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Linear Algebra in Geography: 
Eigenvectors of Networks 

Accessibility of towns on a road map is measured by 
the principal eigenvector of its adjacency matrix. 

PHILIP D. STRAFFIN, JR. 

Beloit College 
Beloit, WI 53511 

Like economics and psychology before it, modem theoretical geography is a discipline in 
which the use of mathematics has become increasingly important. In this article I would like to 
discuss one use of linear algebra in geography. The application is elementary enough to be 
presented to a first undergraduate linear algebra class, although to my knowledge it has not 
appeared in linear algebra texts except for a brief mention in [2]. It illustrates well the problem 
of giving meaningful interpretation to the results of mathematical manipulation of physical data. 

The geographical problem starts with a transportation network-a map of geographically 
significant entities (for instance urban centers) connected by transportation routes (for instance 
railway.lines, highways, or scheduled air routes). Such a network can be conveniently repre- 

Trade routes in medieval Russia (adapted from [13]). 

FIGuRE 1. 
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sented by a graph in which the urban centers are vertices and the transportation routes are edges 
joining pairs of vertices. For example, the graph in FIGURE 1, adapted from [13], represents the 
major river trade routes in central Russia in the twelfth and thirteenth centuries. 

An Index of Accessibility 

The problem we address is the development of a suitable index of what geographers have 
called the accessibility of each vertex in the network. This index should provide a numerical 
answer to such questions as, "How accessible is this vertex from other vertices in the network? 
What is its relative geographical importance in the network?" Such an index, once devised, 
could be used in a number of interesting ways. For instance: 

1. Knowledge of which vertices have the highest accessibility could be of interest in itself. 
For example, the principality of Moscow (number 35 in FIGURE 1) eventually assumed the 
dominant position in central Russia. Pitts in [13] reviews claims by geographers that this 
was due to the strategic location of Moscow on medieval trade routes. Does Moscow 
indeed have the highest accessibility in this network, or must other factors have modified 
the forces of "situational determinism?" 

2. The accessibility of vertices could be statistically correlated to other economic, sociological 
or political variables to test theoretical hypotheses in geography. Is high accessibility of an 
urban center in a transportation network associated with high per capita income, a high 
suicide rate, or a high degree of political awareness? 

3. Accessibility indices for the same urban centers in different transportation networks could 
be compared, as in [4], where the rail network and the interstate highway network are 
compared for cities in the southeastern United States. 

4. Proposed changes in a transportation network could be evaluated in terms of their effect 
on the accessibility of vertices. Which urban centers would become more, or less, 
transportationally important? 

One solution to the problem of developing a suitable index of accessibility was first proposed 
by Peter Gould in [6]. Postponing for a moment the justification of his index, let us see how it 
works. As an example, consider the graph in FIGURE 2. 

A simple transportation network. 

FiGuRB 2. 

The adjacency matrix of a graph is the square matrix with rows and columns labeled by the 
vertices, and entries 

a 1I if vertices i andj are joined by an edge, 
0 if vertices i andj are not joined by an edge. 

It is traditional to define the diagonal entries aii to be zero, in which case we will denote the 
adjacency matrix by A. We will have more occasion to use the modified matrix in which the 
diagonal entries are defined to be one, and we denote this matrix by B = A + I. For example, 
the adjacency matrices for the graph in FIGURE 2 are 
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IU 1 1 1 
1 

1 1 1 1 1 

A- 1O1O and B- 11 1o 

1 0o00 1 00 1 

Gould's definition is based on the eigenvalues of the matrix A. In this example, the characteristic 
polynomial for A is X4 - 4X - 2X +1= (X + 1)(X3 - - 3X + 1), with approximate eigenvalues 
XI = 2.17, X2= .31, X3 = - 1.00, X4= - 1.48. Now compute the eigenvector v, for the largest, or 
principal, eigenvalue XI, normalized in any convenient way. In our example we have v,= 
(.32,.27,.27,.14), where the normalization has been done so that the components add to one. The 
components of this eigenvector are Gould's index of accessibility. We note that vertex 1 has the 

Node v1 (Gouldindex) 2 3 _ 19 

1. Novgorod .0042 .0439 .0883 -.1278 
2. Vitebsk .0065 .0020 .0990 -.0233 
3. Smolensk .0186 -.0383 .1630 .1231 
4. Kiev .0104 -.0603 .1551 .1651 
5. Chernikov .0176 -.1352 .2309 -.0894 
6. Novgorod Severskij .0208 -.1156 .1687 .0175 
7. Kursk .0303 -.2133 .2623 -.2009 
8. Bryansk .0547 -.1978 .1974 .0930 
9. Karachev .0386 -.2295 .2528 -.0495 
10. Kozelsk .0837 -.1724 -.0801 .1676 
11. Dorogobusch .0477 -.0519 .1598 -.1167 
12. Vyazma .0722 -.0046 -.1081 -.2917 
13. "A" .0207 .0912 .1534 .0519 
14. Tver .0242 .3146 .2296 .1273 
15. Vishnij Totochek .0082 .1245 .1252 -.0028 
16. Ksyatyn .0321 .4337 .1800 -.0708 
17. Uglich .0105 .1872 .0969 -.3397 
18. Yaroslavl' .0044 .1055 .0660 .0014 
19. Rostov .0047 .1165 .0706 .3400 
20. "B" .0121 .2299 .1133 .0680 
2 1. "C"Jj .0054 .1118 .0370 -.2554 
22. Suzdal .0068 .0921 -.0194 -.1201 
23. Vladimir .0182 .1533 -.0862 .2309 
24. Nizhnij Novgorod .0076 .0721 -.0968 -.0759 
25. Bolgar .0022 .0251 -.0381 -.3719 
26. Isad'-Ryazan .0142 .0122 -.2117 .1015 
27. Pronsk .0164 -.0079 -.2065 -.0825 
28. Dubok .0178 -.0480 -.1123 -.0769 
29. Elets .0193 -.1033 .0275 .1027 
30. Mtsensk .0493 -.2496 .1822 .0979 
31. Tula .0363 -.0720 -.1547 .2413 
32. Dedoslavl' .0429 -.0349 -.3126 -.1183 
33. Pereslavl' .0267 .0138 -.2095 -.0224 
34. Kolomna .0788 .0275 -.3202 - .1061 
35. MOSCOW .0490 .2772 -.1025 .2432 
36. Mozhaysk .0415 .1837 -.0340 -.0044 
37. Dmitrov .0159 .2396 .1198 -.1132 
38. Volok Lamskij .0234 .2563 .1242 .0476 
39. Murom .0063 .0293 -.1215 .1255 

XI = 4.48 A2 = 3.88 X3 = 3.54 X19 = 1.20 

Eigenvectors Ior the Russian trade route graph of Figure 1. (Eigenvalues are for the matrix B.) 

TABLE 1. 
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highest index, followed by vertices 2 and 3, followed by vertex 4 with the lowest index, and that 
these results accord well with intuition. The accessibility indices for vertices in the Russian trade 
route graph are given in the second column of TABLE 1. Notice that Moscow is not the most 
highly accessible vertex in the network. In fact it ranks sixth, behind Kozelsk, Kolomna, 
Vyazma, Bryansk and Mtsensk. The conclusion would be that other sociological and political 
factors must have been important in Moscow's rise. 

It is comforting to have a procedure like the above which seems to reinforce and complement 
our intuition with numbers carried to several decimal places. However, the first question both 
geographers and mathematicians must ask is, "What do these numbers mean? Why is it that this 
manipulation through graphs, matrices, eigenvalues and eigenvectors should produce numbers 
entitled to the name of an 'accessibility index'?" On this crucial question, Gould and the first 
users of his index (see [1] for example) were unfortunately vague: 

Vectors representing well-connected towns will not only lie in the middle of a large number of 
dimensions but will tend, in turn, to lie close to the principal axis of our enveloping oblate 
spheroid. Towns that are moderately well-connected will not lie in the middle of so many 
dimensions as the well-connected towns, and will tend to form small structural clusters on 
their own. ([6], page 66) 

Although the geometric intuition in this statement tells us something about why the principal 
eigenvector might have something to do with accessibility, it certainly does not tell us why its 
components have a claim to giving a precise index. The goal of this article is to use linear 
algebra to develop three different models to justify Gould's index. We begin with some 
background from linear algebra. 

The Perron-Frobenius Theorem 

First, note that the matrix identity B = A + I, where I is the n x n identity matrix, entails that 
the eigenvalues of B are exactly one larger than the corresponding eigenvalues for A, and that 
the eigenvectors of the two matrices are exactly the same. Hence we may use the matrix B 
instead of A to compute Gould's index. Second, the matrix B is symmetric. Linear algebra tells 
us that a real symmetric matrix can be diagonalized by an orthogonal matrix. Hence all the 
eigenvalues of B are real, and we can rank them X1 > X2> * * * > n. The corresponding eigenvec- 
tors v1,... ,vn are real and give an orthogonal basis for Rn. Thus the prescription of choosing the 
largest eigenvalue makes sense, and the components of the principal eigenvector will be real 
numbers. 

The final, crucial piece of information we need is the Perron-Frobenius Theorem for 
nonnegative square matrices. This theorem is so important for applications of linear algebra in 
the social sciences that it ought to be at least stated in an undergraduate linear algebra course. 
Detailed discussions can be found in [3] and [16]. A matrix M= (ma) is nonnegative if my > 0 for 
all i,j. A square nonnegative matrix M is said to be prnmitive if there exists a positive integer k 
such that all the entries of Mk are strictly positive. 

PERRON-FROBENIUS THEOREM. If M is an n x n nonnegative primitive matrix, then there is an 
eigenvalue X1 such that 

(i) X1 is real and positive, and is a simple root of the characteristic equation, 
(ii) X1 > I X I for any eigenvalue X =/X1, 
(iii) X1 has a unique (up to constant multiples) eigenvector vl, which may be taken to have all 

positive entries. 

To apply this theorem to the adjacency matrix of a graph, note that by the definition of 
matrix multiplication, the ijth entry of A k counts the number of ways of getting from vertex i to 
vertex j by paths of length k. The effect of the l's along the diagonal in B = A + I is to make the 
ijth entry of Bk count the number of ways of getting from vertex i to vertexj by paths of length 
k, including possible stopovers at vertices along the way. For a connected graph, the diameter of 
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the graph is the smallest integer k such that any vertex may be reached from any other vertex by 
a path of length less than or equal to k. Hence if our graph is connected and we choose k to be 
bigger than or equal to its diameter, the entries of Bk will all be positive. In other words, B is 
primitive, so the Perron-Frobenius Theorem applies. (It is an easy exercise to show that if the 
underlying graph is bipartite, that is, if its vertices can be partitioned into two sets V1 and V2 
such that no two vertices in Vi are adjacent, i = 1,2, then the matrix A will not be primitive. See 
[10] or [15]. It is for this reason that we work with B instead of A.) 

Thus if the transportation network is connected, we are guaranteed that the principal 
eigenvector v1 is well-defined and has all positive entries. Moreover, consider any vector x not 
orthogonal to vl: 

x= alvl+ a2V2+ + anVn (a1#O). 

kX ~ ~ Bk 
Then B kx= XkaIvl + 2ka2V2 + ***+ Xkanvn and, as k--oo, 

k =alvl+a( )ka2V2+. +( ) anvn >aivi, 

since X1 is the eigenvalue of strictly largest modulus. In other words, the ratios of the components 
of Bkx approach the ratios of the components of v1 as k increases. This important fact will provide 
the basis for our three justifications for using the components of v, as an accessibility index. 

Justifications of Gould's Index 

The first justification of Gould's index relies on the fact mentioned above that the ijth entry 
of Bk counts the number of paths between vertices i andj of length k (allowing stopovers). A 
highly accessible vertex should have a large number of paths to other vertices. This idea was 
used to study accessibility before Gould's article in 1967-see [4] and [13] for example. The idea 
was to compute B k (or often A k) for some suitably large k (often the diameter of the graph), and 
then use the row sums of its entries as a measure of accessibility. The accessibility index of 
vertex i would thus be the sum of the entries in the ith row of B k, and this is the total number of 
paths of length k (allowing stopovers) from vertex i to all vertices in the graph. One problem 
with this method is that the integer k seems arbitrary. At exactly what path length should you 
stop counting? Here our linear algebra comes to the rescue. Let e be the n-dimensional column 
vector all of whose components are l's. Then the vector of row sums of Bk is just the vector Bke. 
Since e and v1 both have all positive entries, they cannot be orthogonal, so the ratios of the 
components of B ke approach the ratios of the components of v, as k increases. As we count 
longer and longer paths, this measure of accessibility converges to Gould's index. 

A second justification for Gould's index was given by Tinkler in [17]. Imagine a rumor 
starting with a teller at some vertex i in the network at time 0. By time 1, the teller has told the 
rumor to someone at each vertex which is joined to vertex i by an edge (and of course he 
remembers it himself). By time 2, each person who knew the rumor at time 1 has told it to 
someone at each vertex which is adjacent to his vertex. As time progresses, the rumor will spread 
throughout the network, and we might measure the accessibility of a vertex by the number of 
people at that vertex who know the rumor. If the spread of a rumor seems too frivolous, think of 
the spread of a technological innovation, or a trade good. 

Once again, our linear algebra is applicable. Let xi be the column vector with 1 in the ith 
position and zeros elsewhere. The distribution of the rumor at time 1 is given by Bx,, and the 
distribution at time k by Bkxi. Since xi has no negative entries, it cannot be orthogonal to vl, so 
the vectors B kxi approach a multiple of v, as k increases. No matter where the rumor starts, its 
equilibrium distribution after a large number of time periods is given by Gould's index. 

This model also indicates a geographical meaning of the principal eigenvalue X1: it gives the 
equilibrium growth rate of a rumor spreading according to the model. It is thus a measure of 
what might be called the "total connectivity" of a network: highly connected networks should be 
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those in which rumors can spread quickly. Perron-Frobenius theory tells us some interesting 
things about X1, for instance that adding an edge to a network must always increase XI. For 
other results on X1 and the other eigenvalues of graphs, see [101 and [15]. 

Our third justification of Gould's index is based on an idea discussed by J. W. Moon in [12] 
about how we could measure the relative strengths of players in a round-robin tournament. A 
first order approximation of the strength of player i might be simply the number of players he 
beat in the tournament. But beating strong players ought to count more heavily than beating 
weak players. Hence a second order index of the strength of player i might be the sum of the 
first order strengths of players he beat. And so it goes: we keep iterating and hope for 
convergence. 

If we apply this idea to a transportation network, it works like this. As a first order meas:ire 
of the geographical importance of vertex i, we simply use its degree, the number of verticas 
adjacent to vertex i. But being adjacent to important vertices should count more heavily than 
being adjacent to unimportant vertices. Hence as a second order index of the importance of 
vertex i, we might use the sum of the first order indices of vertices adjacent to vertex i (and let us 
count it as adjacent to itself). As we continue the iteration, we recognize what will happen. If x is 
the vector of degrees, our kth order index of geographical importance is the vector Bk- 1x, and 
these vectors converge to Gould's index as k increases. Gould's index gives the equilibrium 
relative importance of vertices under this iterative procedure. 

Summary 

Gould's idea was to measure the accessibility, or geographical importance, of nodes in a 
transportation network by using the components of the principal eigenvector of the adjacency 
matrix of the corresponding graph. Originally this idea was justified only on fairly vague 
heuristic grounds. We have seen that linear algebra, in particular the Perron-Frobenius Theo- 
rem, allows us to obtain Gould's index by three separate chains of reasoning. The index gives 
the relative number of paths joining each vertex to all vertices in the graph, the equilibrium 
distribution of a rumor spreading in the graph from any vertex, and the equilibrium relative 
importance of vertices calculated according to an iterative scheme. If we believe that any of 
these three models captures what we would wish to describe as accessibility, Gould's index is 
appropriate. 

Computing eigenvalues and eigenvectors of large matrices, even when they are sparse, is not 
an easy task. Hence it is useful to recognize that our analysis yields as a by-product an efficient 
algorithm, well-known to numerical analysts, for approximating v1 and XI as closely as desired. 
Label the columns of an array by the vertices. In the zeroth row, enter a 1 in each column. In 
the jth column of the (i + I)th row, enter the sum of the entries in the ith row corresponding to 
vertices to which vertexj is adjacent (and count it as adjacent to itself). The rows will converge 
quite rapidly to the Gould index. The ratio of the total of the (i + I)th row to the total of the ith 
row will converge to the principal eigenvalue of the matrix B. (Recall that this will be one larger 
than Gould's principal eigenvalue, since he used A instead of B.) The procedure is illustrated in 
TABLE 2 for the simple graph of FIGURE 2. 

Extensions and Generalizations 

Gould's index, or its cruder predecessor described above, has been used by geographers to 
study such things as trade routes in Serbia in the reign of Stefan Dusan [1], the road systems of 
Uganda in 1921 and of Syria in 1963 [6], the U.S. interstate highway system [4], and the growth 
of the Sao Paulo economy [5]. See [17] and [20] for other references to studies of the highway 
network of northern Ontario, internal migration in Hungary in the 1960's, detribalization in 
Tanzania, urban accessibility in Indianapolis and Columbus, and the evolution of airline routes 
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k 1 2 3 4 Total 

0 1 1 1 1 4 
1 4 3 3 2 12 
2 12 10 10 6 38 
3 38 32 32 18 120 
4 120 102 102 56 380 

vl,(.32, .27, .27., .15) Xl1-380 '.17 120 

Iterative approximation of the principal eigenvalue and eigenvector for the graph in FiGURE 2. 

TABLE 2. 

in the United States and Australia. In looking at applications, we need not limit ourselves to 
problems in geography. For instance, indices of the type we have been considering have also 
been used to study the idea of status in sociology [11], [8]. In this context vertices might 
represent individuals and edges represent friendship or acquaintance. We would be interested in 
identifying the most "well-connected" individuals, and knowing other well-connected people 
should count more heavily than knowing poorly connected people. Our third model would 
suggest the Gould index as an appropriate measure of status. 

Several generalizations of Gould's index would be natural. For instance, if enough informa- 
tion were available, we might wish to weight the edges of the transportation graph in some 
suitable way. Since the weighted adjacency matrix would still be symmetric and primitive 
nonnegative, the analysis would still work. For example, if we could weight the edges in the 
Russian trade route network by the volume or worth of trade along various routes, it might turn 
out that Moscow did have the highest weighted Gould index. For this particular example, 
though, the historical information necessary for such weighting is not available. The Gould 
index could also be adapted to directed graphs (one-way trade flows), though then the adjacency 
matrix would no longer be symmetric, and we would have to require that the digraph be 
"strongly connected" for the adjacency matrix to be primitive. 

In addition to using the principal eigenvector, Gould and other geographers have proposed 
that the non-principal eigenvectors v2, v3, ... might have geographical meaning. The non-prin- 
cipal eigenvectors must be orthogonal to vl, which has all positive components. Hence they have 
some positive and some negative components. Thus in a graph, a non-principal eigenvector 
partitions the vertices into those with positive components in the eigenvector and those with 
negative components. This partitioning might pick out significant geographical subsystems. In 
TABLE 1, the eigenvectors V2,V3 and vl9 are given. If you draw the corresponding partitions on 
FIGURE 1, you will find that v2 partitions the graph into a northern section and a southern 
section, V3 gives an east-west partition, and the partition given by vl9 is charmingly complicated. 
Analyses of this type are given in [6] and [1]. Going beyond the mystical stage in justifying this 
kind of analysis seems much more complicated than in the case of the principal eigenvector. 
Tinkler in [17] has proposed an interpretation based on the spread of a rumor (positive numbers) 
and a canceling anti-rumor (negative numbers) through the network. If the initial distribution of 
rumor and anti-rumor is exactly given by the components of a non-principal eigenvector 
corresponding to an eigenvalue ? > 1, then both rumor and anti-rumor will be able to grow at a 
rate ?. without either forcing the other out. One problem with this interpretation is lack of 
stability: if the initial distribution x differs only slightly from being orthogonal to vl, we know 
that eventually its v1 component will dominate and destroy the coexistence of rumor and 
anti-rumor. Generically, coexistence is impossible. The nature of the significance, if any, of 
partitions given by non-principal eigenvectors seems to me as yet unjustified by a reasonable 
model. Discussions of this question may be found in [17], [9] and [18]. 

I would close by suggesting that the reader interested in getting a feel for how the Gould 
index works might enjoy calculating Gould indices for some simple families of graphs; for 
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The path graphsJP, P (n vertices) The star graphs St,, (n- l rays) 

The wheel graphs W, (n -1 spokes) The flower graphs F21 (n petals) 

FIGURE 3. 

example, those illustrated in FIGURE 3. Some answers appear in [171. Readers interested in 
exploring other methods of geographical analysis based on graph theory and linear algebra 
might consult [7], [14], [19] and [20]. 

The author thanks Keith Tinkler and the referees for suggestions which improved the presentation of this 
paper. 
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