
Multi-Level Graph Layout on the GPU

Yaniv Frishman, Student Member, IEEE and Ayellet Tal

Abstract— This paper presents a new algorithm for force directed graph layout on the GPU. The algorithm, whose goal is to compute
layouts accurately and quickly, has two contributions. The first contribution is proposing a general multi-level scheme, which is
based on spectral partitioning. The second contribution is computing the layout on the GPU. Since the GPU requires a data parallel
programming model, the challenge is devising a mapping of a naturally unstructured graph into a well-partitioned structured one. This
is done by computing a balanced partitioning of a general graph. This algorithm provides a general multi-level scheme, which has the
potential to be used not only for computation on the GPU, but also on emerging multi-core architectures. The algorithm manages to
compute high quality layouts of large graphs in a fraction of the time required by existing algorithms of similar quality. An application
for visualization of the topologies of ISP (Internet Service Provider) networks is presented.

Index Terms—Graph layout, GPU, graph partitioning.

1 INTRODUCTION

Graph drawing addresses the problem of constructing geometric rep-
resentations of graphs [24,38]. It has applications in a variety of areas,
including software engineering, software visualization, databases, in-
formation systems, decision support systems, biology, and chemistry.

Producing pleasing graph layouts fast is still a challenging problem.
For instance, one of the most popular graph layout algorithms, the
force directed algorithm, is computationally expensive. The complex-
ity of each iteration of the algorithm is O(V 2 + E). On large graphs,
the layout procedure can take anywhere from a few seconds to several
minutes to complete, hindering the capability to use this algorithm to
explore large data sets.

In recent years, a popular way to accelerate computations is to per-
form them on the GPU (graphics processing unit) [5,14,31,32]. This is
due to the high computational power, low cost, and ubiquity of GPUs
in every modern PC. GPUs are geared towards repetitively performing
the same computation on large streams of data. Therefore, the GPU
suits uniformly structured data, such as images or matrices. Graphs do
not posses a uniform structure, hence, they do not admit any intuitive
and natural representation that suits computation on the GPU.

This paper proposes two ways in which force directed algorithms
can be accelerated. The first is a general multi-level scheme, which is
based on spectral partitioning. The second is computation of a graph
layout on the GPU.

Multi-level graph layout algorithms have been proposed in the
past [9, 15, 18, 20, 26, 34, 40]. In these algorithms, the given graph
is recursively coarsened, to compute its multi-level representation. In
contrast, in our scheme, the algorithm works on a high-detailed graph
at all levels of the partitioning. Thus, a good hierarchical representa-
tion of the graph is obtained. The scheme proposed in this paper is
a general multi-level scheme, which is based on spectral partitioning.
Using a bottom up approach, layouts of increasing detail are com-
puted. It is shown how coarse layouts of a graph can be efficiently
extended to the final high quality layout.

In addition, this paper describes a method of representing graphs
so as to make efficient use of GPU resources. Partitioning is used to
break the large problem into smaller and similarly-sized problems that
suit computation on the GPU or on other data-parallel programming
models. This algorithm exposes the underlying structure of the graph,
and thus can be used in a multi-level scheme.

• The authors are with the Technion, Israel Institute of Technology.

E-mail: frishman@tx.technion.ac.il , ayellet@ee.technion.ac.il.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online

27 October 2007.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

Another algorithmic contribution of the paper is devising a layout
algorithm that combines the strengths of two different well-known lay-
out algorithms [8, 23]. The produced layouts are as good as existing
state of the art layouts [15, 16], yet computed at a fraction of the run-
ning time. For example, a layout of the graph bcsstk31 is computed
using our approach in 5.8 seconds compared to 83 seconds in [15].

Implementation-wise, the paper elaborates on how force directed
layout is accelerated, by performing the time-consuming stages on the
GPU. The data storage and the stream processing are described.

Last but not least, the algorithm is applied to the visualization of
the topologies of Internet Service Providers (ISP) networks. In this
application, illustrated in Figure 1, nodes represent routers and edges
represent the connections between them.

2 RELATED WORK

Many algorithms have been proposed to perform graph layouts [24,
38]. This paper focuses on force directed layout [8,23], which is based
on simulating the graph as a network of charged particles that repel
each other, where edges are simulated by springs. The algorithm is
popular due to its ability to draw general undirected graphs, its ability
to be tailored according to specific requirements, and the aesthetically
pleasing layouts it produces. However, a major drawback of the algo-
rithm is its high computational cost.

Some algorithms have been proposed to perform force directed lay-
outs of large graphs [16]. In [40] coarser representations of the graph
are recursively built using the edge collapse operation. Instead of com-
puting all-pairs repulsion forces, only close-by nodes are addressed.
The algorithm in [18] creates coarse graphs using an approxima-
tion of the k-center problem. A modified version of [23] is used to
perform single level layout. This algorithm requires O(V 2) memory
and O(V E) time. The algorithm in [2] computes repulsion forces in
O(N logN). In [34] a quadtree is used to accelerate layout and to visu-
alize the graph in multiple levels of detail. In [9] a maximum indepen-
dent set filtration is used to coarsen the graph. At each level new nodes
are placed in accordance with their neighbors. A local force computa-
tion is performed using both [23] and [8]. FM3 [15] is a state of the
art multi-level algorithm [16]. There, solar systems are created, which
consist of nodes at a distance of two edges or less from the center of
the solar system. A clever O(N logN) approximation of the all-pairs
repulsive forces is used to accelerate layout.

In [26] a simplified energy function is used, which allows more
robust mathematical treatment. The layout problem is reduced to an
Eigen value computation problem, which is solved using an algebraic
multi-grid approach. Although the resulting algorithm is very rapid,
the quality of the layout is limited [16]. This may be attributed to the
algorithm defining forces only along edges of the graph. In [20] a high
dimensional embedding of the graph is computed and then projected
into the drawing plane, allowing a linear time O(E +V) algorithm.

Fig. 1. ISP router map. Each node represents a router. Edges link
routers. Red nodes are external to the ISPs visualized. Other nodes
are colored according to the ISP they belong to: green - Abovenet (US,
664 routers); blue - Exodus (US, 551 routers); black - Tiscali (Europe,
513 routers). A total of 5044 routers and 8043 connections are shown.

In the current paper, instead of working on increasingly coarsened
graphs, the input graph is partitioned to smaller and smaller parts. This
helps construct an accurate multi-level representation of the graph.

In recent years, GPUs have been successfully applied to numer-
ous problems outside of classical computer graphics [31]. Some GPU
usage examples include solving differential equations [13], linear al-
gebra [10,27], signal processing [29], visualization [17,22] and simu-
lation [21, 25, 28], to name a few.

Several other GPU applications are somewhat related to ours.
In [12,37] simulation of deformable bodies using mass-spring systems
is performed. However, while the mass-spring algorithms take only
nodes connected by edges into account, the force directed algorithm
considers all the nodes when calculating the force exerted on a node.
GPUs have also been used to simulate gravitational forces [30], where
an approximate force field is used to calculate forces. Accelerating
dynamic graph drawing on the GPU has been addressed in [7]. The
focus of that work was on creating stable layouts of changing graphs,
whereas the current paper addresses static layouts.

3 SPECTRAL GRAPH PARTITIONING

Computing directly the layout of a large graph is both time-consuming
and difficult. This is due to the sensitivity of force directed layout to
the initial conditions given to the algorithm. To address these prob-
lems, multi-level schemes have been used [9, 15, 18, 20, 26, 34, 40].
The key idea is that a good representation of the overall structure of
the graph will yield a layout of the “skeleton”, which can be quickly
computed, and which can assist in drawing the large input graph.

We propose an algorithm for creating a series of resolution decreas-
ing representations of the graph by recursively partitioning it. We re-
quire the parts to have similar size and have a minimal cut between
them. The former requirement helps preserve the balance between the
nodes during layout, while the latter guarantees that different parts are
weakly coupled and hence can be treated relatively independently.

While existing multi-level graph layout algorithms recursively
coarsen the graph in order to compute the multi-level representation,
our algorithm works on a high-detailed graph at all levels of the par-
titioning. This allows us to obtain a high-quality representation of the
graph, which does not suffer from the growing inaccuracy involved in
repetitively creating coarser and coarser representations of a reduced
version of the graph.

To do it, we use spectral graph theory [4]. This theory has been
used in the field of parallel computation to partition computation de-
pendency graphs, where the amount of work between processors needs
to be balanced [33]. It was also used in image segmentation, where
normalized cuts were introduced [35]. The idea of using eigenvectors
of the Laplacian for finding partitions of graphs has a rich history [6].

Suppose that wi j is the weight of the edge (i,j), D is a diagonal
matrix, D(i, i) ≡ ∑ j wi j , and W (i, j) ≡ wi j is the graph edge weights
matrix. The matrix L = D−W is the Laplacian of graph G. The goal
is to partition G into two equal-sized partitions A,B. For node i, we
define qi = 1 if i ∈ A and qi = −1 if i ∈ B. It can be shown [33] that
the cut size J is:

J = CutSize =
1

4
∑
i, j

wi j(qi −q j)
2 =

1

2
qT (D−W)q.

In order to minimize J, we can relax the indicators qi to continuous
values and take the second smallest eigenvector of

(D−W)q = λq.

This vector is known as the Fiedler vector [6]. (The smallest eigen-
vector, corresponding to an eigenvalue λ1 = 0 is q1 = (1, ...,1)T .)

To compute the Fiedler vector, we use the power iteration algo-
rithm [41], shown in Figure 2. The input of the algorithm is a guess
for the Fiedler vector, stored in v2. The computed Fiedler vector is
returned in v2. The algorithm is iterative. In each iteration v2 is or-
thogonalized against the first eigenvector and multiplied by the matrix
B which is used to reverse the order of the eigenvectors, using the Ger-
shgorin bound, which bounds the magnitude of the largest eigenvalue
of the Laplacian. This algorithm fits sparse matrices (i.e., graphs),
since it requires only matrix-vector multiplications. A similar algo-
rithm is used in [26] to directly compute the graph layout, whereas it
is used here only to partition the graph.

L = Laplacian(G)

g = Gershgorin bound(L) = max
i

(

Lii + ∑
j 6=i

|Li j|
)

B = gI - L

v1 = 1√
N
·1N //first (known) eigenvector

do
v2old = v2
v2 = v2− (v2T · v1)v1
v2 = B · v2
v2 = v2

‖v2‖
until |v2old · v2T −1| < ε or max iteration count reached

Fig. 2. The power iteration algorithm

A drawback of the power iteration algorithm is its slow convergence
rate. To accelerate the convergence, a multi-grid algorithm is used. In-
stead of directly operating on the largest Laplacian matrix, a series of
coarsening operations is performed, until reaching a minimal problem
size. The coarsening algorithm is detailed in Section 4, Step 1. After
coarsening, the coarser problems are recursively solved and interpo-
lated back, setting a good initial guess for the next (finer) problem.

After computing the Fiedler vector v2, it is used to partition the
graph. Each node in the graph has a corresponding value in v2. This
value is used to determine which partition the node will be assigned to.
The vector v2 is sorted. A set of k−1 splitting values is determined by
sampling the sorted vector at k−1 uniformly spaced points. This splits
the vector into k regions. The partition to which a node is assigned is
computed by determining to which of the k regions the value of v2
corresponding to the node belongs to.

Since the graph is partitioned into more than two parts, some clus-
ters may be disconnected. A post-processing stage that merges clusters
is performed. Each cluster whose size is below a threshold, is merged
with its largest neighboring cluster.

The partitioning algorithm continues repetitively, building finer and
finer representations of the graph. The finer representations are then
used in a multi-level scheme, described in Section 4, to compute a
globally pleasing layout of the original graph.

In our implementation, any eigen problem of a size smaller than
128 nodes is directly solved, since coarsening it further is not time-
effective. For each problem, a maximum of 10000 power iterations are
allowed and an accuracy ε = 10−8 is used. The graph is partitioned
by default into three parts (k = 3). Disconnected clusters smaller than
1
9 of the graph are merged. Our attempts to perform a more adaptive
partitioning, resulted in lower quality results.

4 MULTI-LEVEL LAYOUT ALGORITHM

Given an undirected weighted graph G = G0 = (V,E), the goal of the
algorithm is to compute a straight-line drawing of G, assigning 2D
coordinates to each node. Our algorithm is based on the force-directed
approach [8, 23, 24, 38], which simulates a system of forces defined
on the input graph and converges towards a local minimum energy
position, starting from an initial placement of the vertices.

Our algorithm has several key ideas. First, a multi-level scheme is
used to compute the layout. Instead of directly computing a layout
for the input graph, several coarsened versions of it are created. Start-
ing from the coarsest version, a series of increasingly detailed layouts
are computed. Care is taken to interpolate positions from each coarse
layout and use them as the starting point for the next finer layout.

Second, spectral partitioning methods are used to compute lower
resolution representations of the graph, as discussed in Section 3.
Using this approach the difficult graph partitioning problem is trans-
formed to a 1D partitioning problem. Breaking the graph into increas-
ingly finer parts allows us to produce a series of increasingly detailed
graphs, which are used in the multi-level scheme.

Third, a layout algorithm which combines the strengths of [8,23] is
used. While [23] is able to compute a good layout, given any starting
point, it is time consuming. The algorithm of [8] is faster and com-
putes ”smoother” layouts, but is more sensitive to the initial conditions
given to it. We propose an algorithm which combines the strengths of
both algorithms in order to produce the final layout.

The algorithm is composed of the following stages, shown in Fig-
ure 3: We elaborate on each stage below.

1. Initial coarsening: compute G1,G2, . . . ,Gcoarsest where Gk+1 =
edge collapse(Gk).

2. Partitioning initialization: set Plevel=0
part num=0 to Gcoarsest . Set l = 0.

3. Partitioning: try to partition each graph Pl
n. This creates a new

set of graphs Pl+1
0 ,Pl+1

1 , If no graph Pl
n could be partitioned,

goto step 7.

4. Multi-level construction: construct Ll out of Gcoarsest , where
each node in Ll corresponds to a graph Pl

n.

5. Layout initialization: compute an initial layout for Ll , using

interpolated initial positions from the coarser Ll−1.

6. Layout: compute the layout for Ll . This is the core step of
the algorithm, which uses our variant of the force-directed ap-
proach. Set l = l +1, goto step 3.

7. Compute a layout for Gcoarsest using interpolated initial posi-
tions from L f inest , the finest graph layout computed in stage 6.

8. Final un-coarsening: Compute layouts for
Gcoarsest−1,Gcoarsest−2, . . . ,G0 by repetitively interpolat-
ing from Gi to Gi−1 and laying out Gi−1.

Fig. 3. Algorithm overview

Initial coarsening (Step 1): In step 1, the graph is coarsened sev-
eral times, as a pre-processing stage that helps reduce computation

time. At each level k, given a fine graph Gk, a coarser representation

Gk+1 is constructed using a series of edge collapse operations [40].
A collapse operation replaces two connected nodes and the edge be-
tween them by a single node, whose weight is the sum of the weights
of the nodes being replaced. The weights of the edges are updated
accordingly. (The initial weight of a node/edge is 1.) The order of
the edge collapse operations is different than in [40]: First, candidate
nodes for elimination are sorted by their degree, so as to eliminate
low-degree nodes first. An adjacent edge of a low-degree node is cho-

sen for collapse by maximizing the following measure:
w(u,v)
w(v)

+
w(u,v)
w(u)

,

where w(x) is the weight of node x and w(x,y) is the weight of edge
(x,y). This function helps to preserve the topology of the graph by
“uniformly” collapsing highly connected nodes.

In our implementation, three initial coarsening steps are performed.
This significantly reduces the computation time of spectral partitioning
(Step 3), while maintaining a good relation between the input graph G0

and Gcoarsest .

Partitioning initialization (Step 2): This step initializes the vari-
ables used in the recursive partitioning of graph Gcoarsest in the next
step. The graph P0

0 , which is set to Gcoarsest , is created.

Partitioning (Step 3): The goal of this step is to create high qual-
ity coarser representations of the graph Gcoarsest , which are used in the
multi-level layout scheme.

Starting from the single graph P0
0 at level 0, for each level l the set of

graphs Pl
n in this level are partitioned as described in Section 3. Each

graph Pl
n is partitioned into graphs Pl+1

m , by adding the corresponding

edges from Pl
n. As the level number l increases, Gcoarsest is partitioned

into a growing number of graphs decreasing in size.

Multi-level construction (Step 4): A series of graphs
L0,L1, . . . ,L f inest of increasing detail is created. At level l, the

graph Ll is created as follows. Each node nk in Ll corresponds to a

single graph Pl
k in level l. The weight of a node nk in Ll is the sum of

the weights of the nodes in graph Pl
k it corresponds to. Edges (nk,n j)

in Ll are created by summing corresponding edges in Gcoarsest which

connect the nodes in Gcoarsest corresponding to Pl
k and Pl

j .

Layout initialization (Step 5): The goal of this stage is to com-

pute a good initial layout of Ll . This is done based on the layout of

Ll−1, and proceeds as follows. Initially, each node pi ∈ Ll is placed

at the position of its parent node in Ll−1, whose layout was already
computed. Next, the position of each node is scaled, as follows:

pi(x,y) =

√

|V (Ll)|
|V (Ll−1)| · pi(x,y), (1)

where V (Lk) is the set of nodes in Lk. The intuition behind Eq. 1 is
that the scale should be proportional to the ratio between the number

of nodes in the graphs Ll and Ll−1. Finally, an iterative algorithm is
used to improve the placement. At each iteration, each node i is placed
at the average between its current position, pi, and the average position
of its neighbors, N(i), as follows:

pi =
1

2

(

pi +
1

degree(i) ∑
j∈N(i)

p j

)

.

This procedure creates a good initial placement, which is used in the
next step. In our implementation 50 iterations are used.

Layout (Step 6): In this stage, a layout for Ll is computed, using
our variant of the force directed approach. This is done utilizing the
multi-level scheme, until the final layout of the finest graph, L f inest , is
computed. Using this scheme, it is possible to retain important infor-
mation about the overall structure of the graph from previous layouts,
which is extracted from the spectral partitioning of the graph.

There are a couple of common approaches to performing force
directed layout. The first common approach, exemplified by the
Fruchterman-Reingold (FR) algorithm [8], computes the forces di-
rectly. Each node is moved according to the forces acting on it. It
computes ”smooth” layouts, but is sensitive to the initial conditions
given to it. A second common approach, used in the Kamada-Kawai
(KK) algorithm [23], derives an energy function from the forces and
attempts to minimize the energy in order to create the layout. The node
that reduces the energy the most is moved in each step. This algorithm
is less sensitive to the initial conditions. However, it requires an ex-
pensive all-pairs shortest path calculation and the computed layouts
are less ”smooth”.

In this paper, an approach that combines the strengths of both al-
gorithms is used. The key idea is to use the KK approach, to give the
overall structure of the graph and reduce the sensitivity to initial con-
ditions. Then, the computed layout is used as an input to the FR-based
algorithm. On finer graphs, only the faster FR layout is used. By do-
ing so, we get a good initial placement from the KK algorithm and a
”smooth”, aesthetically more pleasing layout from the FR algorithm.
Note that a combined approach is used in [19] in order to meet node-
size constraints. In the current paper, however, FR is used to refine the
layout of finer graphs in the multi-level hierarchy.

The most expensive step of the FR algorithm is the computation of
all-pairs repulsive forces between nodes, which is crucial for obtain-
ing a good layout. This step is accelerated in two ways. First, the
graph is geometrically partitioned. Instead of calculating all-pairs re-
pulsive forces, as customary, approximate forces are calculated. An
exact calculation is performed only for nodes contained in the same
partition, while an approximate calculation is performed for nodes be-
longing to different partitions. Second, the calculation of the forces is
parallelized and performed on the GPU.

Graph Ll is now partitioned geometrically, according to the current
layout, so as to balance the number of nodes per partition. This is
important in order to achieve good load balance between the parallel
processors of the GPU (Section 5). Moreover, since the nodes in each
partition are geometrically localized, it is possible to approximate the
partitions with a single ”heavy” node, as discussed below.

Specifically, a KD-tree-type partitioning is created. The nodes are
partitioned according to their median, alternating between the X and
Y coordinates. This recursive subdivision terminates when the size of
the subset is below the required partition size.

The algorithm is iterative. In each iteration, the KD-tree is updated
according to the current layout (while required). Then, the center of
gravity is found for each partition and is used to replace the nodes it
contains. Next, The forces applied to each node are computed. Fi-
nally, the nodes are displaced according to the forces acting on them,
while bounding the allowed displacement according to the exponential
converge schedule, which resembles simulated annealing.

The key to achieving high performance is to perform these compu-
tations (i.e., finding the center of gravity of the partitions, calculating
the various forces acting on the nodes, and calculating the displace-
ments), in parallel on the GPU for each node/partition.

In particular, the repulsive and attractive forces that are computed
in parallel for each node are as follows. The difference from [8] is that
the forces from distant partitions are approximated using their center
of gravity CG. For each node v that belongs to partition Pi,

Frepl(v) = K2
(

∑
u6=v,u∈Pi

pos(v)−pos(u)
‖pos(v)−pos(u)‖2 + ∑

Pj 6=Pi

|Pj| pos(v)−CG(Pj)
‖pos(v)−CG(Pj)‖2

)

Fattr(v) = ∑
u:(u,v)∈E

‖pos(u)−pos(v)‖(pos(u)−pos(v))
K

The attractive and repulsive forces are then summed up in parallel
for every node, resulting in an approximation of the total force applied

to each node, F total(v). Then, each node is displaced, in parallel,
using a simulated annealing technique, which exponentially decreases
the allowed displacement:

posnew(v) = pos(v)+
F total(v)

‖F total(v)‖min(t,‖F total(v)‖).
Here, t is the bound for the maximum displacement, which is initial-

ized to K ∗
√

|V | and decreases at each iteration by a factor λ . In our
implementation, K = 0.1 and λ = 0.9

The simulated annealing technique makes the graph slowly freeze
into position. Thus, later iterations perform increasingly local correc-
tions to the layout. Because of this behavior, it is possible to perform
geometrical KD partitioning of the graph with decreasing frequency.

In our implementation, re-partitioning is done on iterations 1-4 and
then every 10 iterations. A total of 50 FR iterations are performed [40].
KK layout is performed on graphs smaller than 1000 nodes. This con-
stant was selected so the layout time will not be dominated by KK
layout which requires performing an expensive all-pairs shortest path
calculation. We use 2000 iterations in each KK layout.

Layout of Gcoarsest (Step 7): In this step, the layout of L f inest

is extended to a layout for Gcoarsest . Here, the same method applied
in Steps 4–6, is used. Instead of interpolating positions from Li−1 to
Li, an initial placement for Gcoarsest is computed using the existing
layout of L f inest . The mapping of nodes between Gcoarsest and L f inest

is performed similarly to Step 4: each graph P
f inest

n corresponds to
several nodes in Gcoarsest . After computing an initial placement for
Gcoarsest , layout proceeds as discussed in Step 5-6.

Final un-coarsening (Step 8): This step extends the layout of
Gcoarsest to a layout of the original graph G = G0. In each iteration,
the layout of Gi is used to compute an initial placement for the nodes
of the finer graph Gi−1, using the algorithm described in Step 5. Then,
the force directed algorithm of Step 6 is applied to the initial placement
of nodes in Gi−1.

In our implementation, we do not perform force directed layout of
the final graph G0, for which the layout is the most expensive. Instead,
using the layout of G1 and the interpolation algorithm for computing
initial positions, we are able to get a good layout for G0.

Complexity: The most time consuming steps of the algorithm
are spectral partitioning and the FR force directed layout. Assuming
that each KD partition of the graph contains Cs nodes, the asymp-

totic FR complexity is O(|E|+ |V | ∗ (Cs +
|V |
Cs

)), which is minimized

to O(|E|+ |V |1.5) when Cs =
√

|V |. The spectral partitioning takes

O(|V |1.5) [35]. Therefore, the total complexity is O(|E|+ |V |1.5).

When |E| ≈ |V |, the dominating term is |V |1.5. However, due to the
calculation’s simplicity and its parallel implementation, the actual run-
ning times are low, as discussed in Section 6.

5 GPU IMPLEMENTATION

This section describes how the GPU is utilized to accelerate the force-
directed layout. It elaborates on key details, which are briefly intro-
duced in [7]. Figures that illustrate the overall process are included.

The key to high performance on the GPU is using multiple proces-
sors, which operate in parallel. The GPU schedules the execution of
multiple threads, thus hiding memory access latency. Each thread runs
a small program called a kernel program, which computes a single el-
ement of the output stream.

In the following, we first describe how the data is stored on the GPU
and then how the stream processing is performed [3].

Data Storage: On the GPU, input and output are represented as
two-dimensional arrays of data, called textures. The challenge is to
map the graph and its elements onto textures, even though graphs do
not admit any intuitive and natural representation as balanced arrays.
Below, we describe the textures used to represent the graph,

To represent the graph layout, three textures are used: one texture
for the nodes and two textures for the edges.

The location texture holds the (x,y) positions of all the nodes in the
graph. Each graph node has a corresponding (u,v) index in the texture.
As shown in Figure 4, the nodes in each partition are stored at a rect-
angular region in the location texture. Recall that Section 4 described
how to partition a graph, so that the nodes in each partition are geomet-
rically close and the number of nodes in each partition is similar. This
partitioning is critical for the acceleration of the layout on the GPU for
two reasons. First, storing neighboring nodes (those that belong to the

same partition) together maximizes memory access locality. Thus, it
makes efficient use of the GPU’s memory bandwidth, since informa-
tion regarding neighboring nodes will most likely reside in the cache.
Second, since the number of nodes in each partition is similar, the
amount of computation performed on each node is balanced. Thus,
it makes efficient use of the GPU’s data parallel architecture, which
requires lock-step execution.

Fig. 4. Representing a graph on the GPU. Left: A graph spatially parti-
tioned into partitions; right: a corresponding location texture

The location texture also holds the partition number of each node.
Given a partition of maximum size csz, the height and width of
each rectangular region representing a partition are set to hpartition =

max(8,
√

Csz) and d Csz

hpartiton
e, respectively.

Graph edges are represented by a neighbors texture and by an ad-
jacency texture, as shown in Figure 5. The adjacency texture, whose
size is O(|E|), contains lists of (u,v) pointers into the location texture.
These lists represent the neighbors of each node. The neighbors tex-
ture holds for each node a pointer into the adjacency texture, to the
coordinates of the first neighbor of the node. Pointers to additional
neighboring nodes are stored in consecutive locations in the adjacency
texture. Doing so improves access locality. The degree of each node
is also stored in the neighbors texture. Its size is equal to that of the
location texture.

Fig. 5. Representing graph edges on the GPU. Node X has three neigh-
bors: Y,Z and W.

The geometric (KD) partitions (described in Section 4, Step 6) are
represented using two textures: the partition information texture and
the partition center of gravity texture. The partition information tex-
ture holds the following information: (u0, v0) – the coordinates in the
location texture of the upper left corner of the partition, the width and
height of the partition rectangle in the location texture, the number of
nodes in the last row of the partition (which may be partially filled),
and the number of nodes in the partition. The partition center of grav-
ity (C.G.) texture holds the current (x,y) coordinates of the center of
gravity of each partition. Two textures are used to represent partitions
not only because each texture is limited in the number of fields (to 4),
but also to separate between the constant information and the informa-
tion modified during the layout computation (i.e., center of gravity).

The forces computed during layout iteration are stored in two tex-
tures in a straightforward manner: the attractive force texture and the
repulsive force texture. The attractive force texture contains for each
node the sum of the attractive forces Fattr exerted on it by its neigh-
bors. The repulsive force texture holds the sum of repulsive forces,

Frepl : both by nodes in the same partition and by the other partitions

in the graph. Both textures have the same dimensions as the location
texture and contain the 2D components of the forces, (Fx,Fy).

Stream processing: On the GPU computation is performed by
selecting the rendering target, which is the stream, or the texture, to
which the output should be written. Next, an appropriate kernel pro-
gram is loaded. Finally, graphics primitives such as quadrilaterals, are
rendered in order to invoke the computation. For each pixel in the
primitive (i.e., that the quadrilateral covers), the loaded kernel pro-
gram is executed. Below we describe the order of invocations of the
kernel programs, and their input and output textures. Figure 6 displays
the execution graph of the algorithm.

Fig. 6. Execution graph of GPU layout (rectangles = streams,
ovals=kernels)

The algorithm is composed of three main stages, each implemented
in a separate parallel foreach loop which is executed in parallel for all
elements on the GPU. The first loop calculates the center of gravity of
each partition. The second loop calculates the forces acting on each
node. The third loop displaces nodes using simulated annealing.

The partition CG (center of gravity) kernel calculates the center
of gravity of each partition. The kernel reads information about each
partition from the partition information texture and from the location
texture and writes its result into the partition center of gravity texture.
The GPU operates on all partitions in parallel.

The repulse kernel, which is the most time consuming kernel, calcu-
lates the repulsive forces exerted on each node. The kernel reads infor-
mation from the partition information, the partition center of gravity,
and the location textures. The output of the kernel is written to the
repulsive force texture. For each fragment, the kernel first calculates
the internal forces (exerted by nodes contained in the partition that the
node belongs to). Then, it approximates the forces by all other parti-
tions. Both of these calculations are performed using branching and
looping instructions, in order to iterate over all other nodes in a par-
tition and over all other partitions. Since the partitions are similarly
sized, good branching consistency is maintained.

The attract kernel calculates the attractive forces caused by graph
edges. It reads the neighbors, adjacency, and location textures and
writes its output to the attractive forces texture. For each node, the
kernel accesses the neighbors texture in order to get a pointer into the
adjacency texture, which contains the (u,v) texture coordinates in the
location texture, of the node’s neighbors. For each neighboring node,
the attractive force is calculated and accumulated.

Finally, the anneal kernel calculates the total force on each node.
It reads the attractive force, repulsive force, and location textures and
updates a second copy of the location texture. This double-buffering
technique is used due to the inability of the GPU to read and write to
the same stream. In the next iteration, the updated location texture is
bound as input to the different kernels, thus facilitating feedback in our
computation. The anneal kernel also bounds the total displacement of
each node according to the current temperature of the layout. This

Fig. 7. bcsstk31. Red: our layout, black: FM3 layout

Fig. 8. Sierpinski 08. Red: our layout, black: FM3 layout

temperature exponentially decreases at every iteration, hence allowing
the graph to ”freeze” into its final layout.

In total, the partition CG kernel performs O(|V |) operations; the

repulse kernel performs O(|V |1.5) operations; the attract kernel per-
forms O(|E|) operations; and the anneal kernel O(|V |) operations. On
the GPU, the computations executed in each kernel, are run in parallel.

6 RESULTS

Our algorithm was tested on several well-known graphs, commonly
used in the graph drawing literature [39]. The bcsstk* graphs rep-
resent stiffness matrices. The Sierpinski graph is a self-similar frac-
tal composed of triangles. The finan512 graph is taken from a linear
programming matrix. The flower B graph is constructed by joining
6 circles of length 50 at a single node before replacing each of the
nodes by a complete subgraph with 30 nodes (K30) [16]. The 4elt and
crack graphs are 2D Finite–element meshes. The fe * graphs are un-
structured meshes related to fluid dynamics, structural mechanics, or
combinatorial optimization problems. Figures 7 - 11 show some of
the layouts computed by our algorithm, whereas Table 1 gives infor-
mation about the graphs. Each image is accompanied with a layout

Fig. 9. finan512. Red: our layout, black: FM3 layout

Fig. 10. flower B. Red: our layout, black: FM3 layout

Fig. 11. 4elt. Red: our layout, black: Kamada-Kawai layout

graph |V | |E| FM3 algorithm our algorithm our algorithm our algorithm
2.8GHz Pentium 3GHz Pentium 2.4GHz Core2 Duo 2.4GHz Core2 Duo + 8800GTS GPU

flower B 9030 131241 11.9 3.25 2.21 1.59

4elt 14588 40176 N\A 8.094 4.973 3.237

crack 10240 30380 23.0 4.844 3.018 2.44

bcsstk31 35586 572913 83.6 25.329 14.199 5.754

bcsstk32 44609 985046 110.9 39.266 22.549 9.617

bcsstk33 8738 291583 23.8 5.141 2.986 2.486

fe pwt 36463 144794 69.0 22.985 13.48 5.44

finan512 74752 261120 158.2 79.268 43.645 12.267

fe ocean 143437 409593 355.9 158.849 86.32 15.536

Sierpinski 08 9843 19683 16.8 5.25 3.127 2.705

Table 1. Graph information and running time [sec.]. Runtime columns show total running times for computing a layout.

computed by other algorithms [11, 16].
It can be seen that the layouts computed by our algorithm compare

well with FM3 [15]. The bcsstk31 graph (Figure 7) has a high edge
density: |E|/|V | = 16. Moreover, it has a regular mesh-like struc-
ture. This regularity is extracted in our layout, as a result of the good
partitioning and interpolation of the graph. Figure 8 shows the Sier-
pinski graph, which demonstrates that the symmetry of the graph is
maintained, even though the holes in the graph are challenging, com-
pared to more uniform mesh graphs. Figure 9 demonstrated the layout
of the topologically challenging finan512. It is of similar quality to
FM3 and better than the other algorithms compared in [16]. Figure 10
shows the flower B graph, which has a relatively high edge density:
|E|/|V | ≥ 14. Here, k = 6 is used for partitioning the graph and KK
layout is performed on graphs up to 128 nodes. The 4elt graph, shown
in Figure 11, exhibits large variations in node density and is thus chal-
lenging for an algorithm that seeks to maintain equal edge lengths [40].
The layout manages to show the interesting features of the graph – pla-
narity and holes. Our layout is more uniform and contains less over-
laps than the Kamada-Kawai layout from [11].

For the performance tests, a PC equipped with a 2.4 GHz Intel Core
2 Duo CPU and an NVIDIA 8800GTS GPU is used. Our algorithm
was implemented in C++, Cg, and OpenGL. Table 1 shows the running
time of our algorithm when using only the CPU and using the GPU
to accelerate the computation. It also shows the running times for
the FM3 algorithm, produced on a 2.8 GHz Intel Pentium 4 CPU .
In addition, it shows our algorithm on a slower machine (3.0 GHz
Pentium 4), which is comparable to the machine used for the reported
experiments of FM3 [16].

Compared to FM3, using a new GPU-equipped machine, a speedup
by a factor of up to 22 times is achieved. The GPU accelerates the
total computation time by a factor of up to 5.5. Without the GPU, on
comparable hardware, our algorithm runs 2-4 times faster than FM3.

7 VISUALIZATION OF ISP ROUTER NETWORKS

We have applied our algorithm to the visualization of Internet Ser-
vice Provider (ISP) router networks. The router networks of ISPs are
comprised of several points of presence (POPs). In each POP, several
routers are located. They are connected to the backbone of the ISP
and to routers connected to subscribers of the ISP. The data is taken
from [1]. It was collected by using the traceroute tool to determine the
route taken by packets traversing the ISP’s network [36].

Figures 1, 12 show layouts of the networks of several ISPs. Each
node in the graph corresponds to a router. Edges represent links be-
tween routers. Red nodes are not associated with any ISP in the data –
they are used to connect the ISP to the rest of the Internet. The other
nodes are color coded according to the ISP they belong to.

The layouts make evident some facts about these networks. First,
most routers of each ISP are clustered together. This can be seen from
the large clusters of nodes having the same color (excluding the red
nodes). Second, two clusters are evident in Figure 12 – the brown
cluster on the left, which represents an Australian ISP, and the rest of
the graph. The yellow and pink nodes represent European ISPs. The
black and blue nodes represent North American ISPs. The strongest

Fig. 12. ISP router map. Each node represents a router. Edges link
routers. Red nodes are external to the ISPs visualized. Other nodes
are colored according to the ISP they belong to: blue - Abovenet (US,
665 routers); black - Exodus (US, 554 routers); yellow - Ebone (Europe,
314 routers); pink - Tiscali (Europe, 514 routers); brown - Telstra (Aus-
tralia, 3756 routers). A total of 10895 routers and 15667 connections
are shown. Top left - GRIP layout. Bottom right - our layout.

connections exist between the two North American ISPs. There are
good connections between European and North American ISPs. Con-
nections between the Australian ISP and the other ISPs are sparser.
Third, the per-ISP clusters are further divided into small clusters of
routers, perhaps in the same city or nearby area. For instance, it can be
seen that the brown routers belong to a couple of clusters. Fourth, the
red external routers, which do not belong to any ISP, are used to link
to the external world (outside the ISPs visualized). Fifth, the number
of external routers is about the same as the number of internal routers,
hence each router has one link on average to the world outside the ISP
it belongs to. Sixth, the routers have varying degrees. Some have high
degree and are central points (such as the router connecting the brown
ISP and the yellow ISP), while others have low degree.

Figure 12 also compares our layout to one computed by GRIP [9].
It can be seen that GRIP’s layout does not display the overall, clus-
tered structure of the graph. Moreover, important edges, such as the
ones connecting the brown cluster to the other part of the graph, are

not visible. However, the GRIP layout contains less overlap between
nodes. To compare the performance, both layouts were computed us-
ing only the CPU on a 3GHz Pentium PC. Linux, required for GRIP,
is not available on the PC with the GPU. The running time of GRIP
was 3 seconds and the running time of our algorithm was 12 seconds.
Trying to modify the parameters of GRIP resulted in a higher runtime,
but without an improvement in layout quality.

8 CONCLUSION AND FUTURE WORK

This paper has presented a new algorithm for multi-level force directed
layout of graphs on the GPU. The algorithm has several key ideas.
First, the graph is multi-level and is based on spectral partitioning.
Second, the algorithm combines the strengths of both the Kamada–
Kawai and Fruchterman– Reingold approaches, in order to compute
a good layout fast. Third, a geometric partitioning and interpolation
method in proposed, which facilitates the generation of good initial
layouts of the finer versions of the graph.

Moreover, the paper has demonstrated how the GPU can be used to
accelerate the algorithm by a factor of up to 5.5 times compared to our
CPU implementation.

Last but not least, it has been demonstrated that the algorithm com-
putes meaningful high quality layouts, while requiring significantly
lower running times than existing algorithms of similar quality. More-
over, the algorithm was applied to visualize ISP networks.

In future research, we plan to implement more parts of the algo-
rithm on the GPU. Acceleration candidates include the Fiedler vector
computation and the initial position interpolation. Transitioning to the
newly released NVIDIA CUDA development environment may help
in getting finer control over the GPU.

ACKNOWLEDGEMENTS

This work was partially supported by European FP6 NoE grant 506766
(AIM@SHAPE) and by the Israeli Ministry of Science, Culture &
Sports, grant 3-3421. Some images are courtesy of AT&T Research
and the University of Köln. We thank them for allowing us to use
them. We thank the reviewers for their helpful comments.

REFERENCES

[1] Rocketfuel maps and data. http://www.cs.washington.edu/-

research/networking/rocketfuel/ .

[2] J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algo-

rithm. Nature, 324(4):446–449, 1986.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan. Brook for GPUs: stream computing on graphics hardware.

ACM Trans. on Graphics, 23(3):777–786, 2004.

[4] F. R. K. Chung. Spectral graph theory. Regional Conference Series in

Mathematics, American Mathematical Society, 92:1–212, 1997.

[5] R. Fernando, editor. GPU Gems: Programming Techniques, Tips, and

Tricks for Real-Time Graphics. 2004.

[6] M. Fiedler. A property of eigenvectors of nonnegative symmetric ma-

trices and its application to graph theory. Czechoslovak Mathematical

Journal, 25(100):619–633, 1975.

[7] Y. Frishman and A. Tal. Online dynamic graph drawing. In EuroVis,

pages 75–82, 2007.

[8] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-

directed placement. Software—Practice and Experience, 21(11):1129–

1164, 1991.

[9] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A multi-dimensional ap-

proach to force-directed layouts of large graphs. Comput. Geom, 29(1):3–

18, 2004.

[10] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha. LU-GPU:

Efficient algorithms for solving dense linear systems on graphics hard-

ware. In ACM / IEEE Supercomputing, 2005.

[11] E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for

visualizing large graphs. IEEE Transactions on Visualization and Com-

puter Graphics, 11(4):457–468, 2005.

[12] J. Georgii, F. Echtler, and R. Westermann. Interactive simulation of de-

formable bodies on GPUs. In SimVis, pages 247–258, 2005.

[13] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. A

multigrid solver for boundary value problems using programmable graph-

ics hardware. In SIGGRAPH/Eurographics Workshop on Graphics Hard-

ware, pages 102–111, 2003.

[14] GPGPU. http://www.gpgpu.org.

[15] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-

based multilevel algorithm. In Graph Drawing, pages 285–295, 2004.

[16] S. Hachul and M. Jünger. An experimental comparison of fast algorithms

for drawing general large graphs. In Graph Drawing, volume 3843 of

LNCS, pages 235–250, 2005.

[17] C. D. Hansen, J. M. Kniss, A. E. Lefohn, and R. T. Whitaker. A stream-

ing narrow-band algorithm: Interactive computation and visualization of

level sets. IEEE Transactions on Visualization and Computer Graphics,

10(4):422–433, 2004.

[18] D. Harel and Y. Koren. A Fast Multi-Scale Algorithm for Drawing Large

Graphs. J. Graph Algorithms Appl., 6(3):179–202, 2002.

[19] D. Harel and Y. Koren. Drawing graphs with non-uniform vertices. In

Proc. Working Conference on Advanced Visual Interfaces (AVI’02), pages

157–166. ACM Press, 2002.

[20] D. Harel and Y. Koren. Graph drawing by high-dimensional embedding.

J. Graph Algorithms Appl, 8(2):195–214, 2004.

[21] M. J. Harris, W. Baxter, T. Scheuermann, and A. Lastra. Simulation

of cloud dynamics on graphics hardware. In SIGGRAPH/Eurographics

Workshop on Graphics Hardware, pages 92–101, 2003.

[22] T. Jansen, B. von Rymon-Lipinski, N. Hanssen, and E. Keeve. Fourier

volume rendering on the GPU using a split-stream-FFT. In Vision, mod-

eling and visualization, pages 395–403, 2004.

[23] T. Kamada and S. Kawai. An algorithm for drawing general undirected

graphs. Information Processing Letters, 31(1):7–15, 1989.

[24] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and

Models. 2001.

[25] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A GPU-based particle

engine. In Eurographics/SIGGRAPH Workshop on Graphics Hardware,

pages 115–122, 2004.

[26] Y. Koren, L. Carmel, and D. Harel. Drawing huge graphs by algebraic

multigrid optimization. Multiscale Modeling & Simulation, 1(4):645–

673, 2003.

[27] J. Krüger and R. Westermann. Linear algebra operators for GPU imple-

mentation of numerical algorithms. In Proc. ACM SIGGRAPH, volume

22(3) of ACM Transactions on Graphics, pages 908–916, 2003.

[28] Y. Liu, X. Liu, and E. Wu. Real-time 3D fluid simulation on GPU with

complex obstacles. In Pacific Conference on Computer Graphics and

Applications, pages 247–256, 2004.

[29] K. Moreland and E. Angel. The FFT on a GPU. In SIG-

GRAPH/Eurographics Workshop on Graphics Hardware, pages 112–119,

2003.

[30] L. Nyland, M. Harris, and J. Prins. The rapid evaluation of potential fields

using programmable graphics hardware. In ACM Workshop on General

Purpose Computing on Graphics Hardware, 2004.

[31] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell. A survey of general-purpose computation on

graphics hardware. In Eurographics, pages 21–51, 2005.

[32] M. Pharr and R. Fernando, editors. GPU Gems 2 : Programming Tech-

niques for High-Performance Graphics and General-Purpose Computa-

tion. 2005.

[33] Pothen, A., Simon, H., and Liou, K. Partitioning sparse matrices with

eigenvectors of graphs. SIAM J. Matrix Anal. and Appl., 11:430–452,

1990.

[34] A. J. Quigley and P. Eades. FADE: Graph drawing, clustering, and visual

abstraction. In Graph Drawing, number 1984 in LNCS, pages 197–210,

2000.

[35] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE

Trans. on PAMI, 22(8):888–905, 2000.

[36] N. T. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies

with rocketfuel. In SIGCOMM, pages 133–145, 2002.

[37] E. Tejada and T. Ertl. Large Steps in GPU-based Deformable Bodies Sim-

ulation. Simulation Modelling Practice and Theory, 13:703–715, 2005.

[38] I. G. Tollis, G. D. Battista, P. Eades, and R. Tamassia. Graph Drawing:

Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[39] C. Walshaw. graph collection. http://staffweb.cms.gre.ac.-

uk/˜c.walshaw/partition/.

[40] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing.

J. Graph Algorithms Appl., 7(3):253–285, 2003.

[41] D. S. Watkins. Fundamentals of Matrix Computations. John Wiley, 2002.

