrix A, not necessarily symmetric, we will be concerned with the N eigenpairs ðki;wiÞ
satisfying
Awi ¼ kiwi ð1Þ
In the simplest application of the power method [6], an iteration is started with some w, normalized in some convenient, but
otherwise relatively arbitrary, manner and consists of iterating two steps
/ ¼ Aw

w ¼ /=k/k
ð2Þ
If we write
w ¼
XN

i¼1

aiwi
then after n iterations
Anw ¼ kn
1 a1w1 þ

XN

i¼2

ai
ki

k1

� �n

wi

" #
ð3Þ
If jk1j > jk2jP jk3jP � � �P jkNj, then for a1 6¼ 0,
w! w1=kw1k
k/k ! k1
Hence, the dominant eigenpair is simultaneously determined. For the norm of the vector / whose components are /i, a fre-
quent choice is
k/k � k/k1 ¼max
i
j/ij
This is the choice adopted here.
Clearly, if jk2=k1j ’ 1 convergence of the iteration is slow. Often it can be improved by the replacement A! A� rI which

shifts the value of each eigenvalue by a constant amount r but does not change the associated eigenvector. Besides poten-
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tially accelerating convergence, the shift also enables the determination of the smallest, instead of the largest, eigenpair. In
particular, if A and all the ki are real, no matter how r is chosen, either k1 � r or kN � r will be the converged eigenvalue.
Most often, r is chosen to be independent of iteration step. In this case, for convergence to k1, the optimal choice for r is
1
2 ðk2 þ kNÞ; for convergence to kN , the choice is 1

2 ðk1 þ kN�1Þ [6].
If the dominant eigenvalue is degenerate, for example, doubly degenerate with k1 ¼ k2, or degenerate in magnitude, for

example, doubly degenerate with jk1j ¼ jk2j, then the power method, as most iterative methods, cannot determine a unique
eigenvector. As can be seen from Eq. (3), in these situations the iteration converges to
Anw ¼ kn
1 a1w1 þ sign

k2

k1

� �
a2w2 þ

XN

i¼3

ai
ki

k1

� �n

wi

" #

The eigenvalue estimators will converge to the correct values of k1 and k2 but the eigenvector estimate corresponding to the
dominant eigenvalue will be some linear combination of w1 and w2. A similar situation will can occur for convergence to the
first subdominant eigenvalue if for example jk2j ¼ jk3j. In this case w1 can be determined but w2 cannot.

If a few dominant eigenpairs, say M, are desired, one of two approaches are tried. One approach is to use the power
method to determine the dominant eigenpair, use deflation to project out this state out of the matrix, and then reuse the
power method on the deflated matrix. To determine several eigenpairs simultaneously, the power method can be gen-
eralized to
U ¼ AW
where U and W are M � N matrices whose columns are orthogonalized to each other. This orthogonality needs maintenance
throughout the computation or else all M vectors, represented by the columns of the initial W, will converge to the same one.
This algorithm is called the simultaneous iteration method [7].

2.2. B. Observation

Booth’s refinement of the power method [1,2] uses the observation that for any eigenpair ðk;wÞ and for each non-zero
component of the eigenvector, the eigenvalue equation Aw ¼ kw can be rewritten as
k ¼
P

bAabwb

wa
ð4Þ
and that similar equations can also be written for any number of groupings of components,
k ¼
P

a2R1

P
bAabwbP

a2R1
wa

¼
P

a2R2

P
bAabwbP

a2R2
wa

¼ � � � ¼
P

a2RN

P
bAabwbP

a2RN
wa

ð5Þ
where the Ri are rules for different groupings. The groups can overlap. In addition, any two groupings, say 1 and 2,
imply
 X

a2R2

wa

X
a2R1

X
b

Aabwb ¼
X
a2R1

wa

X
a2R2

X
b

Aabwb ð6Þ
The eigenvalue estimator (4) is a special case of what is often called a mixed estimator [8]
k ¼ h/jAjwih/jwi
In the present case, the component /i of the vector / is unity if i 2 R; otherwise, it is zero. From N groupings of the compo-
nents, Booth constructs N estimators for the Nth eigenvalue and forces them to become equal by adjusting certain param-
eters at each iteration step. Several ways to do this have been devised, and we will now sketch the most recent ones for
obtaining two extremal eigenpairs simultaneously.

For almost any starting point w ¼
P

iaiwi, the power method will converge to ðk1;w1Þ. The same would be true for almost
any other two normalized, but not necessarily orthogonal, starting points w0 ¼

P
ibiwi or w00 ¼

P
iaiwi. We will in fact choose

two such starting points and at each step apply A to them individually, but at each step we will adjust the relationship be-
tween them to prevent the collapse of their sum to the dominant eigenfunction.

Formally, we start the iteration with w ¼ w0 þ gw00 and assume that after a large number of steps just the two dominant
eigenpairs remain significant. Then we have
Anw ¼ An
X2

i¼1

aiwi ¼
X2

i¼1

ðai þ gbiÞkn
i wi ð7Þ
To determine g, we define two groupings of the components of Anw;R1 and R2, and let jj be the eigenvalue estimate for the
jth grouping. Then from Eq. (5) we find that
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j1 ¼
ða1 þ gb1Þkn

1

P
a2R1

w1;a þ ða2 þ gb2Þkn
2

P
a2R1

w2;a

ða1 þ gb1Þkn�1
1

P
a2R1

w1;a þ ða2 þ gb2Þkn�1
2

P
a2R1

w2;a

j2 ¼
ða1 þ gb1Þkn

1

P
a2R2

w1;a þ ða2 þ gb2Þkn
2

P
a2R2

w2;a

ða1 þ gb1Þkn�1
1

P
a2R2

w1;a þ ða2 þ gb2Þkn�1
2

P
a2R2

w2;a
If we require j1 ¼ j2, a quadratic equation for g results. If one solution of this equation is chosen to guide the iteration to
a1 þ gb1 ¼ 0, then j1 ¼ j2 ¼ k2. If the solution on the other hand is chosen to guide the iteration towards a2 þ gb2 ¼ 0, then
j1 ¼ j2 ¼ k1.

In practice, we find the coefficients of this quadratic equation in the following manner: Suppose at the nth step, w0 and w00

have iterated to ŵ0 and ŵ00, then at the ðnþ 1Þth step we require
P
a2R1

P
bAabŵ0b þ g

P
a2R1

P
bAabŵ00bP

a2R1
ŵ0a þ g

P
a2R1

ŵ00a
¼
P

a2R2

P
bAabŵ0b þ g

P
a2R2

P
bAabŵ00bP

a2R2
ŵ0a þ g

P
a2R2

ŵ00a
ð8Þ
which leads to q2g2 þ q1gþ q0 ¼ 0 with
q2 ¼
X
a2R2

ŵ00a
X
a2R1

X
b

Aabŵ
00
b �

X
a2R1

ŵ00a
X
a2R2

X
b

Aabŵ
00
b

q1 ¼
X
a2R2

ŵ00a
X
a2R1

X
b

Aabŵ
0
b �

X
a2R1

ŵ00a
X
a2R2

X
b

Aabŵ
0
b þ

X
a2R2

ŵ0a
X
a2R1

X
b

Aabŵ
00
b �

X
a2R1

ŵ0a
X
a2R2

X
b

Aabŵ
00
b

q0 ¼
X
a2R2

ŵ0a
X
a2R1

X
b

Aabŵ
0
b �

X
a2R1

ŵ0a
X
a2R2

X
b

Aabŵ
0
b

ð9Þ
The strategy is to apply A repeatedly until two real solutions for g exist. One solution will then guide the iteration to ðk1;w1Þ;
the other, to ðk2;w2Þ. Typically, this procedure would be used only if the simultaneous convergence to two pairs is desired or
if the convergence to just the second eigenpair is desired. In some cases, however, accelerated convergence to the first pair
occurs.

2.3. C. First refinement

For simplicity, we focus on the determination of the second largest eigenpair [2] and note that one additional improve-
ment is necessary for finite precision computers. As both ŵ0 and ŵ00 are converging to the first eigenfunction, only their
sum, for proper choices of g, is converging to the second one. Eventually, when g is the root, say g2, guiding ŵ00 toward
the second eigenvector w2, the determination of w2 is limited by the accuracy of the sum of ŵ0 and g2ŵ

00. To mitigate this sit-
uation, we modify the iteration by making the replacements ŵ0  ŵ0 and ŵ00  ŵ00 þ g2ŵ

0 before moving to the ðnþ 1Þth step,
and then in the ðnþ 1Þth step we find the new g from the quadratic equation and subtract from it the g2 from the nth step.
Formally, this is equivalent to rewriting the coefficients of the wi in Eq. (7) as
ai þ big ¼ ðai þ big2Þ þ biðg� g2Þ ð10Þ
making the replacements
ai  ðai þ big2Þ
g g� g2
and then in the next iteration solving the quadratic equation for the shifted g.
What does this procedure accomplish? We note that near convergence, when only w1 and w2 remain significant, the cur-

rent best estimate of w1 is contaminated with w2 and vice versa. Denoting these estimates by w1 þ �w2 and w2 þ dw1 and
introducing the adjustable parameter g, we can write another estimate of w2ðgÞ as
ŵ2ðgÞ ¼ ðw2 þ dw1Þ þ gðw1 þ �w2Þ
and so with the application of A to move to the ðnþ 1Þth step, the new estimate of the second eigenfunction becomes
w2new ¼ Aŵ2ðgÞ ¼ ðk2w2 þ dk1w1Þ þ gðk1w1 þ �k2w2Þ
If at this step g2 is the choice that guides to w2, then we define g00 by
g ¼ g00 þ g2
so that
w2newðg00Þ ¼ ðk2w2 þ dk1w1Þ þ ðg00 þ g2Þðk1w1 þ �k2w2Þ
¼ ½ðk2w2 þ dk1w1Þ þ g2ðk1w1 þ �k2w2Þ� þ g00ðk1w1 þ �k2w2Þ
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We observe that k1w1 þ �k2w2 is this step’s power iteration estimate for the first eigenfunction so that the second eigenfunc-
tion, the term in brackets, is essentially being corrected by an attempt to remove the remaining contamination dk1w1 from
the first eigenfunction. If we define the new eigenfunction iterates as
w2new ¼ k2w2 þ dk1w1

w1new ¼ k1w1 þ �k2w2
then
w2newðgÞ  ðw2new þ g2w1newÞ þ gw1new
Thus, the effect of Eq. (10) is promoting the convergence of ŵ0 to the first eigenfunction in the normal power method way
whereas ŵ00 (the second eigenfunction estimate) is being corrected at each step by adding (removing) a little of the first
eigenfunction estimate. Convergence is reached when g2 ! 0; that is, when the second eigenfunction needs no correction
from the first eigenfunction.

The above analysis leads to a simple numerical algorithm. The basic steps are

Step 1: Initialize
1. Set convergence parameter � to a small value.
2. Choose initial estimates w0 � w1 and w00 � w2

Step 2: Reset
1. Normalize w0  w0=kw0k and w00  w00=kw00k

Step 3: Execute power step
1. Apply A to w0 and w00 and solve resulting quadratic balance condition (Eq. (8))
2. If the roots are real, assign the roots g1 and g2 to correspond to the largest and smallest (in magnitude) eigen-

value estimates respectively and then update via
w0  w0

w00  Aw00 þ g2Aw0

else update via

w0  Aw0

ŵ00  Aŵ00
Step 4: Test for convergence
1. If jg2j > �, go to Step 2

Step 5: Terminate

Eigenvalue estimates can be made by placing w0 and w00 in Eq. (5) for the same or different Ri. These Ri can be the same or
different from the two used to compute the qi. When the roots are complex, an alternative to Step 3.2 is the use of complex
arithmetic. If it is used, then the w0 and w00 estimates in Step 3.2 are updated with complex gi.
2.4. D. Second refinement

Because Eq. (7) will be almost true for large n, it yields a way to estimate the wi. If Ci are normalizing constants and g2 is
the root that gives k2, then from Eq. (7) the ðnþ 1Þth guess at w2 is
w2 � wðnþ1Þ
2 ¼ C2½Anw�g¼g2
If g1 � �a2=b2 is the root that gives k1, then from Eq. (7) the ðnþ 1Þth guess at w1 is
w1 � wðnþ1Þ
1 ¼ C1½Anw�g¼g1
These two estimates suggest using
wðnþ1Þ ¼ wðnþ1Þ
2 þ gwðnþ1Þ

1

as the next iteration guess. Next, we insert
ŵ0 ¼ wðnþ1Þ
2

ŵ00 ¼ wðnþ1Þ
1

into Eq. (8) and solve it for the two g roots. Now we take for new estimates (with the Ci providing normalization)
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w2 � wðnþ2Þ
2 ¼ C2½Awðnþ1Þ�g¼g2

ð11Þ

w1 � wðnþ2Þ
1 ¼ C1½Awðnþ1Þ�g¼g1

ð12Þ
We note that Eq. (11) is the same adjustment to the second eigenfunction estimate as in the first refinement, which uses the
best estimate of w2. Eq. (12) uses the best estimate of w1 instead of the power iterated estimate used in first refinement.
Empirically, this second refinement simultaneously produces estimates of w1 converging as k3=k1 and estimates of w2 con-
verging as k3=k2. In the Appendix we demonstrate these rates of convergence for non-degenerate states.

Incorporating this refinement requires only replacing Step 3 of the algorithm for the previous with

Step 3: Execute power step
1. Apply A to w0 and w00 and solve resulting quadratic balance condition (Eq. (8))
2. If the roots are real, assign the roots g1 and g2 to correspond to the largest and smallest (in magnitude) eigen-

value estimates respectively and then update via
w0  Aw00 þ g1Aw0

w00  Aw00 þ g2Aw0

else update via

w0  Aw0

ŵ00  Aŵ00
Step 4: Test for convergence
1. If jg2j > �, go to Step 2

Step 5: Terminate

2.5. E. Practical algorithm

In an actual implementation of these algorithms, monitoring convergence by jg2j < � is not the only choice. The more
common way would be monitoring successive estimates of the ki plus monitoring the residuals kAw0 � k1w

0k and
kAw00 � k2w

00k. We also note the following alternative: As w0 converges to w1 and w00 converges to w2; q0 and q2 converge to
zero. In short, multiple criteria exist, leading to cross checks. Some recycle already computed quantities and are conse-
quently quite efficient. Here is an algorithm for the second refinement suitable for implementation:

Step 1: Initialize
1. Set convergence parameters �0 and �2 to small values.
2. Initialize iteration index n ¼ 0,
3. Choose initial estimates for w0 and w00,
4. Choose the rules R1 and R2 for grouping of iterated vector components.

Step 2: Reset
1. Normalize w0  w0=kw0k and w00  w00=kw00k

Step 3: Execute power step
1. Apply A to w0 and w00,
2. Solve resulting quadratic balance condition (Eq. 8),
3. Estimate eigenvalues using either rule (region) R1 or R2,
4. If the roots are real, assign the roots g1 and g2 to correspond to the largest and smallest (in magnitude) eigen-

value estimates. For example, we will have
k1 ¼
P

a2R1

P
bAabw

0
b þ g1

P
a2R1

P
bAabw

00
bP

a2R1
w00a þ g1

P
a2R1

w00a

k2 ¼
P

a2R1

P
bAabw

0
b þ g2

P
a2R1

P
bAabw

00
bP

a2R1
w00a þ g2

P
a2R1

w00a

then update via

w0  Aw00 þ g1Aw0

w00  Aw00 þ g2Aw0

else update via

w0  Aw0

ŵ00  Aŵ00
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5. Go to Step 2
Step 4: Test for convergence

1. If either jq0j > �0 or jq2j > �2, increment the iteration index, n nþ 1 and go to Step 2.
Step 5: Terminate.

When the roots are complex, an alternative to Step 3.2 is the use of complex arithmetic. If it is used, then the eigenvector
estimates in Step 3.2 are updated with complex gi. The choice of rules is quite flexible. A rule may use one vector component
selected randomly, a small number of components selected randomly, all odd or even components, the first or second half of
the vector, etc. We note that q2 goes to zero faster than q0, and when q2 becomes very small, then the quadratic equation
numerically reduces to q1gþ q0 ¼ 0 which is solved to get g2. Essentially q2 ¼ 0 means that the dominant eigenpair is known
to machine accuracy, so it cannot be improved on further iteration.

3. Applications

3.1. A. Cyclic matrix

To illustrate the effectiveness of the first refinement, we applied it to the symmetric N � N matrix
A ¼

2 �1 0 � � � 0 �1

�1 2 �1 . .
.

0

0 . .
. . .

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

.
0

0 . .
.

�1 2 �1
�1 0 � � � 0 �1 2

2666666666664

3777777777775

whose eigenvalues for any N are
cn ¼ 2� 2 cos kn ¼ 4 sin2 kn

2

where kn ¼ 2pn
N with n ¼ 0;1;2; . . . ;N � 1. Physically, the matrix represents the N point discretization of the second derivative

defined on a circle. We note that for N odd, all but the minimal eigenstate ðn ¼ 0Þ are doubly degenerate, while for N even, all
but the minimal ðn ¼ 0Þ and maximal ðn ¼ N=2Þ ones are doubly degenerate. Accordingly for even N,
0 ¼ c0 < c1 ¼ cN�1 < � � � < cN=2�1 ¼ cN=2þ1 < cN=2 ¼ 4
Table 1 reports the results of a deterministic computation of the second smallest eigenpair for a sequence of even N. To
generate it, all the eigenvalues of the matrix were shifted by subtracting four times the identity matrix and then getting the
two largest magnitude eigenvalues of A� 4I. For the shifted matrix k1 ¼ c0 ¼ �4 and k2 ¼ c1 ¼ �4 cos2ðp=NÞ. k1 is thus seen
as being independent of N and is not reported. The k2’s in Table 1 are 4 plus the power method’s computation of second larg-
est magnitude eigenvalue of A� 4I. The iteration was stopped when the absolute value of the maximum difference between
any component of the eigenvector in successive iterations was less than 10�10. We see remarkable agreement between the
values determined by the power method and the exact analytic value is obtained even for largest possible N on our desktop
computer. We converged accurately to the second smallest eigenvalue even though it is approaching the smallest one as N is
increased and is itself degenerate. By it being degenerate, our eigenvector estimate is a linear combination of two eigenstates
that depends on the starting conditions for the iteration. It is not something we can benchmark but it does approximate well
Aw ¼ k2w. For R1 and R2, we used the first and second half of the vector components. For N up to about 1000, starting vectors
whose components were set randomly worked well. For starting vectors at N >1000 we used the eigenvectors found at N=2
injected into the higher dimension via að2jÞ  0:75bðjÞ þ 0:25bðjþ 1Þ and að2jþ 1Þ  0:25bðjÞ þ 0:75bðjþ 1Þ. The coeffi-
cients were chosen to adjust for the fact that að2jÞ is 1 unit from bðjÞ and 3 units from bðjþ 1Þ and að2jþ 1Þ is 1 unit from
bðjþ 1Þ and 3 units from bðjÞ.

3.2. B. Two-dimensional Ising model

The two-dimensional Ising model is one of the few two-dimensional models of a system of many interacting degrees of
freedom that has an exact solution for its thermodynamic properties. This solution, first constructed by Onsager [9], shows
that in the thermodynamic limit the model has a phase transition between an magnetically ordered (ferromagnetic) state at
low temperatures and a magnetically disordered state (paramagnetic) at high temperatures. Onsager succeeded in calculat-
ing many of the properties of the model exactly, including the temperature Tc at which the transition occurs. Key to his cal-
culations was expressing the partition function of the model in terms of its transfer matrix [10], finding the dominant
eigenvalue of this matrix, and showing in the thermodynamic limit (letting the area of the model approach infinity) that this
eigenvalue implies the onset of long-range ordering among the spin variables of the model.



Table 1
For the cyclic matrix, the exact and first refinement calculations for the sub-dominant eigenvalue k2, plus their difference

N Exact PM1 Difference

100 0.0039465433630297 0.0039465431649277 1.98E�10
200 0.0009868793234571 0.0009868792721619 5.13E�11
400 0.0002467350504105 0.0002467351362063 �8.58E�11
800 0.0000616847138537 0.0000616847980273 �8.42E�11
1600 0.0000154212379171 0.0000154212887717 �5.09E�11
3200 0.0000038553131951 0.0000038553389818 �2.58E�11
6400 0.0000009638285310 0.0000009638405936 �1.21E�11
12,800 0.0000002409571473 0.0000002409625672 �5.42E�12
25,600 0.0000000602392878 0.0000000602416170 �2.33E�12
51,200 0.0000000150598221 0.0000000150608281 �1.01E�12
102,400 0.0000000037649555 0.0000000037654755 �5.20E�13
204,800 0.0000000009412389 0.0000000009414407 �2.02E�13
409,600 0.0000000002353098 0.0000000002353788 �6.91E�14
819,200 0.0000000000588274 0.0000000000589155 �8.82E�14
1,638,400 0.0000000000147069 0.0000000000148614 �1.55E�13
3,276,800 0.0000000000036766 0.0000000000036855 �8.88E�15
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We will consider the model for finite area, that is, an m� n model defined with periodic boundary conditions in one direc-
tion and open boundary conditions in the other. Because of the one open boundary, the transfer matrix will thus be non-
symmetric. In the absence of an applied magnetic field, the model’s energy is
Eflg ¼ �J
Xm�1

i¼1

Xn

j¼1

li;jli;j�1 � J
Xm

i¼1

Xn

j¼1

li;jli;jþ1
Here, ði; jÞ are the coordinates of a lattice site. The Ising spin variable li;j on each site has the value of �1; J > 0, and
li;nþ1 ¼ li;1. A column configuration of Ising spins will be denoted by
rj ¼ ðl1;j;l2;j; . . . ;lm;jÞ
and there are 2m possible configurations for each column.
The definition of the transfer matrix follows from the expression for the partition function [4]
Zðm;nÞ ¼
X
flg

exp½�bEðflgÞ�

¼
X

r1 ;...;rn

exp �b
Xn

j¼1

fV1ðrjÞ þ V2ðrj;rjþ1Þg
 !" #

¼
X

r1 ;...;rn

Lðr1;r2ÞLðr2;r3Þ � � � Lðrn�1;rnÞLðrn;r1Þ

¼
X
r1

Lnðr1;r1Þ
where
V1ðrjÞ ¼ �m
Xm�1

i¼1

li;jliþ1;j
is the interaction energy of the jth column and
V2ðrj;rjþ1Þ ¼ �m
Xm

i¼1

li;jli;jþ1
is the interaction energy between the jth and ðjþ 1Þth columns, m ¼ J=kBT; kB is Boltzmann’s constant, and Lðr;r0Þ is the
transfer matrix of order N ¼ 2m � 2n whose elements are
Lðr;r0Þ ¼ exp m
Xm�1

k¼1

lklkþ1

 !
exp m

Xm

k¼1

lkl
0
k

 !

More succinctly,
Zðm;nÞ ¼ TrðLnÞ ¼
X2m

j¼1

kn
j
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Onsager found analytic expressions for all the eigenvalues of the transfer matrix. Since we needed to form this matrix, we
found it as convenient to compute them numerically. Spot checks produce excellent agreement between the the two ap-
proaches. In the thermodynamic limit, when T ! Tc; k2 ! k1. Here, although we chose T ¼ Tc and the order of or matrix
became quite large, we were still reasonably far away for this critical point. Table 2 presents a comparison of the two larg-
est eigenvalues of the transfer matrix as determined by our second refinement of the power method and those determined
by the EISPACK eigensolver RG [11]. For cases except m ¼ 11, we simply used as the solution the results after 100 itera-
tions. For m ¼ 11, we used 1000 iterations. The larger number of iterations was necessary to obtain the same level of
accuracy.

3.3. C. One-dimensional Hubbard model

The Hubbard Hamiltonian was originally proposed as a model for metallic ferromagnetism [12]. Most recently, its
two-dimensional version has been the subject of intense scrutiny as a possible model for electronic superconductivity. In
one-dimension, a variant of it, called the Pariser–Parr–Popple Hamiltonian is frequently used to model conjugated cyclic
molecules. Other variants model one-dimensional organic conductors. Because of the enormous amount of computer
memory required by deterministic methods, precise specification of the ground state (zero temperature) properties of these
models has often been hampered by techniques limited to relatively small system sizes. The memory requirements scale as
4N , where N is the number of lattice sites.

The Hamiltonian operator for the Hubbard model is
Table 2
Compar
RG and
choose

m

1

2

3

4

5

6

7

8

9

10

11
bH ¼ �t
X
hi;ji;r
ðĉyi;rĉj;r þ ĉyj;rĉi;rÞ þ U

X
i

n̂i;"n̂i;#
where the summation is over nearest-neighbor pairs of lattice sites i and j and electron spin r; t and U are the hopping
amplitude and repulsive Coulomb parameters; ĉyi;r; ĉi;r and n̂i;r ¼ ĉyi;rĉi;r are the creation, destruction, and number operators
for an electron at site i with spin r. Usually a Fock basis is used to represent the Hamiltonian operator as a matrix
hij ¼ hijbHjji

where
jii ¼ jn1;";n2;"; . . . ;nN;"ijn1;#;n2;#; . . . ;nN;#i
with nr
i ¼ 0;1 being the eigenvalues of the number operator. As a representative of an Hermitian operator whose matrix ele-

ments are real, the resulting matrix is symmetric. Various symmetries are usually used to block diagonalize the matrix and
then obtain the ground state for each block. We will consider only blocks that have a specific value of the z-component of the
total electron spin. The size of the Hilbert space and hence the order of the matrix is
ison of the two largest eigenvalues of the transfer matrix for the 2D Ising model as a function of the lattice edge size m computed by the EISPACK routine
the second refinement. N = 2m is the order of the matrix. Also shown is the fractional difference ðkRG � kPM2Þ=kRG between the different estimates. We
m ¼ n and T ¼ Tc

N RG PM2 FD

4 3.41421355573626E+00 3.41421355573626E+00 0.00E + 00
1.41421355573626E+00 1.41421355573626E+00 0.00E + 00

16 7.46410158611908E+00 7.46410158611907E+00 3.57E�16
4.82842709270073E+00 4.82842709270073E+00 �1.29E�15

64 1.78770541980345E+01 1.78770541980345E+01 �7.95E�16
1.35518083939891E+01 1.35518083939891E+01 3.93E�16

256 4.41298558292434E+01 4.41298558292434E+01 4.83E�16
3.60398703210879E+01 3.60398703210878E+01 5.91E�16

1024 1.10192319565854E+02 1.10192319565854E+02 9.03E�16
9.38962258961220E+01 9.38962258961221E+01 �4.54E�16

4096 2.76599914093667E+02 2.76599914093667E+02 �8.22E�16
2.42266413140723E+02 2.42266413140723E+02 0.00E + 00

16,384 6.96269201662783E+02 6.96269201662782E+02 1.47E�15
6.21748520715910E+02 6.21748520715909E+02 1.65E�15

65,536 1.75565374661531E+03 1.75565374661531E+03 1.30E�16
1.59043428137424E+03 1.59043428136461E+03 6.05E�12

262,144 4.43180239838645E+03 4.43180239838646E+03 �1.44E�15
4.05958858259757E+03 4.05958858259756E+03 1.79E�15

1,048,576 1.11957434253463E+04 1.11957434253463E+04 1.46E�15
1.03466429299731E+04 1.03466429299731E+04 8.79E�16

4,194,304 2.82985308867953E+04 2.82985308867954E+04 �3.60E�15
2.63419326613631E+04 2.63419326613632E+04 �3.87E�15
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N ¼ N!

N"!ðN � N#Þ!
where N" is the number of up spin electrons and being and N# is the number of down spin electrons.
For a given lattice site i the maximum number of non-zero values of hij is 2zN where z is the number of nearest neighbors

of the chosen lattice. Typically, z	 N; hence, the matrix is very sparse. Here, we will consider the model in one-dimension
where z ¼ 2. In one-dimension the model has an exact solution. Obtaining the ground or first excited state for these solution
is not as straightforward as for the two previous test cases. We chose to obtain them numerically and compare the effective-
ness of our second refinement of the power method to that of several standard eigenpair methods. Our emphasis is on how
well degenerate states are captured.

We will compute the two largest and two smallest eigenvalues of the sparse, potentially hugely dimensioned, matrix H
representing the operator bH in one dimension with periodic boundary conditions. In this case and if N" ¼ N# and N" is odd,
the model satisfies the following version of the Perron–Frobenius Theorem [13]: If a matrix is irreducible and all off-diagonal
elements are non-positive, the state corresponding to smallest eigenvalue is real and non-degenerate. We will study the
model on a 10 site lattice with U ¼ 4 and t ¼ 1. For this lattice size and filling half or less, the theorem applies to cases
ðN";N#Þ ¼ ð1;1Þ; ð3;3Þ, and (5,5). They are called closed shell cases and the result of our calculations for them are shown
in Table 3. Because of various symmetries, features of the smallest states are reflected in those of the largest ones.

In Table 3, three methods where used to get the eigenvalues. One method used was the LAPACK routine DSYEV [14]. This
double precision routine returns all the eigenvalues and eigenvectors of a symmetric matrix. At large orders computer mem-
ory became insufficient for its use. Accordingly, we supplemented our results with those obtained by using the DNLASO dou-
ble precision subroutine [15] which is a block Lanczos method with selective reorthogonalization [7]. The components of the
starting vectors for the Lanczos iteration are selected randomly and uniformly on the interval (�0.5,0.5). The quality of the
results is controlled by specifying the block size (the number of starting states), the number of significant figures for the con-
vergence of the eigenvalues, and the maximum number of iterations. We found a block size of 1 gave estimates for the sec-
ond and third eigenvalues that became progressively poorer as N increased. This is reasonable. A size of 2 produced cases
where the sub-dominant eigenvalue was consistently returned as the dominant. For a size of 6, convergence was very slow
if at all. For a size of 8, memory soon became insufficient. A size of 4 was used for the data in the table. We found lack of
convergence for many cases if the precision was requested to be larger than 8 decimal places. Typically, a few hundred iter-
ations were needed, but the computation times were a few tens of seconds. Table 3 shows excellent agreement between all
three methods. We note that the excited state was at least doubly degenerate.

The next set of results are for electron fillings where the eigenstates are subjected to Kramers degeneracies. Kramers’s
Theorem [16] says all energy levels of a system containing an odd number of electrons must at least be at least doubly degen-
erate provided there are no magnetic fields present to remove time-reversal symmetry. In Table 4, we present several Kra-
mers cases where ðN";N#Þ ¼ ð3;2Þ; ð4;3Þ, and (5,4). For the standard software packages, we listed the three largest and three
smallest eigenvalues they estimated to see the accuracy to which they determined the degenerate ground state. We see very
good agreement between all three methods in estimating the eigenvalue of degenerate largest and smallest state. All three
however lack the precision necessary to differentiate between a true degeneracy and a very near one. The power method in
particular is less than adequate for this purpose.

In Table 4, the three largest and smallest eigenvalues are presented to provide extra information about the degeneracies.
Sixteen significant figures were printed to indicate how well degeneracies are captured. Basically we do not know the pre-
cision of the eigenvalues other then it is no more than difference between eigenvalues that should exactly be degenerate. All
the expected features of the lowest eigenstates with regard to degeneracies are exhibited. Because the model has particle-
hole symmetry similar features also exists for its largest eigenstates.
ed shell cases, comparison of the eigenvalues of a 10 site 1D Hubbard model computed by the eigenpair routine DSYEV, the block Lanczos routine
, and the second refinement. For the first two methods, the three largest and three smallest eigenvalues were computed to measure their consistency,

eness, and accuracy

N# N DSYEV DNLASO PM2

1 100 0.5657693716217906E+01 0.5657693716217901E+01 0.5657693716217914E+01
0.5519554669107880E+01 0.5519554669107876E+01 0.5519554669107137E+01
�0.3862202348191250E+01 �0.3862202348191248E+01 �0.3862202348191251E+01
�0.3618033988749895E+01 �0.3267468797160054E+01 �0.3618033988603501E+01

3 14,400 0.1656339684606611E+02 0.1656339684376816E+02 0.1656339684606624E+02
0.1617312172182284E+02 0.1617312172136987E+02 0.1617312172191405E+02
�0.8262531385370846E+01 �0.8262531383972004E+01 �0.8262531385370927E+01
�0.7599976793651736E+01 �0.7599976793264113E+01 �0.7599976793831864E+01

5 63,504 0.2583432263352126E+02 0.2583432263577081E+02
0.2543485463377173E+02 0.2543485464252857E+02
�0.5834322635176973E+01 �0.5834322635773042E+01
�0.5434854632148166E+01 �0.5434830052960784E+01



Table 4
For Kramers degeneracies cases, comparison of the eigenvalues of a 10 site 1D Hubbard model computed eigenpair routine DSYEV, the block Lanczos program
DNLASO, and the second refinement of the power method. For the first two methods, the three largest and three smallest eigenvalues were computed to
measure their consistency, effectiveness, and accuracy in computing degenerate eigenvalues

N" N# N DSYEV DNLASO PM2

3 2 5400 0.1306499556833340E+02 0.1306499556833341E+02 0.1306499556833335E+02
0.1306499556833336E+02 0.1306499554321960E+02 0.1306499556833335E+02
0.1282579739183819E+02 0.1282579739163641E+02
�0.7511951740365890E+01 �0.7511951740281242E+01 �0.7511951740365513E+01
�0.7511951740365851E+01 �0.7511951731564561E+01 �0.7511951740365509E+01
�0.7249884543021683E+01 �0.7249884543021723E+01

4 3 25,200 0.1816344283994604E+02 0.1816344283994595E+02 0.1816344283994610E+02
0.1816344283994604E+02 0.1816344283994549E+02 0.1816344283994610E+02
0.1771746494384758E+02 0.1771746494296794E+02
�0.8030089029893539E+01 �0.8030089029893475E+01 �0.8030089030622399E+01
�0.8030089029893492E+01 �0.8030089029485101E+01 �0.8030089030532327E+01
�0.7521441552342070E+01 �0.7521441551092671E+01

5 4 52,920 0.2285321122055267E+02 0.2285321221296537E+02
0.2285321121726444E+02 0.2285321166226352E+02
0.2221382316719896E+02
�0.6853211221744196E+01 �0.6853211215825024E+01
�0.6853211221310334E+01 �0.6853211214979680E+01
�0.6213823170572150E+01

Table 5
For open shell cases, comparison of the eigenvalues of a 10 site 1D Hubbard model computed by the LAPACK routine DSYEV, the Netlib program DNLASO, and
the second refinement of the power method. For the first two methods, the three largest and three smallest eigenvalues were computed to measure their
consistency, effectiveness, and accuracy in computing degenerate eigenvalues

N" N# N DSYEV DNLASO PM2

2 2 2025 0.1121466372028744E+02 0.1121466372028743E+02 0.1121466372028747E+02
0.1096186919469933E+02 0.1096186919469927E+02 0.1096186919053599E+02
0.1096186919469928E+02 0.1096186919469929E+02
�0.6601239688910290E+01 �0.6431629846631373E+01 �0.6601239688910274E+01
�0.6431629846631359E+01 �0.6424903541072491E+01 �0.6431629865616197E+01
�0.6431629846631350E+01 �0.5854101965765123E+01

4 4 44,100 0.2143485463460406E+02 0.2143485463565059E+02
0.2106806509093548E+02 0.2106806509410040E+02
0.2106806508923771E+02
�0.7647179205940428E+01 �0.7647179208191599E+01
�0.7538791441444121E+01 �0.7538797509518616E+01
�0.7538791440796984E+01
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For other electron fillings a priori exact information about degeneracies is lacking. What is known is that when U ¼ 0 the
ground state for most fillings is degenerate. These fillings typically are called open shell cases. When U 6¼ 0, the degeneracies
are typically lifted, the degree to which it is however depends on the closeness of the nearest unoccupied eigenstate. For
small systems, the lifting might be minor, and for limited precision calculations this can make distinguishing degenerate
and nearly degenerate states difficult. For the results in Table 5, this discussion applies to the cases ðN";N#Þ ¼ ð2;2Þ and
(4,4) illustrated there. The qualitative character of the results are similar to those of the Kramers’s cases.

The results of the three tables indicate that this test case is nontrivial. We judge our preliminary results as indicating that
the block Lanczos and the second refinement of the power method have comparable effectiveness. The version of the power
method used here lacks the ability to return more than two eigenvalues in contrast to the block Lanczos used that should
estimate well at least four.

We comment that the Lanczos method is not a black box. To ensure that the result is the minimum as opposed to some
excited state, the calculation usually needs to be run multiple times with different random number seeds or some other
means to change the starting vectors, and then the results need to be studied to identifiy those to be regarded as estimates
of the ground state [17,18]. An error is usually estimated from the variance of the average of the ground state estimates. We
restarted the Lanczos calculations for a few of the cases multiple times. As our interest was qualitative, we did not perform
an error analysis but instead presented representative results.

The power method is also not a black box. It used the same sparse matrix as the block Lanczos method. From it we
only show the two largest and two smallest as our double precision code did not incorporate a procedure to allow the
determination of the third eigenpair. The components of one starting state were selected uniformly and randomly over
(0,1); the other from (�0.5,0.5). We defined our regions in the following manner. First we performed a random permutation
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of the vector components. Region 1 was the first N=2þ 1 of these permuted components; region 2, the last N=2þ 1. Initially,
we used �0 ¼ 10�13 and �2 ¼ 10�10. Multiple starts with changing random number seeds were used to ensure consistency.
We first computed the largest two eigenvalues and used the largest value, truncated to two significant figures, as the shift
to compute the two smallest. Cases where the lowest or the largest had a near degeneracy converged only so far. Often with
jq0j < �0 being satisfied while the �2 being too small for q2 to converge. Instead of adjusting these stopping criteria, we found
that simply stopping the iteration after some fixed number of iterations and the choosing the result by locating when the
residual kAw00 � k2w

00k ceased decreasing was very effective.

4. Concluding remarks

We presented two refinements of the power method that enable the simultaneous determination of two extremal eigen-
pairs of a matrix. We illustrated their effectiveness by benchmarking them on three quite distinct but physically challenging
problems. For the cyclic matrix, we exactly knew the eigenvalues and their degeneracies. We showed we could determine
the two smallest extremal eigenvalues to nearly machine precision. For the transfer matrix of the two-dimensional Ising
model, we knew the exact values of the dominant eigenvalues. The two-dimensional Hubbard model was more challenging:
As a function of the electron filling various degeneracies exist. Here, we choose to compare the effectiveness of the second
refinement with two standard numerical determinations of the ground and first excited state, illustrating the limitations of
all three methods especially when the dominant state is degenerate or very nearly so. In general, the second refinement ap-
pears as effective as a readily available implementation of the block Lanczos method with selective reorthogonalization.

All our test cases involved real matrices, but preliminary testing indicates that the techniques presented also work well
for complex matrices and non-symmetric matrices with complex eigenvalues. The techniques presented are easily adapted
to the determination of just the dominant or just the sub-dominant eigenpair. Convergence to the dominant one is acceler-
ated as it is controlled by k3=k1 is instead of k2=k1. Generalizations to more than two extremal pairs are possible. Preliminary
testing for up to four have been promising.

One advantage of our refinements is that they maintain the simplicity of the basic power method. Another is their adapt-
ability to Monte Carlo implementations. In a number of fields of physics and chemistry, the power method is the core of the
Monte Carlo methods for determining the ground state of models whose complexity grow exponentially with physical size.
Here, the ground state energy is estimated from samplings of the ground state wavefunction. Such samplings may involve
only a small fraction of all possible components of the state, and a mixed estimator [8] for the energy is often used. Here we
pushed the use of such estimators a step further with novel consequences. In two other papers, we will describe Monte Carlo
implementations of our refinements and their applications to the transfer matrix of the two-dimensional Ising model and to
Hamiltonian matrix of the two-dimensional Hubbard model [19].
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Appendix

We now show that if the eigenstates are non-degenerate, our second refinement of the power method simultaneously
produces estimates of w1 converging as k3=k1 and estimates of w2 converging as k3=k2. Suppose that the estimates of w1 and
w2 are very good with only a small mixtures of other components; that is, there is some small v such that
w1 � ð1þ dvÞw1 þ evw2 þ fvw3 ðA:1Þ
w2 � avw1 þ ð1þ bvÞw2 þ cvw3 ðA:2Þ
Hence
w ¼ ðavw1 þ ð1þ bvÞw2 þ cvw3Þ þ xðð1þ dvÞw1 þ evw2 þ fvw3Þ ðA:3Þ
Define the total ith eigenfunction component in region j as
Nij ¼
X
a2Rj

wi;a ðA:4Þ
We now apply the balance condition for equal k’s. For region R1 the eigenvalue estimate is
N11k1ðavþ xð1þ dvÞÞ þ N21k2ðð1þ bvÞ þ xevÞ þ N31k3ðcvþ xfvÞ
N11ðavþ xð1þ dvÞÞ þ N21ðð1þ bvÞ þ xevÞ þ N31ðcvþ xfvÞ
while for region R2 it is
N12k1ðavþ xð1þ dvÞÞ þ N22k2ðð1þ bvÞ þ xevÞ þ N32k3ðcvþ xfvÞ
N12ðavþ xð1þ dvÞÞ þ N22ðð1þ bvÞ þ xevÞ þ N32ðcvþ xfvÞ
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Set the above two eigenvalue estimates equal and cross multiply to clear the denominators to obtain a quadratic equation in
x. We now collect powers of x. Terms involving x0 are
L1 ¼ �ak1N12N21vþ ak2N12N21vþ ak1N11N22v� ak2N11N22v ðA:5Þ
L2 ¼ �ck2N22N31vþ ck3N22N31vþ ck2N21N32v� ck3N21N32v

L3 ¼ v2ð�abk1N12N21 þ abk2N12N21 þ abk1N11N22Þ
L4 ¼ �ck2N22N31vþ ck3N22N31vþ ck2N21N32v� ck3N21N32v

L5 ¼ v2ð�bck2N22N31 þ bck3N22N31 þ ack1N11N32Þ
L6 ¼ v2ð�ack3N11N32 þ bck2N21N32 � bck3N21N32Þ
Terms involving x1 are
L7 ¼ �f k2N22N31vþ fk3N22N31vþ f k2N21N32v� f k3N21N32v ðA:6Þ
L8 ¼ v2ð�aek1N12N21 þ aek2N12N21Þ
L9 ¼ v2ðaek1N11N22 � aek2N11N22 � afk1N12N31Þ
L10 ¼ v2ðafk3N12N31 � cek2N22N31 � bfk2N22N31Þ
L11 ¼ v2ðcek3N22N31 þ bfk3N22N31 þ afk1N11N32Þ
L12 ¼ v2ð�afk3N11N32 þ cek2N21N32 þ bf k2N21N32Þ
L13 ¼ v2ð�cek3N21N32 � bfk3N21N32Þ
L14 ¼ ð1þ dvÞð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ
L15 ¼ vð1þ dvÞð�bk1N12N21 þ bk2N12N21 þ bk1N11N22 � bk2N11N22Þ
L16 ¼ vð1þ dvÞð�ck1N12N31 þ ck3N12N31 þ ck1N11N32 � ck3N11N32Þ
Terms involving x2 are
L17 ¼ v2ef ð�k2N22N31 þ k3N22N31 þ k2N21N32 � k3N21N32Þ ðA:7Þ
L18 ¼ evð1þ dvÞð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ
L19 ¼ fvð1þ dvÞð�k1N12N31 þ k3N12N31 þ k1N11N32 � k3N11N32Þ
Finally we can write
q0 ¼ L1 þ L2 þ L3 þ L4 þ L5 þ L6 ðA:8Þ
q1 ¼ L7 þ L8 þ L9 þ L10 þ L11 þ L12 þ L13 þ L14 þ L15 þ L16 ðA:9Þ
q2 ¼ L17 þ L18 þ L19 ðA:10Þ
and note that we seek the smallest magnitude root of
q2x2 þ q1xþ q0 ¼ 0 ðA:11Þ
Note that x will be very small when v � 0, so that the quadratic part can be ignored, leading to
x ¼ �q0=q1 ðA:12Þ
Also the terms involving v2 can be ignored compared to terms involving v. Thus
q0 ¼ L1 þ L2

¼ vð�ak1N12N21 þ ak2N12N21 þ ak1N11N22 � ak2N11N22

� ck2N22N31 þ ck3N22N31 þ ck2N21N32 � ck3N21N32Þ
Now consider q1. Every term except L14 has at least v1 in it, which will be small compared to the v0 term in L14. Thus using the
v0 term in L14,
q1 ¼ ð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ
so from Eq. (A.12) we have that
x ¼ �av� cv
ð�k2N22N31 þ k3N22N31 þ k2N21N32 � k3N21N32Þ
ð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ
In what follows, w is replaced by w2 because the root corresponding to w2 has been selected.
Aw2 ¼ k1ðavþ xð1þ dvÞÞw1 þ k2ðð1þ bvÞ þ xevÞw2 þ k3ðcvþ xfvÞw3
Both x and v are small, so the product xv is ignored yielding
Aw2 ¼ k1ðavþ xÞw1 þ k2ðð1þ bvÞ þ xevÞw2 þ k3ðcvþ xfvÞw3



J.E. Gubernatis, T.E. Booth / Journal of Computational Physics 227 (2008) 8508–8522 8521
Substituting for x, we rewrite this equation as
Aw2 ¼ k1
�cvð�k2N22N31 þ k3N22N31 þ k2N21N32 � k3N21N32Þ
ð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ

w1 þ k2ð1þ bvÞw2 þ k3ðcvÞw3
Dividing by k2ð1þ bvÞ and keeping terms to order v yields
1
k2

Aw2 ¼
�cvð�N22N31 þ ðk3=k2ÞN22N31 þ N21N32 � ðk3=k2ÞN21N32Þ
ð�N12N21 þ ðk2=k1ÞN12N21 þ N11N22 � ðk2=k1ÞN11N22Þ

w1 þ w2 þ
k3

k2
ðcvÞw3
We note that the w3 component has dropped by the ratio k3=k2 after the iteration. Note that the w1 component in the above is
proportional to the w3 component ðcvÞ in the estimate of w2 at the beginning of the iteration. Therefore, both the w1 and w3

components drop out of the w2 estimate as k3=k2.
Now we will look at the estimated w1 component. We note that dividing the iterate by a constant does not affect the

eigenvalue estimates so we divide (A.3) by x and then label the estimate as w1 because the root corresponding to w1 will
be chosen.
w1 ¼ ðavw1 þ ð1þ bvÞw2 þ cvw3Þ
1
x
þ ðð1þ dvÞw1 þ evw2 þ fvw3Þ
The eigenvalue balance equation is the same, but instead of Eq. A.11 we have
q2 þ q1
1
x
þ q0

1
x2 ¼ 0
When estimating w1, note that 1=x will be very small when v � 0, so that the inverse quadratic part of this equation can be
ignored, leading to
1
x
¼ �q2=q1 ðA:13Þ
After all v2 terms in q2 are dropped, (A.10) and (A.7) become
q2 ¼ evð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ þ fvð�k1N12N31 þ k3N12N31 þ k1N11N32 � k3N11N32Þ
and after all v and v2 terms in q1 are dropped, (A.9) and (A.6) become
q1 ¼ ð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ
From (A.13)
1
x
¼ �ev� fvð�k1N12N31 þ k3N12N31 þ k1N11N32 � k3N11N32Þ

ð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ
We now note that
Aw1 ¼ ðavk1w1 þ ð1þ bvÞk2w2 þ cvk3w3Þ
1
x
þ ðð1þ dvÞk1w1 þ evk2w2 þ fvk3w3Þ
If the small terms associated with v2 and v 1
x are dropped, then dividing the equation by k1 yields (to first order in v)
1
k1

Aw1 ¼
k2

k1
w2

1
x
þ w1 þ ev

k2

k1
w2 þ fv

k3

k1
w3

� �

Substituting for 1

x,
1
k1

AT1 ¼ w1 þ fv
k3

k1
w3 þ fv

ðk2=k1Þð�k1N12N31 þ k3N12N31 þ k1N11N32 � k3N11N32Þ
ð�k1N12N21 þ k2N12N21 þ k1N11N22 � k2N11N22Þ

w2
We see that the w3 component is decreasing as k3=k1 and that the w2 component is proportional to the w3 component ðfvÞ at
the beginning of the iteration. Thus the w2 component also should be falling as k3=k1. Thus the procedure is converging to the
first eigenfunction at the accelerated rate k3=k1.
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