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Abstract
Recently, a number of researchers have investigated

a class of algorithms that are based on multilevel graph
partitioning that have moderate computational complexity,
and provide excellent graph partitions. However, there
exists little theoretical analysis that could explain the ability
of multilevel algorithms to produce good partitions. In this
paper we present such an analysis. We show under certain
reasonable assumptions that even if no refinement is used
in the uncoarsening phase, a good bisection of the coarser
graph is worse than a good bisection of the finer graph by at
most a small factor. We also show that for planar graphs,
the size of a good vertex-separator of the coarse graph
projected to the finer graph (without performing refinement
in the uncoarsening phase) is higher than the size of a
good vertex-separator of the finer graph by at most a small
factor.
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1 Introduction
Graph partitioning is an important problem that has extensive applica-
tions in many areas, including scientific computing, VLSI design, and
task scheduling. The problem is to partition the vertices of a graph
in p roughly equal parts, such that the number of edges connecting
vertices in different parts is minimized. For example, the solution of
a sparse system of linear equations Ax = b via iterative methods
on a parallel computer gives rise to a graph partitioning problem. A
key step in each iteration of these methods is the multiplication of a
sparse matrix and a (dense) vector. Partitioning the graph that cor-
responds to matrix A is used to significantly reduce the amount of
communication [11]. If parallel direct methods are used to solve a
sparse system of equations, then a graph partitioning algorithm can
be used to compute a fill reducing ordering that lead to high degree
of concurrency in the factorization phase [11, 4].

The graph partitioning problem is NP-complete. However, many
algorithms have been developed that find reasonably good partitions.
Spectral methods [17, 7] have been shown to be quite effective for
partitioning unstructured problems in a variety of applications, but
have very high computational complexity. The MSB algorithm pro-
duces partitions that are as good as those produced by the original
spectral bisection, but it is one to two orders of magnitude faster as it
computes the Fiedler vector of the graph using a multilevel approach
[1]. Geometric partition methods [5, 15, 16] are quite fast but they
often provide worse partitions than those of more expensive methods
such as spectral. Furthermore, geometric methods are applicable
only if coordinate information for the graph is available.

Recently, a number of researches have investigated a class of al-
gorithms that have moderate computational complexity, and provide
excellent (even better than spectral) graph partitions [3, 7, 9]. The
basic idea behind these algorithms is very simple. The graph G is
first coarsened down to a few hundred vertices, a bisection of this
much smaller graph is computed, and then this partition is projected
back towards the original graph (finer graph) by periodically refining
the partition. Since the finer graph has more degrees of freedom,
such refinements usually decrease the edge-cut. These are called
multilevel graph partitioning schemes. In particular, in [9, 10] we
have developed a multilevel graph partitioning scheme that produces
high quality partitions in small amount of time. Our algorithm pro-
duces partitions that are 10% to 60% better than those produced by
spectral partitioning algorithms [17, 1], and 5% to 30% than those
produced by other multilevel algorithms [7]. Furthermore, our algo-
rithm is 10 to 40 times faster than multilevel spectral bisection (as
implemented in the Chaco graph partitioning package [6]), and 2 to
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6 times faster than the multilevel algorithm of [7]. We also used our
multilevel graph partitioning scheme to compute fill reducing order-
ings for sparse matrices [9]. Surprisingly, our scheme substantially
outperforms the multiple minimum degree algorithm [13], which is the
most commonly used method for computing fill reducing orderings of
a sparse matrix.

From the experiments presented in [9, 3, 7], it is clear that multilevel
graph partitioning algorithms are able to find high quality partitions
for a variety of unstructured graphs. However, there exists little the-
oretical analysis that could explain the ability of multilevel algorithms
to produce good partitions. In this paper we present such an analy-
sis. We show under certain reasonable assumptions that even if no
refinement is used in the uncoarsening phase, a good bisection of
the coarser graph is worse than a good bisection of the finer graph by
at most a small factor. We also show that the size of a good vertex-
separator of the coarse graph projected to the finer graph (without
performing refinement in the uncoarsening phase) is higher than the
size of a good vertex-separator of the finer graph by at most a small
factor.

2 Multilevel Graph Bisection
In this section we briefly describe the various phases of the multilevel
algorithm. The reader should refer to [9] for further details.
Coarsening Phase During the coarsening phase, a sequence of
smaller graphs G i = (Vi, Ei ), is constructed from the original graph
G0 = (V0, E0) such that |Vi | > |Vi+1|. Graph G i+1 is constructed
from G i by finding a maximal matching Mi ⊆ Ei of G i and collapsing
together the vertices that are incident on each edge of the matching.
In this process no more than two vertices are collapsed together
because a matching of a graph is a set of edges, no two of which are
incident on the same vertex. Vertices that are not incident on any
edge of the matching, are simply copied over to G i+1.

When vertices v, u ∈ Vi are collapsed to form vertex w ∈ Vi+1, the
weight of vertex w is set to be equal to the sum of the weights of
vertices v and u, while the edges incident on w is set equal to the
union of the edges incident on v and u minus the edge (v, u). If there
is an edge that is incident to both on v and u, then the weight of this
edge is set equal to the sum of the weights of these edges. Thus,
during successive coarsening levels, the weight of both vertices and
edges increases.

Maximal matchings can be computed in different ways [9]. The
method used to compute the matching greatly affects both the quality
of the bisection, and the time required during the uncoarseningphase.
Here we briefly describe two such matching schemes.
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The first scheme, which we called random matching (RM), com-
putes the maximal matching by using a randomized algorithm [3, 7].
The RM scheme works as follows. The vertices of the graph are
visited in random order. If a vertex u has not been matched yet, then
an unmatched adjacent vertex v is randomly selected and the edge
(u, v) is included in the matching. The second scheme, which we call
heavy-edge matching (HEM), computes a matching Mi , such that
the weight of the edges in Mi is high. The HEM matching is com-
puted using a randomized algorithm similar to the one used for RM.
The vertices are again visited in random order. However, instead of
randomly matching a vertex with one of its adjacent unmatched ver-
tices, HEM matches it with the unmatched vertex that is connected
with the heavier edge. As a result, the HEM scheme reduces the sum
of the weights of the edges in the coarser graph by a larger amount
than RM. In [9], we experimentally evaluated both the RM and HEM
matching schemes, and we found that the HEM scheme produces
consistently better results than RM, and the amount of time spent in
refinement is less than that of RM.
Initial Partitioning Phase The second phase of a multilevel al-
gorithm is to compute a balanced bisection of the coarsest graph
Gk = (Vk, Ek). An evaluation of different algorithms for partitioning
the coarser graph can be found in [9].
Uncoarsening Phase During the uncoarsening phase, the partition
of the coarsest graph Gk is projected back to the original graph by
going through the graphs Gk−1, Gk−2, . . . , G1. Furthermore, even if the
partition of G i is at a local minima, the partition of G i−1 obtained by this
projection may not be at a local minima. Hence, it may still be possible
to improve the the partition of G i−1 obtained by the projection by using
local refinement heuristics. For this reason, a partition refinement
algorithm is used. A number of refinement algorithms are investigated
in [9], that significantly improve the quality of the projected partition.

Matrix Name No. of Vertices No. of Edges Description
3ELT 4720 13722 2D Finite element mesh
4ELT 15606 45878 2D Finite element mesh
BCSSTK31 35588 572914 3D Stiffness matrix
BRACK2 62631 366559 3D Finite element mesh
WAVE 156317 1059331 3D Finite element mesh
WHITAKER3 9800 28989 2D Finite element mesh

Table 1: Various matrices used in evaluating the multilevel graph partitioning and
sparse matrix ordering algorithm.
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3 Analysis
The central theme of the analysis is as follows. If the graph is coarsen
“perfectly”, then the coarsest graph will be an exact replica of the finer
(original) graph except that it will be smaller. Hence, an optimal bisec-
tion of this coarsest (smaller) graph will also be an optimal bisection
of the finer graph. If the graph has been coarsened (using a perfect
coarsening scheme) enough times, then it becomes small enough
that we can find a “near-optimal” bisection in a reasonable amount of
time. This near-optimal bisection of the coarsest graph will also be
a good bisection of the original graph. If the coarsening scheme is
not good, then it is entirely possible that a near-optimal bisection of
the coarsest graph is an arbitrarily bad bisection of the finer (original)
graph. The matching strategies (RM and HEM) used in our multilevel
algorithm do not lead to optimal coarsening. Hence, a near-optimal
bisection of the coarsest graph obtained using RM or HEM, is not
guaranteed to be a near-optimal bisection of the finer graph. The
analysis in Section 3.2 shows that under some reasonable assump-
tions, the edge-cut of a near-optimal bisection of the coarser graph
is larger than the edge-cut of a near-optimal bisection of the finer
graph only by a small constant factor. The analysis also motivates
why this “penalty” factor is even smaller when the HEM scheme is
used (instead of RM).

Similarly, if the graph is coarsened perfectly, then a near-optimal
vertex separator of the coarser graph can be projected to the finer
graph to construct a near-optimal separator of the finer graph. As for
the case of the edge-cut, if the coarsening scheme is not good, then
the projected separator of the coarser graph can lead to an arbitrarily
bad separator of the finer graph. The vertex-separator analysis in
Section 3.3 shows that under reasonable assumptions, the projection
of a near-optimal separator of the coarser graph leads to a separator
for the finer graph that is worse than a near-optimal separator (for the
finer graph) only by a small constant factor.

Both of these analyses show that even if no refinement is performed
during the uncoarsening phase, the bisection of the coarsest graph is
also a good bisection of the original graph, especially if HEM is used
for coarsening. These observations are supported by experimental
results in both cases.

3.1 Definitions and Assumptions

Analyzing the quality of the bisections produced by multilevel graph
partitioning algorithms is particularly hard, and can only be done
if certain assumptions are made about the original graphs and the
coarsening process. In the rest of this section we present these as-
sumptions and some notation that will be used throughout the analy-
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sis.
Let G0 = (V0, E0) be the original graph, and G i = (Vi, Ei ) be the

ith level coarser graph. For each graph G i , let W(Mi ) be the sum of
the weights of the edges in the matching used to obtain G i+1, W(Ei)

be the sum of the weights of the edges, ωi be the average edge-
weight, di be the average degree of a vertex, and Ci be the size of
the edge-cut (i.e., the weight of the edges crossing parts).

To simplify the presentation of the analysis we assume that at each
successive level of coarsening, the number of vertices reduce by a
factor of two1, i.e., |Vi | = 2|Vi+1|. Consequently, the matching at level
i contains |Vi |/2 edges; hence, the weight of the matching is equal to
W(Mi ) = δωi |Vi|/2, where δ is a constant that captures the properties
of RM and HEM. In particular, δ = 1 for RM (because the matched
edges in RM are chosen randomly), and δ ≥ 1 for HEM (because the
HEM prefers edges with higher weight). Also, to simplify the analysis
we assume that the average degree of the successive coarser graphs
changes at a constant rate, i.e., di/di+1 = β. Note that if β < 1, the
average degree increases, if β > 1 the average degree decreases,
and if β = 1 the average degree remains the same.

In the rest of the analysis we assume that the following are true.

Assumption 1 (Small Separators) There are constants α and γ

such that each graph G i has a balanced separator of size less than
or equal to α|Vi |γ .

Assumption 2 (Size of the Edge-Cut) The edge-cut of G i is pro-
portional to αdiωi |Vi |γ . That is, Ci is proportional to the size of the
balanced separator, the averagedegree of the graph, and the average
weight of each edge.

In the case of graphs arising in finite element applications, the small
separator assumption is true. In particular, for planar graphs γ = 0.5
[12], and for the graphs that correspond to 3D finite element meshes,
γ = 2/3 [15]. Assumption 2 follows directly from Assumption 1 if
the successive coarser graphs have constant bounded degree2. The
edge-cut in Assumption 2 corresponds to the bisection in which the
separator is the boundary of one of the two parts.

1The analysis will go through if we assume that the number of vertices reduces
by a constant factor. This assumption appears to be valid for well-shaped finite
element meshes, as from our experiments we know that for most coarsening levels
somewhere between 85% to 95% of the vertices get matched. RM tends to match
more vertices than HEM, but the difference between them is small (less than 5%)
for most coarsening levels.

2Graphs that correspond to 2D and 3D finite element meshes have bounded
degree. In the coarsening process due to randomization, the degrees remain
bounded even for the coarser graphs. Due to the bounded degree, the edge-
cut of these graphs cannot be smaller asymptotically, because it will lead to an
asymptotically smaller vertex separator.
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3.2 Edge-Cut Analysis

The multilevel algorithm can be viewed as an approximation algo-
rithm since every successively coarse graph becomes a succes-
sively rougher approximation of the original graph. Since more and
more features of the original graph are eliminated in this process, the
coarser graphs have bisections with larger edge-cut than the original
graph. It is natural to ask how bad can the edge-cut of the coarser
graph get with respect to the edge-cut of the original graph. In par-
ticular the following theorem is true [8].

Theorem 1 The size of the edge-cut for graph G i for i ≥ 1 is

Ci ∝ 21−γ

(

1 −
δβ i−1

d0

)

Ci−1 . (1)

Equation 1 reveals significant information about the quality of edge-
cut when it is computed at a coarse graph. In particular, for a
given graph, the increase in the edge-cut between successive coarse
graphs decreases as either δ or β increases. That is, if the weight
of the edges in the independent set used to coarsen the graph is
much higher than the average weight of the edges (δ > 1), then the
penalty paid for finding a partition at the coarse graph is smaller. Sim-
ilarly, as the average degree of the coarse graph decreases (β > 1),
again the increase of the edge-cut at the coarse graph is smaller. In
the next two sections we see how Equation 1 applies to graphs that
correspond to 2D and 3D finite element meshes with triangular and
tetrahedron elements, respectively.
3.2.1 2D Finite Element Meshes

The 2D finite elements meshes correspond to planar graphs. Fur-
thermore, when the elements of the mesh are triangles (e.g., when
the finite element mesh is generated using Delaunay triangulation),
then the graph that corresponds to the interior of the mesh is maxi-
mally planar. For the rest of this section we use this correspondence
and we only concentrate on maximally planar graphs.

Planar graphs have been extensively studied and a great deal of
properties are known about them. In particular, for maximally planar
graphs γ = 0.5 [12], and d0 ≈ 6. Also, in [12] it was shown that edge
contraction also preserves maximal planarity; thus, β = 1.

From Equation 1, and for RM (i.e., δ = 1), we have that

C2D−RM
i ∝ 1.18C2D−RM

i−1 = 1.18iC0. (2)

Thus, the edge-cut increases only by 18% at each successive
coarsening level. For instance, the edge-cut after 10 coarsening
levels is only 5.2 times worse than the edge-cut of the original graph.
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However, the size of G10 is smaller than G0 by a factor of 1024, so it is
much quicker to find a good partition of G10 than of G0. As discussed
in Section 3.2, the increase in the edge-cut at successive coarsening
levels is smaller when HEM is used, because in this case δ > 1.
3.2.2 3D Finite Element Meshes

The graphs that correspond to 3D finite element meshes do not
correspond to any extensively studied class of graphs as the 2D
finite element graphs did. Nevertheless, for these type of graphs it is
known that γ = 2/3 [15] and that for most finite element applications d0

ranges between 12 and 16 [2]. However, in order to apply Equation 1,
we need to know the value of β. Unlike maximally planar graphs,
for which the average degree of successive coarser graphs remains
the same, the average degree of 3D finite element graphs does not
always remain the same. In particular, if d0 > 12, and RM is used
to coarsen the graph, di increases in successive coarser graphs.
However, if HEM is used to coarsen the graph, then the average
degree of the graph actually decreases in successive coarsening
levels as discussed later. In particular, for 3D finite element meshes,
the following theorem holds for the RM matching scheme [8].

Theorem 2 (Average Degree of 3D Graphs) The averagedegreeof
the interior vertices of the ith level coarser graph G i , of a graph G0 that
corresponds to a 3D finite element mesh with tetrahedron elements
is

di = 2

(

di−1 − 7 +
12

di−1

)

. (3)

From Equation 3 we have that when d0 = 12, di = 12 for all coarse
graphs. However, if d0 < 12, di decreases whereas if d0 > 12, di

increases at each successive coarse graph.
Thus, when d0 = 12, β = 1, and from Equation 1 we have that the

edge-cut for 3D finite element graphs when RM is used to coarsen
the graph (i.e., δ = 1) is

C3D−RM
i ∝ 1.15C3D−RM

i−1 = 1.15iC3D−RM
0 . (4)

Comparing this equation with Equation 2, we see that the increase in
the edge-cut at successive coarsening levels is smaller for 3D graphs
than it is for 2D graphs. As it was the case with 2D graphs, the
increase in the edge-cut is small, compared to the reduction in the
graph size. If HEM is used to coarsen the graph, then δ > 1, and the
decrease in quality is even smaller.

The increase in the average degree of the graph can be controlled
if coarsening is done in a certain way. In proving Equation 3, we
assumed that each edge in the matching is such that the number
of triangular phases incident on it is equal to the average. This
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assumption is valid when RM is used to coarsen the graph which
randomly selects unmatched edges. However, the HEM matching
scheme tends to select edges that have a large number of triangular
phases incident on them. As a result, the average degree di of
the coarse graphs produced by HEM will be smaller [8]. In fact,
our experiments show the average degrees of the coarse graphs
produced by HEM not only do not increase but they actually decrease.
3.2.3 Experimental Results

To verify the analysis presented in Sections 3.2.1 and 3.2.2, we
instrumented our multilevel algorithm to report various statistics dur-
ing coarsening. In the rest of this section we present results for the
following four matrices: 4ELT is a 2D finite element mesh; BRACK2
and WAVE are 3D finite element meshes. This set of matrices is a
representative sample of the matrices shown in Table 1.
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Figure 1: The increase in the edge-cut at successive coarsening levels.

Figure 1 shows the edge-cut Ci for successive coarsening levels
for both the RM and HEM coarsening schemes. The edge-cut at the
ith level was obtained by performing i coarsening levels to obtain G i ,
and then using our multilevel algorithm to find a good partition of this
coarser graph. The plotted value of Ci is the minimum of the edge-
cuts produced by the multilevel algorithm and SB. From this graph we
see that as indicated by our analysis, for all four matrices, the edge-
cut Ci increases slowly at successive coarsening levels. When RM is
used to coarsen the graphs, the edge-cut at the last coarsening level
is only 1.8, 2.4, 2.9, and 4.2 times worse than C0 for 4ELT, BRACK2,
and WAVE respectively. This increase in the edge-cut is actually lower
than the one predicted by the analysis. This should not be surprising
since Equation 1 is only an upper bound. Also, from Figure 1 we see
that when HEM is used to coarsen the graph, the edge-cuts at the
coarser graphs and their rate of increase at successive coarsening
levels are smaller than those of the RM coarsening scheme. This is
also predicted by our analysis since for HEM, δ > 1. Furthermore,
for 3D finite element meshes, HEM tends to decrease the average
degree of the graph with successive coarsening levels as shown in
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Figure 2: The average degrees at successive coarsening levels.

Figure 2 shows the average degree of the graphs at successive
coarsening levels for both RM and HEM. For 4ELT, we see that for
both coarsening schemes, the average degrees are similar and they
slowly decrease. This decrease is due to the boundary elements of
the mesh. However, for the 3D finite element meshes (BRACK2 and
WAVE), the averagedegree of the graphswhen RM is used to coarsen
them, increases at successive coarsening levels. This is consistent
with the analysis presented in Section 3.2.2, which indicated that the
average degree of 3D finite element meshes increases when RM is
used. Also, comparing the degrees of BRACK2 and WAVE, we see
that the degrees increase at a higher rate if d0 is high. This again
follows directly from Equation 3. However, the increase in the average
degree of the graph tappers off after a number of coarsening levels
because of the boundary elements (like it was for the 2D case).

Our analysis in Section 3.2.2 also predicted that if HEM is used
to coarsen the graph, then the average degree of 3D finite element
meshes will increase at a slower rate than RM. This is clearly illus-
trated in Figure 2. The average degree of the graph increases for
the 1st level coarser graph (d1) because HEM and RM are equivalent
for the first coarsening level (initially all edges have weight of one).
The average degree of subsequent coarser graphs, not only do not
increase but actually they decrease quite substantially. The advan-
tages of the decreasing average degree can be seen by comparing
the edge-cut of RM and HEM at the coarsest graph for BRACK2 and
WAVE. For instance, at the last coarsening level, the HEM edge-cut
for WAVE is only 1.8 times higher while the RM edge-cut is 2.9 times
higher.

Finally, Figure 3 shows the average weight of the adjacency list of
a vertex for successive coarsening levels. Recall that the average
weight of the adjacency list at the ith level is equal to diωi and from
Assumption 2 it is directly related to the edge-cut of the graph. From
Figure 3 we see that for all four matrices, the weight of the adjacency
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Figure 3: The average weight of the adjacency lists at successive coarsening
levels. The weight of the adjacency list at level i is diωi .

lists when HEM is used to coarsen the graph is smaller than that for
RM.

3.3 Vertex Separator Analysis
In the previous section we showed that the edge-cut of the coarser
graph is higher than the edge-cut of the original graph G0 by a small
factor. Consequently, from Assumption 2, this implies that the vertex
separator induced by the bisection of the coarser graph is larger than
the separator of the original graph by a small factor. In this section we
analyze the coarsening process by looking at the vertex separators.
In particular, we will show that the vertex separator obtained in the
coarse graph is also a small vertex separator in the original graph.
This analysis is focused on maximal planar graphs that satisfy the
assumptions in Section 3. Furthermore, it is assumed that the sepa-
rator forms a simple path or cycle [14]. This analysis can be extended
to the graphs that correspond to 3D finite element meshes, when the
separators are simple surfaces.

Consider the kth level coarse graph Gk = (Vk, Ek). From the small
separator assumption, we know that Gk has a separator Sk that con-
tains no more than α

√
|Vk| vertices (recall that γ = 0.5 for planar

graphs [12]). Let S ′
0 be the union of the vertices of Sk projected to G0.

S ′
0 forms a balanced separator of G0 and its size is

|S ′
0| = 2k|Sk| ≤ α2k

√

|Vk| = α2k
√

|V0|/2k = α(
√

2)k
√

|V0|.

However, applying the small separator assumption to the original
graph, the size of the separator of G0 is |S0| ≤ α

√
|V0|. In the limiting

case, when k = O(log |V0|), we have that (
√

2)k =
√

|V0|, in which
case |S ′

0| ≤ O(|V0|). Thus, S ′
0 contains O(

√
|V0|) more vertices than

a small separator. However, not all the vertices in S ′
0 are required to

form a separator for G0, and a smaller separator can be constructed
from S ′

0 by dropping some vertices.
Figure 4 illustrates the basic idea behind the processes of vertex

dropping. In this figure, the 1st level coarser graph is constructed
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(e) Projected Separator

(f) Dropping of Vertices (g) Refined Separator

(a) Original Graph

(d) Coarse Separator

(b) Random Matching (c) Coarse Graph

Figure 4: The sequence of one level coarsening, finding a separator for the coarse
graph, projecting the separator to the original graph, and refining the separator by
dropping vertices.

using RM, and a separator of this coarse graph is computed (Fig-
ure 4(d)). Figure 4(e) shows the projected separator S ′

0 that corre-
sponds to S1. Note that not all the vertices of S ′

0 are necessary to form
a separator for G0. As Figure 4(f) illustrates certain vertices can be
dropped. In the rest of this section we compute the average number
of vertices being dropped in successive uncoarsening levels.

Consider the graph G1, and let P1 be a simple path or cycle of G1.
Let F be the subgraph of G0 induced by the vertices of P1 projected
onto graph G0. The subgraph F contains 2|P1| vertices, and on the
average these vertices do not form a simple path or cycle.

Lemma 1 (Path Projection for Planar Graphs) Let G1 be a one level
coarse graph obtained from G0 using random perfect coarsening, and
let P1 be a simple path of G1, between vertices u1 and v1. Let F be
the subgraph of G0 that has P1 as its minor, and let u0 and v0 be the
vertices of F that are mapped onto u1 and v1 respectively. On the
average, the shortest path between u0 and v0 in F contains less than
1.5|P1| vertices [8].

The path projection lemma is very powerful and can be used to
compute the size of the projected separator as a function of the sep-
arator of the coarser graph. Furthermore, as the next lemma shows,
it can also be used to show that the sub-optimality of a separator at
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a coarser graph, decreases as this separator is projected to succes-
sively finer graphs.

Lemma 2 (Simple Separator for Planar Graphs) Let Gk be the k
level coarse graph obtained from G0 using random matching. There
is a separator for G0 whose size is bounded by φ0.75k|V0| for some
constant φ [8].

The simple separator lemma is interesting when we consider the
case in which k = O(log n). In this case, the separator for G0 is
bounded by

|S0| = φ0.75k|V0| = φ0.75log |V0||V0| = φ|V0|log 0.75|V0| ≤ φ|V0|0.59.

Thus, even though the separator of Gk contained O(|Vk|) vertices, this
same separator when it is projected onto the original graph contains
only O(|V0|0.59) vertices. Hence, if k is sufficiently large, a suboptimal
separator of Gk does not significantly affect the size of the separator
of the graph G0.
3.3.1 The Nature of a Good Separator

The key element in the proof of the path projection lemma is that
the edge-weight of the path in question was average. This is certainly
true for any simple path but is it true for a separator path as well?

The answer to this question depends on the algorithm used to
compute the vertex separator. In the multilevel algorithm, the vertex
separator is computed as being the path along the boundary of the
bisection. Since, the bisection is computed so that the number of
edges crossing the two parts is minimized, it is not unreasonable
to assume that an equal or larger amount of edge-weight does not
cross the boundary. Because of this, the separator path obtained
from the partition boundary should have on the average at least as
much weight as any other path.

Our experimental results verify this observation. In fact, for all
coarsening schemes, if we look at the number of vertices as being
projected from a coarse graph to the next level finer graph, the in-
crease in the separator size is almost always bounded by 1.5. Hence,
assuming that the edge-weight of the separator path is no less than
that of any other path, the following lemma is true.

Lemma 3 The separator of G0 obtained by projecting the separator
of Gk is bounded by α(1.06)k

√
|V0| [8].

3.3.2 Experimental Results
To verify the correctness of Lemmas 1, and 3 we performed exper-

iments with three different planar graphs that have triangular faces.
As we did throughout the analysis in this section, each vertex vi ∈ Vi
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is treated as a single vertex, irrespective of its weight. Furthermore,
the separators were computed as the vertices of the first part that lay
along the boundary of the bisection. That is, if V0 is bisected into A
and B, then the set A′ ⊂ A of vertices that are connected to some
vertices of B is taken as the separator.
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Figure 5: The increase in the number of nodes in the separator at successive
uncoarsening levels.

Figure 5 shows how the size of the separator increases at succes-
sive coarsening levels. For each matrix, three curves are shown. The
two of them, labeled RM and HEM, correspond to random matching
and heavy-edge matching with no refinement during the uncoarsen-
ing phase, while the one labeled HEM-R, corresponds to heavy-edge
with boundary greedy refinement [9]. From this graph, we see that at
successive uncoarsening levels, the size of the separator increases
by a factor smaller than 2. For example, when RM is used for 4ELT,
going from the 7th to the 8th uncoarsening level, the separator in-
creases from 92 to 135 vertices—an increase by a factor of 1.47.
Furthermore, comparing RM with HEM, we have that HEM consis-
tently produces smaller separators, which is not surprising, since
HEM finds bisections with smaller edge-cuts (Section 3.2). Also,
when boundary refinement is used (HEM-R), the size of the final
separator is much smaller, and tends to increase at a lower rate.

Note that for all the graphs in Figure 5, the size of the separator
increases much slower than 1.5 for the first few coarsening levels.
This is because the size of the graphs during these last levels does not
decrease very fast. For this reason we constructed the graphs shown
in Figure 6. In this figure, for each graph and matching scheme we
plotted the relative increase of the size of the separator for successive
uncoarsening levels, over the size of the initial separator. Also, for
each graph and matching scheme we computed the ideal relative
increase so that the α

√
|Vi | bound is maintained [8]. Since, RM and

HEM lead to coarser graphs that have slightly different number of
vertices (i.e., the maximal matching computed by RM and HEM are
not of the same size), each matching scheme has a different ideal
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Figure 6: The rate of increase of the separator compared to the ideal increase.

curve. From these graphs we see that, the overall rate of increase in
the size of the separator is worse than the ideal increase. However,
the difference is usually very small. The graph for WHITAKER3 is
particularly interesting, because both RM and HEM lead to a relatively
high increase (a factor of two) in the size of the separator over the
ideal increase. The reason for that, is that the initial separator of
WHITAKER3 is actually quite small compared to the size of the graph.
In particular, the coarsest graph for RM has 88 vertices while the
separator has 7, and the coarsest graph for HEM has 118 vertices
while the separator has only 6. Consequently, vertices cannot be
dropped at the rate dictated by the ideal curve, since it will lead to
separators that are contradictory small.
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Figure 7: The rate of increase of the separator for 3D finite element meshes.

Finally, Figure 7 shows how the size of the separator increases
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at successive uncoarsening levels for graphs that correspond to 3D
finite element meshes. As it was the case for planar graphs, the
size of the separator decreases by a factor smaller than two at each
successive uncoarsening level. Also, HEM finds smaller separators
at the coarsest graph, and the size of the separator increases at a
slower rate than RM. Also, in the case of HEM-R, the size of the
separator increases very slowly. For 3D graphs, the ideal increase
of the separator size should be 20.75 ≈ 1.68 at each successive un-
coarsening level. From these graphs, we that the rate of increase is
usually higher than that by a small factor. For instance, in the case
of BCSSTK31 and RM, going from the 9th to the 10th uncoarsening
level, the separator increased from 989 vertices to 1698 vertices, an
increase by a factor of 1.72.
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