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Molecular dynamics is an important computational tool to simulate and understand biochemical
processes at the atomic level. However, accurate simulation of processes such as protein folding requires
a large number of both atoms and time steps. This in turn leads to huge runtime requirements. Hence,
finding fast solutions is of highest importance to research. In this paper we present a new approach to
accelerate molecular dynamics simulations with inexpensive commodity graphics hardware. To derive an
efficient mapping onto this type of computer architecture, we have used the new Compute Unified Device
Architecture programming interface to implement a new parallel algorithm. Our experimental results
show that the graphics card based approach allows speedups of up to factor nineteen compared to the
corresponding sequential implementation.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The fast increasing power of the Graphics Processing Unit (GPU)
and its streaming architecture opens up a range of new possibili-
ties for a variety of applications. With the enhanced programmabil-
ity of commodity GPUs, these chips are now capable of performing
more than the specific graphics computations they were originally
designed for. Recent work shows the design and implementation of
algorithms for non-graphics applications. Examples include Quan-
tum Monte Carlo [5], spectroscopic [10] and gravitational simula-
tions [7] in the area computational physics and sequence analysis
in the area of computational biology [16,21]. The evolution of GPUs
is driven by the computer game market. This leads to a relatively
small price per unit and to very rapid developments of next gen-
erations. Currently, the peak performance of state-of-the-art GPUs
is approximately ten times faster than that of comparable CPUs.
Furthermore, the growth rate of the number of transistors used on
GPUs is greater than for microprocessors. Consequently, GPUs will
become an even more attractive alternative for high performance
computing in the near future.

The Compute Unified Device Architecture (CUDA) [2] is a new
hardware and software architecture for issuing and managing com-
putations on GPUs. It treats the GPU as a data-parallel computing
device without the need of mapping computations to the graphics
pipeline. By using the standard C language, CUDA simplifies GPU-
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based software development for scientific computing compared to
previously used graphics-oriented languages such as OpenGL or Cg.

Molecular dynamics (MD) is a computationally intensive method
of studying the natural time-evolution of a system of atoms using
Newton’s classical equations of motion. In practice, MD has always
been limited more by the current available computing power than
by investigators’ ingenuity. Researchers in this field have typically
focused their efforts on simplifying models and identifying what
may be neglected while still obtaining acceptable results. This has
led to much skepticism on the ability of MD to be used as a pre-
dictive tool for experimental work. High performance computing
holds the key to making biologically relevant calculations tractable
without compromise. In this paper we show how MD simulations
can benefit from the computing power of GPUs. In order to exploit
the GPU’s capabilities for high performance MD simulation, we
present a new algorithm for non-bonded short-range interactions
within the atom system. The algorithm has been implemented us-
ing C++ and CUDA and tested on a physical system of up to 131,072
atoms. We show that our new MD algorithm leads to a perfor-
mance improvement of one order of magnitude on a commodity
NVIDIA GeForce 8800 GTX card.

The rest of this paper is organized as follows. In Section 2,
we introduce the basic MD simulation algorithm. Previous work
on parallelization of this algorithm on different computer archi-
tectures is discussed in Section 3. Important features of the CUDA
programming model are described in Section 4. Section 5 presents
our parallel CUDA-based MD algorithm and its efficient implemen-
tation. Performance is evaluated in Section 6. Section 7 concludes
the paper with an outlook to further research topics.
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2. Molecular dynamics simulations

Computer simulations play a very important role in scientific
research. They act as bridges among microscopic length, time
scales and the macroscopic world of the laboratory. In very broad
terms, we can identify two categories of computer simulation
techniques: MD and Monte Carlo (MC). In contrast with the MC
method, MD simulates the time evolution and provides us with
the actual trajectory information of the molecular system. In an
MD simulation, the time evolution of an atomic system is followed
by integrating their equations of motion described by the following
classical equations of motion:{

Fi = miai,

Fi = −∇ri V (r1, . . . , rN).
(2.1)

In Eq. (2.1), the atomic system contains N atoms. mi is the atom
mass, ai = d2ri/dt2 is its acceleration, and Fi is the force acting
upon it. V (r1, . . . , rN ) is the function of the positions of the atoms.
It represents the potential energy of the system. In practice, func-
tion V can be written as a sum of pairwise interactions:

V (r1, . . . , rN) =
∑

i

∑
j

u2(ri, r j)

+
∑

i

∑
j

∑
k

u3(ri, r j, rk) + · · · . (2.2)

In Eq. (2.2), the three body (and higher order) interactions are
usually neglected [4], only leaving the pair potential as the con-
centration of the simulation. In this case, the potential terms in
Eq. (2.2) are typically non-linear functions of the distance ri j be-
tween pairs of atoms and may be either bonded or non-bonded
in nature. The bonded terms describe energy models caused by
covalent bonds within molecules [25]. They are associated with
chemical bonds, bond angles, and bond dihedrals. The non-bonded
terms are associated with the short-range van der Waals and the
long-range electrostatic interactions.

In this paper, we are only concerned with the non-bonded
short-range force models because they are used extensively in MD
[20]. In practice, the Lennard-Jones (LJ) potential [15] is the most
commonly used short-range interaction model. It is given by the
following expression:

u(r) = 4ε

[(
δ

r

)12

−
(

δ

r

)6]
, (2.3)

where r is the distance between two interacting atoms, δ is the
diameter and ε is the well depth. Both ε and δ are constants and
they are chosen to fit the physical properties of the material.

One of the most time-consuming parts in MD simulations is
the computation of interaction forces, which usually takes more
than 90% of the total simulation time. From Eqs. (2.2) and (2.3) we
can see this is mainly because the force computation requires to
calculate the interactions between each atom in the system with
every other atom, giving rise to O (N2) evaluations of the interac-
tion in each time step. The interaction forces decrease rapidly with
increasing distance between atoms. Thus, it is possible to neglect
forces between atoms separated by more than a cutoff distance rc .
This means an atom has only interaction forces with atoms that
are in a sphere with a radius equal to rc [4]. The cutoff method is
also called the neighbor list method. It reduces the computational
complexity to O (N). Forces computed using the cutoff method are
also called short-range forces.

Fig. 1 illustrates how to reduce computational complexity by
using the cutoff method. When the neighbor list is built, all of the
nearby atoms within an extended cutoff distance rlist = rc + skin
are stored. At the first step in an MD simulation, the neighbor list
is constructed for all the neighbors of each atom. From time to
time the list needs to be reconstructed.
Fig. 1. Make use of rc and skin to construct the neighbor list.

3. Previous work on accelerating molecular dynamics

There have been a variety of techniques used to accelerate MD
simulations on parallel computer architectures. They range from
typical high performance computing (HPC) strategies such as clus-
tering to novel processing architectures. In this section we discuss
the various strategies used in accelerating MD. We broadly clas-
sify these strategies into two categories: coarse-grained and fine-
grained.

The architectures in the coarse-grained category include general-
purpose supercomputers, PC clusters and computational grids. Us-
ing supercomputers such as Blue Gene [13] for MD can provide
tremendous performance at the cost of being overly expensive and
inaccessible to most researchers. Therefore, commodity PC clusters
[8] and grids [19,24] have been used to provide more accessible
high performance at lower cost. However, the cluster approach suf-
fers from scalability issues for a growing number of processors due
to the high latencies for communicating between PCs. Grid-based
projects such as Folding@home [19] and Predictor@home [24] have
attracted several hundred thousand volunteered PCs across the
world. Unfortunately, these volunteered compute resources do not
allow for communication between clients but only between server
and clients. Hence, this approach is only suitable for MD simula-
tions with a large number of separate trajectories with short time
scales.

Computer architectures in the fine-grained category include
special-purpose architectures, reconfigurable architectures and
GPUs. Special-purpose architectures such as Anton [22], FASTRUN
[12], MDGRAPE [18] and MD Engine [25] can provide the fastest
means of running a particular MD algorithm with very high arith-
metic density. Each arithmetic unit can be specifically designed for
the specific force calculation. However, such architectures are lim-
ited to one single algorithm, and thus cannot supply the flexibility
necessary to run a variety of algorithms required for MD simula-
tions.

Reconfigurable systems are based on programmable logic such
as field-programmable gate arrays (FPGAs). They are generally
slower than special-purpose MD architectures [3]. They are flex-
ible, but the configuration must be changed for each algorithm,
which is generally more complicated than writing code for a pro-
grammable architecture.

All these approaches can be seen as accelerators—an approach
satisfying the demand for a low cost solution to compute-intensive
problems. The main advantage of GPUs compared to the architec-
tures mentioned above is that they are commodity components.
In particular, most users have already access to PCs with modern
graphics cards. For these users this direction provides a zero-cost
solution. Even if a graphics card has to be bought, the installa-
tion of such a card is trivial (plug and play). Writing the software
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Table 1
General specifications for NVIDIA CUDA-ready GPUs [1]

Number of
multiprocessors

Clock frequency
(GHz)

Amount of device
memory (MB)

GeForce 8800 GTX 16 1.35 768
GeForce 8800 GTX 12 1.2 640
Quadro FX 5600 16 1.35 1500
Quadro FX 4600 12 1.2 768

for such a card does still require specialist knowledge, but new
high-level programming models such as CUDA [2] offer a simpli-
fied C-based programming environment.

Stone et al. [23], Anderson et al. [6], Hamada et al. [14], Belle-
man et al. [7] and Yang et al. [26] also implemented MD sim-
ulations on GPUs. Stone uses the spatial bin method to acceler-
ate molecular modeling applications with CUDA. By presorting the
atoms into bins based on their coordinates, only atoms in neigh-
boring bins need to be loaded onto the GPU. Thus, this method
does not require the CPU to build neighbor lists and uses minimal
GPU memory and bandwidth. The implementation by Anderson
is close to the approach presented in this paper. Anderson mod-
els simple Lennard-Jones particles and maps every step of MD
on the GPU. Hamada and Belleman both use CUDA to parallelize
gravitational N-body simulations on GPUs, while Yang uses Cg for
MD simulations. However, these implementations merely map the
computation of pairwise particle interactions onto the GPU. This
makes the time-consuming updating of the neighbor lists on the
CPU a bottleneck since synchronization and frequent data transfer
between CPU and GPU can often be problematic for GPGPU imple-
mentations. The solution presented in this paper overcomes this
bottleneck by computing both the atomic interactions as well as
the neighbor lists on the GPU using a single kernel. Experiments
show that the creation and utilization of neighbor lists can be effi-
ciently parallelized on a GPU using our approach.

4. The CUDA programming model

The Compute Unified Device Architecture (CUDA) is a program-
ming model for issuing and managing computations on the GPU
as a data-parallel computing device without the need of mapping
them to a graphics API [1]. For now, it is available for NVIDIA
8800 series, NVIDIA Quadro FX 5600/4600, and beyond. From a
hardware point of view, CUDA treats the GPU as a set of SIMD
multiprocessors. Each multiprocessor is composed of eight proces-
sors. The multiprocessor specifications of NVIDIA 8800 series and
Quadro FX 5600/4600 are shown in Table 1.

A multiprocessor has on-chip memory of four types:

(1) a set of registers per processor,
(2) a parallel data cache or shared memory,
(3) a read-only constant cache,
(4) a read-only texture cache.

These on-chip memories are used to implement fast I/O op-
erations, especially, to speed up read and write accesses to the
non-cached device memory (see Fig. 2). Thus, applications can take
advantage of them by minimizing over-fetch and round-trips to the
low bandwidth device memory. Although the device memory has a
low bandwidth, it is big in size and shared by all multiprocessors.

In the CUDA programming model, each multiprocessor is
viewed as a multi-core device that is capable of executing a very
high number of threads in parallel. These threads are organized
as thread blocks. Threads in the same thread block can cooperate
together by efficiently sharing data and synchronizing their exe-
cution to coordinate memory access with other threads. However,
threads in different thread blocks cannot communicate or synchro-
Fig. 2. The hardware model of CUDA-ready GPUs.

Fig. 3. The CUDA software stack architecture.

nize with each other. Theoretically, having more active threads per
multiprocessor can help hiding memory latency, and can also bet-
ter fill the instruction pipeline so there are no idle processors.
According to [1], the maximum number of threads that can run
concurrently on a multiprocessor is 768. In practice, the number
of threads is further limited by the shared on-chip memory and
hence, the maximal number of threads is application-dependent.

Fig. 3 shows the general structure of the CUDA software stack. It
contains a hardware driver, an application programming interface
(API) and its runtime, and two higher-level mathematical libraries
of common usage [1]. The data-parallel, compute-intensive portion
of a CUDA-based application is isolated into a kernel program and
is loaded onto the GPU hardware to execute.

5. The CUDA-based MD simulation algorithm

Many parallel algorithms for MD simulations have been pro-
posed and implemented by different researchers. The details of
these algorithms vary widely since there are numerous application-
dependent and architecture-dependent characteristics to consider.
Generally, from the point of view of data decomposition, they can
be categorized into three types:

(1) Atom-decomposition (AD). Each processor is assigned a sub-
set of N/P (N is the number atoms; P is the number of
processors) atoms at the beginning of the simulation. As each
processor must keep identical copies of atom information, it
is also called replicated-data method [20]. The AD method has
been widely used especially on shared memory architectures.
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(1) Initialize atoms’ status and the LJ potential table; set parameters controlling
the simulation; O (N)

(2) For all time steps do
(3) Update positions of all atoms(Position update); O (N)

(4) If there are atoms that have moved too much, do(Moved too much); O (N)

Update the neighbor list, including all atom pairs that are within
a distance range (Neighbor list update); O (N2)

End if;
(5) Make use of the neighbor list to compute forces acted on all atoms

(Force calculation); O (N)

(6) Update velocities of all atoms (Velocity update); O (N)

(7) Update the displace list, which contains the displacements of atoms
(Displace list update); O (N)

(8) Accumulate and output target statistics of each time step; O (N)

(9) End for

Fig. 4. Algorithm outline of a sequential MD simulation (with the computation com-
plexity listed, where N denotes the number of atoms).

Table 2
Profiling of the six operations of a sequential MD simulation using a different num-
ber of particles on a single Pentium4 3 GHz. The time step is 100

Number of
particles

Force
calculation

Neighbor
list update

Position
update

Moved
too much

Velocity
update

Displace
list update

8192 70.4% 26.9% 0.7% 0.5% 1.1% 0.4%
16384 58.2% 40.1% 0.5% 0.5% 0.5% 0.2%
32768 46.8% 52.0% 0.7% 0.2% 0.1% 0.2%
65536 34.7% 64.6% 0.2% 0.2% 0.2% 0.1%

131072 15.2% 84.3% 0.2% 0.12% 0.1% 0.08%

(2) Force-decomposition (FD). In this method, a subset of the
force loops inherent in Eq. (2.2) is assigned to each processor.
It reduces the expensive communication and memory costs by
a factor

√
P compared with the AD method. However, FD can-

not maintain load-balance as easily as AD.
(3) Spatial-decomposition (SD). This method corresponds to a

geometric decomposition of the physical simulation domain.
Each processor computes only the forces on atoms in its sub-
domain. As the simulation progresses, processors exchange
atoms when they move from one sub-domain to another. SD is
more suitable than AD and FD for large-scale MD simulations
on coarse-grained architectures, such as clusters [20].

In this section we describe how MD simulations can be effi-
ciently mapped onto a GPU using CUDA. We take advantage of the
inherent parallelism of MD simulations and design parallel algo-
rithms using the AD method. The main reasons we choose the AD
method to design our algorithms are

– good load balancing and scalability can be easily achieved,
– according to the CUDA model as described in Section 3, the

GPU hardware is viewed as a shared memory multiprocessor
system, the AD method can give good performance in such a
system.

The algorithm outline in Fig. 4 illustrates how a sequential MD
simulation works. Fig. 4 also states the computational complexity
of each operation. It can be seen that there are six main opera-
tions (shown in bold characters) in a sequential MD simulation.
We have profiled these six operations for different numbers of par-
ticles using the code published in [11]. Our profiling has revealed
that more than 97% of the overall runtime is spent on the neigh-
bor list update and force calculation steps (see Table 2). Hence, we
have decided to map these two steps onto a GPU.

5.1. Partitioning and kernels

The neighbor list update step (Step (4) in Fig. 4) constructs
a list of all neighbors for each atom. This requires a large num-
Fig. 5. Illustrations of neighbor list construction step. For the head atom in each
column (the red circle), a loop over all other atoms (gray circles) will be done to
calculate the pairwise distance. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Example of the partitioning of the distance matrix D for parallel neighbor list
update with CUDA. The example uses one thread per column of D and each thread
block consists of two threads.

(1) For all allocated head atoms do
(2) Put the coordinates of current head atom into a register;
(3) For all atoms exclude the current head atom do
(4) Compute the pairwise distance between the current atom and head atom

(full distance matrix computation);
(5) Compare the pairwise distance with rlist and put the indices of eligible

atoms into the neighbor list in the device memory;
(6) End for
(7) Reset the displace list of current head atom with the value 0;
(8) End for

Fig. 7. CUDA-based neighbor list update kernel.

ber of pairwise calculations: each atom has to loop over all other
atoms to compute the pairwise distance between them. This cor-
responds to computing distance matrix D = [ri j] of size N × N .
Since ri j = r ji , this matrix is symmetric and therefore the amount
of calculation can be reduced by half. Fig. 5 illustrates the pairwise
distance calculation for each column of D . The red atom in each
column is called its head atom. If an atom is within distance rlist
(see Section 2) of the head atom the index this atom is added to
the neighbor list of the corresponding head atom.

When designing an efficient parallel neighbor list update al-
gorithm with CUDA, we have to consider that, there is no fast
synchronization or communication mechanism between threads in
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Fig. 8. The neighbor list corresponding to each atom is stored in the device memory and assigned to threads for use in the compute force step.
different thread blocks. Therefore, we have decided to use a parti-
tioning of D into threads and thread blocks as illustrated in Fig. 6:
each column is assigned to a single thread and there are two
threads in a thread block. Note that in Fig. 6 we not only com-
pute the lower triangular matrix of D but the complete matrix.
If we would only calculate the lower triangular matrix, then all
threads, except for Thread 1, need to communicate and synchro-
nize with other threads to complete their local neighbor list. For
instance, Thread 4 would not know whether atoms 1, 2 and 3 are
in the local neighbor list. In order get this information Thread 4
would need to access the local neighbor lists of atoms 1, 2 and
3. In CUDA, this access would require costly communication and
synchronization between threads of different thread blocks. In or-
der to solve this problem efficiently with CUDA, we let each thread
loop over all other atoms for current head atom. That is, in Fig. 6
both the lower triangular and upper triangular matrices are calcu-
lated. Fig. 7 shows the corresponding kernel program for neighbor
list update using CUDA. The coordinates of the head atom of each
thread are stored in registers in order to minimize access time.

After the neighbor list update step, the indices of all eligible
atoms will be stored in a neighbor list array in the device memory
for later usage. During the compute force step, each thread will
loop over the local neighbor lists to do force calculations. This is
illustrated in Fig. 8 using one neighbor list per thread.

Fig. 9 shows our CUDA-based kernel program for the force com-
putation. The coordinates of head atoms and the forces acting on
them are frequently used in the inner loop and therefore stored in
registers in order to optimize their access efficiency. The results of
force computations f i are written to dynamically allocated shared
memory, since they will be used by other operations, such as the
position and velocity update operations (steps (3) and (6) in Fig. 4).

5.2. Kernel integration

In the previous subsection we have presented our CUDA kernels
for neighbor list update and force calculation. Since there are mul-
tiple time steps in an MD simulation, these two kernels need to be
executed repeatedly. In practice, runtime overhead such as kernel
program initialization, data transfer to GPU, and results read back
are introduced by kernel launches. According to our experiments
these overhead cause a great performance loss.

Table 3 shows the overhead introduced by kernel launches. In
order to eliminate these overhead, we have integrated all time
steps into a single kernel. Thus, there is only a single kernel launch,
which significantly reduces the overhead. This method is illus-
trated in Fig. 10. As the kernel cannot output results directly, all
results have to be read back to CPU for further processing and out-
putting.

In Fig. 10, the six main operations of an MD simulation have
been shown in bold characters. Among them, the Moved too much
step needs special attention and is further described in Fig. 11. In
(1) For all allocated head atoms do
(2) Put the coordinates of current head atom i into a register;
(3) Set the value of forces acting on atom i as 0

( f i = 0, f i is put into a register);
(4) For atoms in the current neighbor list do
(5) Compute the distance dij between the current atom j and head atom i;
(6) If dij < rc do
(7) Calculate and accumulate the force f i acting on atom i;
(8) End if
(9) End for
(10) Put the value of f i into on-chip shared memory;
(11) End for

Fig. 9. CUDA-based force calculation kernel.

Table 3
Performance comparison between kernel runtime and overhead. The time step is
100

Number of
particles

Force
calculation
kernel (ms)

Force
calculation
overhead (ms)

Neighbor list
update kernel
(ms)

Neighbor list
update
overhead (ms)

8192 480 1115 96 123
16384 630 1199 412 119
32768 2600 3512 1479 146
65536 7950 6724 5946 179

131072 17386 13259 23638 284

Host program executed on CPU
(1) Initialize atoms’ status and the LJ potential table; set parameters controlling

the simulation;
(2) Load data into GPU device memory and launch the kernel (data uploading);

Kernel program executed on GPU
(4) For all time steps do
(5) Position update;
(6) If Moved too much, do

Neighbor list update;
End if;

(7) Force calculation;
(8) Velocity update;
(9) Displace list update;
(10) End for

(11) Read back results to CPU (data readback);
(12) Output results of each time step;

Fig. 10. Integrating all time steps into a single kernel program.

order to integrate this step into a CUDA program with a single ker-
nel, we first need to partition the displace list onto multiple thread
blocks. In order to find the largest two displacements, we use a
tree-based approach (see Fig. 12). In Fig. 12 communication be-
tween thread blocks is necessary. However, as mentioned before,
in CUDA thread blocks cannot communicate or synchronize with
each other efficiently. In [2], Mark Harris proposes a kernel de-
composition method to try to solve this problem. By decomposing
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(1) For all atoms do
(2) Scan the displace list to find the magnitude of the two largest

displacements disp1 and disp2 in the system;
(3) End for
(4) If disp1 + disp2 is larger than skin then returns TRUE, otherwise returns FALSE;

Fig. 11. The Moved too much step.

Fig. 12. Tree-based approach used within each thread block.

computation into multiple kernel invocations, thread block com-
munication can be avoided. But this method can not be used in
our implementation since there is only one kernel in our case.

In order to implement the Moved too much step efficiently in a
single kernel, we have therefore designed a two-stage tree-based
method (see Fig. 13). In the first stage all thread blocks run in
parallel to find the local maximum displacement value. They then
write all the values into a global memory array in parallel. Next all
values in the global memory array are fetched into a shared mem-
ory array in the first thread block. At last the first thread block will
execute the tree-based approach locally to find the two largest dis-
placement values disp1 and disp2.

6. Performance evaluation

We have implemented the proposed algorithm using CUDA
Toolkit 1.1 [2] and evaluated it on the following setup:

– Nvidia GeForce 8800 GTX: 1.35 GHz engine clock speed, 16
multiprocessors, 768 MB device memory, 16 KB shared mem-
ory/multiprocessor.

– Tests have been conducted with this card installed in a PC with
an AMD Opteron 2210 1.8 GHz, 2 GB RAM running Windows
XP.
A set of performance evaluation tests have been conducted us-
ing different cutoff distances and particles to evaluate the process-
ing time of the GPU implementation versus that of the sequential
MD simulation on a PC. The MD simulation program is bench-
marked on an Intel Pentium4 3 GHz processor with 1 GB RAM. We
have modified the MD code (md3.f90) from Ercolessi ([11], avail-
able online at http://www.fisica.uniud.it/~ercolessi/md/f90/) into a
32 bit C++ version for our evaluation. Optimization techniques such
as explicitly arranged arrays and unrolled loops have been used on
the C++ code to allow the use of SSE instructions for peak perfor-
mance.

Table 4 reports the performance of the sequential MD and our
CUDA implementation for the number of particles ranging from
8192 to 131,072. The sequential MD code is compiled with the Intel
C/C++ Compiler (ICC) professional version 10.1 for Windows. The
CUDA code is compiled with the CUDA Toolkit 1.1 for Windows.
Both of these tests were performed with the Full Optimization
(/Ox) enabled for the corresponding compiler. All measurements
have used 100 time steps and skin = 0.5δ. The cutoff distances rc

ranges from 2.5δ to 4.5δ. From Table 4 we can make two observa-
tions:

1. the speedup improves with a larger number of particles.
2. the speedup drops slightly for larger cutoff distance values.

There are two reasons for Observation 1: Firstly, there is higher
arithmetic intensity for a larger number of particles. Secondly, the
relative influence of the kernel overhead is smaller for larger parti-
cle systems. A larger cutoff distance on the other hand can increase
the variation in neighbor lists sizes and therefore can introduce
additional load imbalance between threads, which explains Obser-
vation 2.

In our experiments, most systems do the neighbor list update
step only once despite different cutoff distances used. This is why
for the system with particle number 8192, 16384, 32768, 65536 or
131072 it takes similar runtime for the N.L.U. step in Table 4.

Data transfer between the CPU and GPU is a known bottleneck
for many GPGPU applications and therefore should be minimized.
This bottleneck is caused by the relatively low PCI Express bus
bandwidth as well as the overhead associated with initializing each
transfer, From Fig. 10 we can see that in our method we only need
to do the data uploading (step (2) in Fig. 10) and data readback
(step (11) in Fig. 10) once. In the data uploading step, system infor-
mation data such as particles’ coordinates and velocities are loaded
onto the GPU. This data is small in size and can be transferred in a
few of milliseconds. During the data readback step, the intermedi-
Fig. 13. Two-stage tree-based approach used in our implementation.

http://www.fisica.uniud.it/~ercolessi/md/f90/
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Table 4
Comparison of runtimes (in milliseconds) and speedups of MD simulation running on a single Pentium4 3 GHz (MD-CPU) to our GPU-accelerated version running on an
AMD Opteron 2210 1.8 GHz with an NVIDIA GeForce 8800 GTX 512 (MD-GPU) for various number of particles and cutoff distances. The total runtime is broken down into
F.C. (force calculation), N.L.U. (neighbor list update), and O.T. (other time) for MD-CPU and into K.R. (kernel runtime), N.L.U., K.O. (kernel overhead) and O.T. for MD-GPU. The time
step is 100

#Particles Cutoff
distance

MD-CPU MD-GPU Speedup

F.C. N.L.U. O.T.M Total K.R. K.O. O.T. Total

8192 2.5δ 5595 2141 217 7953 418 115 125 658 12.1
3.0δ 8594 2140 172 10906 625 114 177 916 11.9
3.5δ 12826 2141 299 15266 1052 117 172 1341 11.4
4.0δ 17454 2125 233 19812 1510 110 133 1753 11.3
4.5δ 23360 2156 265 25781 2002 119 141 2262 11.4

16384 2.5δ 12468 8594 375 21437 1022 131 245 1398 15.3
3.0δ 19140 8594 375 28109 1461 133 281 1875 15.0
3.5δ 29357 8609 455 38421 2061 123 284 2468 15.6
4.0δ 40390 8609 422 49421 2667 122 289 3078 16.1
4.5δ 54920 8625 486 64031 3992 121 277 4390 14.6

32768 2.5δ 29702 33047 751 63500 3044 145 531 3720 17.1
3.0δ 47515 33078 875 81468 4068 145 649 4862 16.8
3.5δ 69080 33078 873 103031 5596 143 558 6297 16.4
4.0δ 93764 33078 1033 127875 7461 146 609 8216 15.6
4.5δ 126902 33141 925 160968 9605 145 548 10298 15.6

65536 2.5δ 71119 132375 1568 205062 10090 191 1012 11293 18.2
3.0δ 117533 132344 1638 251515 13185 193 1168 14546 17.3
3.5δ 172949 132375 1676 307000 17530 194 1244 18968 16.2
4.0δ 242958 132437 1715 377110 21973 195 1285 23453 16.1
4.5δ 330299 132562 1623 464484 27839 192 1109 29140 15.9

131072 2.5δ 98263 544375 3424 646062 30373 283 2209 32865 19.7
3.0δ 152568 543078 3369 699015 34908 403 2298 37609 18.6
3.5δ 235911 543344 3370 782625 41020 286 2225 43531 18.0
4.0δ 334189 544594 3342 882125 47346 285 2244 49875 17.7
4.5δ 459567 544938 3370 1007875 56518 293 2485 59296 17.0
ate results such as the kinetic energy and potential energy of each
time step are read back to the CPU. The maximum intermediate
results to be read back are 150 MB in size (for the physical system
with 131,072 particles) and this transfer can be done in less than
50 ms (given a maximum data transfer rate of 4 GB/s). Data trans-
fer, together with the kernel program initialization, kernel launch
and release constitute the kernel overhead. From Table 4 we can
see the kernel overhead is greatly minimized in practice.

In order to compare our GPU version to a well-optimized se-
quential code, we have also compared our CUDA implementation
to LAMMPS ([20], available online at http://lammps.sandia.gov/).
The LAMMPS code is compiled with GNU GCC 4.1.1 with the Full
Optimization (-O3) enabled. The optimized Lennard-Jones routines
from style_opt are used in order to get the best possible perfor-
mance out of LAMMPS. The LAMMPS applications were bench-
marked on an Intel Pentium4 3 GHz processor with 1 GB RAM.
Table 5 shows the performance comparison results. As can be seen,
our implementation achieves speedups of up to factor 11 compared
to LAMMPS.

Currently, the utilized Nvidia GeForce 8800 GTX card imple-
ments single-precision IEEE-754 floating point arithmetic, but with
some deviations [1]. In practice this will cause some differences
in MD computing results between GPU and CPU. The output of
our MD simulation program includes static values for the temper-
ature, kinetic energy, potential energy and pressure of the physical
system. According to our experiments in Table 4, the differences
between the output values of our sequential C++ version and our
CUDA version are less than 0.5%. Higher precision results can be
achieved with the availability of the new generation GPUs that
support native double-precision calculations in the near future.

7. Conclusions and future work

In this paper we have introduced a parallel CUDA-based MD
simulation algorithm that can be efficiently implemented on mod-
Table 5
Comparison of runtimes (in milliseconds) and speedups of LAMMPS running on a
Pentium4 3 GHz to our CUDA implementation running on an AMD Opteron 2210
1.8 GHz with an NVIDIA GeForce 8800 GTX 512 for various number of particles and
cutoff distances. The time step is 100

#Particles Cutoff distance LAMMPS MD-GPU Speedup

8192 2.5δ 5120 658 7.8
3.0δ 6664 916 7.3
3.5δ 8971 1341 6.7
4.0δ 11272 1753 6.4
4.5δ 14205 2262 6.3

16384 2.5δ 12508 1398 8.9
3.0δ 17573 1875 9.4
3.5δ 24132 2468 9.8
4.0δ 29428 3078 9.6
4.5δ 38644 4390 8.8

32768 2.5δ 32529 3720 8.7
3.0δ 47941 4862 9.9
3.5δ 55383 6297 8.8
4.0δ 65101 8216 7.9
4.5δ 81242 10298 7.9

65536 2.5δ 96491 11293 8.5
3.0δ 122192 14546 8.4
3.5δ 150497 18968 7.9
4.0δ 173146 23453 7.4
4.5δ 214890 29140 7.4

131072 2.5δ 343931 32865 10.5
3.0δ 411997 37609 11.0
3.5δ 493818 43531 11.3
4.0δ 538077 49875 10.8
4.5δ 651413 59296 11.0

ern graphics hardware. We have made use of the fast on-chip
memory to design and implement this algorithm. All key com-
ponents of our algorithm have been mapped onto the GPU for
execution in a single kernel, which reduces overheads significantly.

http://lammps.sandia.gov/
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The evaluation of our implementation on a mass-produced graph-
ics card shows speedups of up to factor 11 compared to LAMMPS
on a Pentium IV 3.0 GHz. Our results are especially encouraging
since GPU performance grows faster than Moore’s law as it applies
to CPUs.

The presented implementation of the MD simulation algorithm
using CUDA is quite generic. Therefore, it would be interesting to
see if this algorithm or its extensions can be integrated into widely
used MD-based tools such as Gromacs [9] and Autodock [17].
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