
Parallelizing Simulated Annealing-Based Placement
using GPGPU

Alexander Choong
Department of Electrical and

Computer Engineering
University of Toronto

Toronto, ON, M5S 3G4, Canada
Email: achoong@eecg.toronto.edu

Rami Beidas
Department of Electrical and

Computer Engineering
University of Toronto

Toronto, ON, M5S 3G4, Canada
Email: rbeidas@eecg.toronto.edu

Jianwen Zhu
Department of Electrical and

Computer Engineering
University of Toronto

Toronto, ON, M5S 3G4, Canada
Email: jzhu@eecg.toronto.edu

Abstract—Simulated annealing has became the de facto stan-
dard for FPGA placement engines since it provides high quality
solutions and is robust under a wide range of objective functions.
However, this method will soon become prohibitive due to
its sequential nature and since the performance of single-core
processor has stagnated.

General purpose computing on graphics processing units
(GPGPU) offers a promising solution to improve runtime with
only commodity hardware. In this work, we develop a highly
parallel approach to simulated annealing-based placement using
GPGPU. We identify the challenges posed by the GPU archi-
tecture and describe effective solutions. An average speedup of
about 10x was achieved over conventional placement within 3%
of wirelength.

I. Introduction

Over the past four decades, the number of transistors in an
integrated circuit (IC) has doubled approximately every two
years. This trend, known as Moore’s Law [1], has been faith-
fully followed by the field programmable gate array (FPGA)
industry, and is increasingly evident as the industry moves
toward complete systems on chip (SoC) and high performance
computing (HPC). Despite these exciting developments, the
exponential growth in device capacity has outpaced computer-
aided design (CAD) software, especially as single-processor
performance has begun to stagnate.

One of the most computationally intensive stages of FPGA
synthesis is placement, where simulated annealing is widely
accepted due to superior quality of results and robustness
[2], [3]. As with other synthesis stages, the gap is widening
between the required computational work and the available
processing power. Therefore, there is a pressing need to
improve the performance of simulated annealing-based place-
ment [4], [5].

A promising solution to this conundrum is general pur-
pose computing on graphics processing units (GPGPU) since
applications from many scientific and computing domains
have been successfully accelerated by one or two orders of
magnitude[6]. Graphics processing unit (GPU) performance
growth has historically followed an exponential trend, and a
highly parallel solution could continue to scale with growing
FPGA designs.

TABLE I
Classification of Previous Parallel Simulated Annealing Approaches

Prevent Errors Allow Errors

Data Parallelism [4] [8] [9] [10] [11]
Task Parallelism [4]

Both [5] [7] OURS

Our contribution is a parallel implementation of simulated
annealing-based placement on GPGPU which, to our knowl-
edge, is the first of its kind. We overcome the architectural
challenges, and achieve about an order of magnitude speedup
without significantly sacrificing quality of results.

The remainder of the paper is organized as follows. Sec-
tion II reviews previous parallelization efforts. In Section III,
we estimate the optimistic speedup for a naı̈ve implementation
and discuss how the GPU architecture hampers the realization
of this speedup. Section IV discusses our proposed solution.
Results are presented and discussed in Section V while Sec-
tion VI concludes our work.

II. RelatedWork

The previous methods of parallelizing simulated annealing
placement can be classified using two different criteria, namely
error tolerance and parallelism domain:

• Errors arise when parallel computations involve data-
dependencies. Error tolerance describes whether er-
rors are prevented (e.g. by using strict synchronization
schemes) or are allowed which creates opportunities to
improve performance.

• Parallelism domain specifies the type of parallelism ex-
ploited. The first type is task parallel in which the
different stages of simulated annealing are assigned to
different processing units, and this is often referred to
as task decomposition in the literature. The second type
is data parallel. An example is when multiple moves
are made in parallel which is referred to as parallel
moves in the literature. Since both types of parallelism
are independent, so it is possible to utilize both. More
details can be found in [7].

Past efforts reviewed below are classified in Table I.

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.17

31

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.17

31

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.17

31

2010 International Conference on Field Programmable Logic and Applications

1946-1488/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.17

31

One of the earliest efforts to parallelize simulated annealing-
based placement was [7], where the authors used task decom-
position and parallel moves. To prevent errors, only moves
without data dependencies could be evaluated in parallel
which restricts the available parallelism. A speedup of 2x
was achieved using three processors, but not much additional
performance was gained with a forth.

Another approach was implemented on a cluster of ma-
chines and used message passing to synchronize the data
across all processors. Clearly, this is not scalable: as the
number of machines increases, the communication overhead
increases quadratically. A speedup of 3.8x on four cores and
5.3x on 8 cores was achieved [9].

A speculative implementation of simulated annealing was
reported in [8] and a speedup of 3.25 on 8 processors was
achieved. The authors found that their theoretical speedup was
P/ log2 P where P is the number of processors, which is not
linearly scalable.

The authors of [4] used commodity multicore processors
to accelerate simulated annealing. They implemented two
different approaches: i) task decomposition which inherently
has limited parallel and they achieve a speedup of 1.3x on two
cores, and ii) parallel moves which achieved 2.2x speedup on
four cores. In the latter approach, work is speculatively com-
pleted, and error is prevented by only committing moves that
did not interact or share data. Thus, in the high temperature
regime, where many moves interact, a much speculative work
will be wasted.

Some of the earlier efforts achieved decent speedups but
at the expense of quality of results[11], [5]. In fact, quality
worsened as parallelism increased.

III. Ideal Speedup and Challenges

Before we delve into the details of our proposed approach, it
is instructive to estimate the “ideal” speedup and then discuss
the challenges which prevent the realization of this speedup.

NVIDIA’s GTX280 consists of 240 cores divided into 30
groups, called streaming multiprocessors (SMPs), each of
which consists of 8 processors, called streaming processors
(SPs). The SMPs operate independently from each other, while
each group of eight SPs (in other words those within the same
SMP) work in a SIMD fashion.

Optimistically assuming that all 240 cores could function
independently, a naive implementation would expect a speedup
of 120 times owing to the number of cores and the fact that
the GPU’s clock frequency is half of the CPU’s.

In reality, the GPU has a number of architectural issues
which prevent a naı̈ve approach from achieving this ideal
speedup, namely the SIMD architecture of the SMPs and con-
strained memory architecture. Firstly, the SIMD architecture
forces a warp (which is a group of thirty-two threads) to
execute the same instruction. If each thread within a warp
attempts to execute a different instruction, then they will
serialize which can lead a slowdown of up to thirty-two
times. The second constraint is memory architecture. The GPU
memory controller is optimized to access contiguous regions

of memory using a coalesced access. However, simulated
annealing is memory intensive and involves many random and
scattered memory accesses. Consequently, this could degrade
performance by an order of magnitude[12].

IV. Proposed Approach

Our approach for parallelizing simulated annealing place-
ment replaces a single annealing move with two new stages,
namely subset generation and parallel annealing (see Algo-
rithm 1).

Algorithm 1 Parallel Simulated Annealing
1: procedure parallelSA(Netlist N)
2: P = randomInitialPlacement()
3: Set T = INITIAL TEMPERATURE
4: Set W = INITIAL WINDOW SIZE
5: repeat
6: for M times do
7: {S i} = generateSubsets(W,N,Ns,S s,P)
8: parallelAnneal({S i},N,P,T,W)
9: end for

10: T = updateT(T)
11: W = updateW(W)
12: until Termination Condition Met
13: end procedure

A. Subset Generation

The objective of subset generation is to create a collection
of subsets where each subset is simply a group of nodes from
a netlist.

There are three concerns with subset generation.

• Consistency: Since this is a parallel approach, race con-
ditions arise when subsets share nodes and then shared
nodes are updated in parallel. To resolve this, we prevent
subsets from sharing nodes.

• Available Moves: Moves only involve nodes which are
within a certain distance of each other. If each pair of
nodes within a subset is separated by more than this
distance, then no moves are available to anneal and this
wastes the time spent generating the subset. To avoid
this situation, the subset generator is placement aware to
ensure some available moves exist.

• Randomness: Simulated annealing heavily depends on
randomness to ensure high quality solutions. Therefore,
subsets are randomly generated with the caveat of being
placement aware.

Note that the generated group might not contain all the nodes
in a netlist; in other words, it is not a netlist partition.

Our generation solution is given in Algorithm 2. Intuitively,
each subset starts with a random initial node and randomly
adds nodes which are nearby in terms of placement.

32323232

Algorithm 2 Subset Generation Algorithm
1: function generateSubsets(Window W, Netlist N, Number

of subsets Ns, Size of subset S s, Placement P)
2: Define {Qi} // queues for each subset
3: Define {S i} // a group of subsets
4: for i = 1 TO Ns do
5: Qi = {}
6: n = randomNode() // randomly remove a node from N
7: Qi.enqueue(n)
8: end for
9: for k = 1 TO S s do

10: for i = 1 TO Ns do
11: n = Qi.dequeue()
12: S i.push(n)
13: for j = 1 TO 4 do
14: m = randomWithinWindow(W,n)
15: Qi.enqueue(m)
16: end for
17: end for
18: end for
19: return {S i}
20: end function

Algorithm 3 Parallel Annealing Algorithm
1: procedure parallelAnneal(Subsets {S i},Netlist N, Place-

ment P, Temperature T, Window W)
2: Read subset data into shared memory
3: Compute pre-bounding box for each net in subset
4: Generate a pool of valid swapping nodes
5: for M moves do
6: Select a swap from pool
7: Compute changes in cost function per net
8: Sum changes across all nets using scan operator
9: Decide and possibly commit

10: end for
11: Write data to global memory
12: end procedure

B. Parallel Annealing

We have highly optimized the sequential version of simu-
lated annealing for the GPU’s manycore architecture.

The same algorithm (Algorithm 3) is executed on different
SMPs using different subsets. Given the high memory access
latency to the off-chip global memory, we start by following
the common practice of prefetching the data associated with
one or more subsets into the low latency on-chip shared
memory (line 2 of Algorithm 3).

Subsequently, an initial approximation of each net’s bound-
ing box, called pre-bounding box is computed and stored in
shared memory (line 3 of Algorithm 3) for low latency access.
Conceptually, the pre-bounding box captures the placement
information for nodes outside of the subset. A pre-bounding
box for a net is simply the smallest box which encompasses
all nodes on the net, but only considers nodes not in the

TABLE II
IWLS Benchmarks Sizes

Number of Placeable Nodes
Cluster Size

Stitched Benchmark 1 4 10
b17 1 124670 31244 12467
b18 1 157149 39396 15715

b18 156812 39307 15682
b19 1 306719 76907 30672
leon2 273921 68481 27393

leon3mp 216562 54141 21657
netcard 203750 50938 20375

uoft raytracer 170069 42518 17007

subset. The actual bounding box of a net can be computed
by combining the pre-bounding box information with the
positions of relevant nodes in the current subset.

Next, a pool of moves is computed (line 4). Each thread
within a warp randomly selects two nodes from the subset. If
both nodes are within the window size, they are added to the
pool.

Finally, several moves are performed with each consisting
of four steps. First, a move from the pool is selected. Second,
each net affected by the move is identified and mapped to a
different thread which then computes the change in the cost
function as a result of the current swap. Thirdly, the changes
per net are computed and are summed with a scan primitive
as described by [13]. These primitives leverage the SIMD
architecture and allow a set of N numbers to be summed
in O(log N) time instead of O(N) time. Lastly, the updated
placement information is committed back to global memory.

C. Error Tolerance

Our approach permits transient errors. The pre-bounding
box for each net is not updated over the course of a single
parallel annealing iteration, and since nodes on those nets
may be annealed on other SMPs, it could become stale. We
empirically found that this does not significantly impact the
quality of results. Furthermore, the error is transient, because
all information is synchronized at the end of parallel annealing
iteration.

V. Experimental Results

A challenge in evaluating placement scalability and QoR is
the lack of large academic circuits for FPGAs. We used the
IWLS benchmarks and modified them using a technique first
devised at Altera [14]. The resulting benchmark suite is given
in Table II after packing with T-VPACK [3] with a cluster size
of 1, 4 and 10.

The proposed solution was implemented in C and ran on
a 64-bit Linux machine using an Intel Core 2 Quad running
at 2.66 GHz with 2GB of memory and an NVIDIA GTX280
GPU running at 1.35GHz and with 1GB of on-chip memory.
The sequential implementation is a modified version of VPR
4.3 [3]. We report the QoR degradation which we define as

QoR =
S − P

S
(100%) (1)

33333333

TABLE III
Parameters used for IWLS Benchmarks

Subset Number of Slowdown
Cluster Size Subsets

Size
1 28 120 1.5
4 20 90 1.0

10 22 30 1.0

TABLE IV
Results for IWLS Benchmarks (Lower QoR is Better)

Cluster Size=1 Cluster Size=4 Cluster Size=10
QoR Speedup QoR Speedup QoR Speedup

b17 1 -4.40 10.16 2.06 21.97 -1.53 12.29
b18 1 -9.32 10.69 -1.70 23.60 3.32 12.76

b18 -3.20 10.03 2.44 22.47 3.24 13.13
b19 1 7.13 9.94 4.93 25.31 6.99 14.97

leon2 5.60 6.60 5.21 14.89 -0.07 9.92
leon3mp -0.79 7.03 4.00 15.28 -3.90 9.04

netcard -4.00 7.40 1.51 16.82 0.21 9.69
1.58 8.39 -2.15 12.49 11.58 5.94

Average -0.93 8.78 2.04 19.10 2.48 10.97

where S is the half-perimeter wirelength of the sequential
version and P is the result from the parallel version. These
values are reported as percentage. Speedup is the ratio of
sequential annealing time to parallel annealing time.

A. Tuning Parameters

The parameters must be carefully selected, since they heav-
ily influence performance and quality of results. The final
choices are summarized in Table III.

Number of Subsets and Subset Size: The number of
subsets describes how many subsets will be annealed con-
currently; while the subset size is the number of nodes in
the subset. Ideally, the number of subsets should be large to
increase parallelism and each subset should be as large as
possible. Unfortunately these values are constrained by the
amount of available on-chip memory. In order to select these
values, we prioritize number of subsets over the size and
ensure that all subsets can fit in on-chip share memory at the
same time.

Number of subset groups stored: This is the total number
of spaces available for groups to be stored. In other words,
when a group is randomly selected it can be selected from one
of those stored in these spaces. Empirically, we found that this
number has an optimal point value, which is dependent on the
benchmark (again we divide cases according to cluster size).

Slowdown: For the cluster size of 4 and 10, we maintain
the same annealing schedule as the sequential, but for cluster
size of 1 we slow it down by a factor of 1.5.

B. Overall Speedup and Quality of Results

Table IV summarizes our results for the IWLS benchmarks.
Note that negative QoR values indicate that the parallel
version performed better. On average, we achieve an order
of magnitude speedup with minor, if any, degradation in QoR.

VI. Conclusions and FutureWork

In this work we have presented a highly parallel solution
to the simulated annealing-based placement problem using
GPGPU. We find that despite the architectural challenges of
SIMD cores and constrained memory interface, an order of
magnitude speedup is achievable without sacrificing quality
of results.

Future work may consider two extensions: first, more ob-
jective functions could be considered, including timing and
congestion; and second, determinism, which would assert that
multiple runs of the same input netlist would always result in
the same outcome.

Acknowledgment

The authors would like to thank Edward Campbell for in-
sightful discourse, Humian Bian for assisting with the software
infrastructure, and Andrew Ling for generating the placement
benchmarks. Also we would like to acknowledge the funding
which NSERC provided for this project.

References

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, vol. 38, no. 8, pp. 114–117, April 1965.

[2] C. Sechen and A. Sangiovanni-Vincentelli, “The timberwolf placement
and routing package,” Solid-State Circuits, IEEE Journal of, vol. 20,
no. 2, pp. 510–522, Apr 1985.

[3] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in FPL ’97: Proceedings of the 7th International
Workshop on Field-Programmable Logic and Applications. London,
UK: Springer-Verlag, 1997, pp. 213–222.

[4] A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic par-
allel placement for FPGAs on commodity hardware,” in FPGA ’08:
Proceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays. New York, NY, USA: ACM, 2008, pp.
14–23.

[5] P. Banerjee, M. H. Jones, and J. S. Sargent, “Parallel simulated annealing
algorithms for cell placement on hypercube multiprocessors,” IEEE
Trans. Parallel Distrib. Syst., vol. 1, no. 1, pp. 91–106, 1990.

[6] NVIDIA, “NVIDIA CUDA,” [online] http://www.nvidia.com/cuda.
[7] S. A. Kravitz and R. A. Rutenbar, “Multiprocessor-based placement by

simulated annealing,” in DAC ’86: Proceedings of the 23rd ACM/IEEE
Design Automation Conference. Piscataway, NJ, USA: IEEE Press,
1986, pp. 567–573.

[8] E. E. Witte, R. D. Chamberlain, and M. A. Franklin, “Parallel simulated
annealing using speculative computation,” IEEE Trans. Parallel Distrib.
Syst., vol. 2, no. 4, pp. 483–494, 1991.

[9] W.-J. Sun and C. Sechen, “A loosely coupled parallel algorithm for
standard cell placement,” in ICCAD ’94: Proceedings of the 1994
IEEE/ACM international conference on Computer-aided design. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1994, pp. 137–144.

[10] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A parallel simu-
lated annealing algorithm for the placement of macro-cells,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 6, no. 5, pp. 838–847, September 1987.

[11] J. A. Chandy and P. Banerjee, “A parallel circuit-partitioned algorithm
for timing-driven standard cell placement,” J. Parallel Distrib. Comput.,
vol. 57, no. 1, pp. 64–90, 1999.

[12] NVIDIA, “NVIDIA CUDA compute unified device arhcitecture pro-
gramming guide: Version 2.0,” September 2009.

[13] S. Chatterjee, G. E. Blelloch, and M. Zagha, “Scan primitives for
vector computers,” in Supercomputing ’90: Proceedings of the 1990
ACM/IEEE conference on Supercomputing. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1990, pp. 666–675.

[14] Altera, “OpenCore stamping and benchmarking methodology,” Altera,
Tech. Rep. TB-098-1.1, 2008.

34343434

