
Graph Partitioning forHigh-Performance Scienti�cSimulations
Kirk Schloegel, George Karypis, and Vipin KumarArmy HPC Research CenterDept. of Computer Science and Engineering,University of MinnesotaMinneapolis, MinnesotaTechnical Report: TR 00-018To be included in CRPC Parallel Computing HandbookJ. Dongarra, I. Foster, G. Fox, K. Kennedy, L. Torczon, and A. White, editors.Morgan Kaufmann, 2000.

Early Draft
Early DraftLimited Copies DistributedReproduction requires explicit permissionCopyright 1999, by the authors, all rights reserved

Contents0.1 Introduction . 20.2 Modeling Mesh-based Computations as Graphs . 30.3 Static Graph Partitioning Techniques . 50.3.1 Geometric Techniques . 50.3.2 Combinatorial Techniques . 90.3.3 Spectral Methods . 110.3.4 Multilevel Schemes . 130.3.5 Combined Schemes . 160.3.6 Qualitative Comparison of Graph Partitioning Schemes 170.4 Load Balancing of Adaptive Computations . 190.4.1 Scratch-Remap Repartitioners . 200.4.2 Di�usion-based Repartitioners . 230.5 Parallel Graph Partitioning . 250.6 Multi-constraint, Multi-objective Graph Partitioning . 260.6.1 A Generalized Formulation for Graph Partitioning . 290.7 Conclusions . 34

1

CONTENTS 2

Figure 1: A partitioned 2D irregular mesh of an airfoil. The shading of a mesh element indicates the processorto which it is mapped.0.1 IntroductionAlgorithms that �nd good partitionings of unstructured and irregular graphs are critical for the e�cientexecution of scienti�c simulations on high-performance parallel computers. In these simulations, computa-tion is performed iteratively on each element (and/or node) of a physical two- or three-dimensional mesh.Information is then exchanged between adjacent mesh elements. For example, computation is performedon each triangle of the two-dimensional irregular mesh shown in Figure 1. Then information is exchangedfor every face between adjacent triangles. E�cient execution of such simulations on distributed-memorymachines requires a mapping of the computational mesh onto the processors that equalizes the number ofmesh elements assigned to each processor and minimizes the interprocessor communication required to per-form the information exchange between adjacent elements. Such a mapping is commonly found by solving agraph partitioning problem. For example, a graph partitioning algorithm was used to decompose the meshin Figure 1. Here, the mesh elements have been shaded to indicate the processor to which they have beenmapped. Simulations performed on shared-memory multiprocessors also bene�t from partitioning, as thisincreases data locality, and so, leads to better cache performance.In many scienti�c simulations, the structure of the computation evolves from time step to time step. Thesesimulations require decompositions of the mesh prior to the start of the simulation (as described above) andperiodic load balancing during the course of the simulation. Other classes of simulations (i.e., multiphasesimulations) consist of a number of computational phases separated by synchronization steps. These requirethat each of the phases be individually load balanced. Still other scienti�c simulations model multiple phys-ical phenomenon (i.e., multiphysics simulations) or employ multiple meshes simultaneously (i.e., multimeshsimulations). These impose additional requirements that the partitioning algorithm must take into account.Traditional graph partitioning algorithms are not adequate to ensure the e�cient execution of these classesof simulations on high-performance parallel computers. Instead, generalized graph partitioning algorithmshave been developed for such simulations.This chapter presents an overview of graph partitioning algorithms used for scienti�c simulations on high-performance parallel computers. Recent developments in graph partitioning for adaptive and dynamic sim-ulations, as well as partitioning algorithms for sophisticated simulations such as multiphase, multiphysics,and multimesh computations are also discussed. Speci�cally, Section 0.2 presents the graph partitioningformulation used to model the problem of mapping computational meshes onto processors. Section 0.3 de-scribes numerous static graph partitioning algorithms. Section 0.4 discusses the adaptive graph partitioningproblem and describes a number of repartitioning schemes. Section 0.5 discusses the issues involved withthe parallelization of static and adaptive graph partitioning schemes. Section 0.6 describes a number of

CONTENTS 3
(a) (b) (c)Figure 2: A 2D irregular mesh (a) and corresponding graphs (b) and (c). The graph in (b) models theconnectivity between the mesh nodes. The graph in (c) models the adjacency of the mesh elements.important types of applications for which the traditional graph partitioning problem is inadequate. Thissection also describes generalizations of the graph partitioning problem that are able to e�ectively modelthese applications as well as algorithms for computing partitionings based on these new formulations. Finally,Section 0.7 presents concluding remarks, discusses areas of future research, and charts the functionality of anumber of publicly available graph partitioning software packages.0.2 Modeling Mesh-based Computations as GraphsIn order to compute a mapping of a mesh onto a set of processors via graph partitioning, it is �rst necessaryto construct the graph that models the structure of the computation. In general, computation of a scienti�csimulation can be performed on the mesh nodes, the mesh elements, or both of these. If the computationis mainly performed on the mesh nodes, then this graph is straightforward to construct. A vertex existsfor each mesh node, and an edge exists on the graph for each edge between the nodes. We refer to thisas the node graph. However, if the computation is performed on the mesh elements, then the graph issuch that each mesh element is modeled by a vertex, and an edge exists between two vertices whenever thecorresponding elements share an edge (in two dimensions) or a face (in three dimensions). We refer to thisas the dual graph. Figure 2 illustrates a 2D example. Figure 2(a) shows a �nite-element mesh. Figure 2(b)shows the corresponding node graph. Figure 2(c) shows the dual graph that models the adjacencies of themesh elements. Partitioning the vertices of these graphs into k disjoint subdomains provides a mapping ofeither the mesh nodes or the mesh elements onto k processors. If the partitioning is computed such thateach subdomain has the same number of vertices, then each processor will have an equal amount of workduring parallel processing. The total volume of communications incurred during this parallel processing canbe estimated by counting the number of edges that connect vertices in di�erent subdomains. Therefore, apartitioning should be computed that minimizes this metric (which is referred to as the edge-cut).The objective of the graph partitioning problem is to compute just such a partitioning (i.e., one that balancesthe subdomains and minimizes the edge-cut). More formally, the graph partitioning problem is as follows.Given a weighted, undirected graph G = (V;E), for which each vertex and edge has an associated weight,the k-way graph partitioning problem is to split the vertices of V into k disjoint subsets (or subdomains) suchthat each subdomain has roughly an equal amount of vertex weight (referred to as the balance constraint),while minimizing the sum of the weights of the edges whose incident vertices belong to di�erent subdomains(i.e., the edge-cut).In some cases, it is bene�cial to compute partitionings that assign each subdomain a speci�ed amount ofvertex weight. This may be necessary for scienti�c simulations performed on a cluster of heterogeneousworkstations. The subdomain weights should result in more work being assigned to the faster machinesand less work to the slower machines. Subdomain weights can be speci�ed by using a vector of size k inwhich each element of the vector indicates the fraction of the total vertex weight that the correspondingsubdomain should contain. In this case, the graph partitioning problem is to compute a partitioning thatsplits the vertices into k disjoint subdomains such that each subdomain has the speci�ed fraction of totalvertex weight and such that the edge-cut is minimized.

CONTENTS 4
1

2

4

3

5

7 8

6

10

9

11

12

B

A

C

Figure 3: A partitioned graph with an edge-cut of seven. Here, nine communications are incurred duringparallel processing.It is important to note that the edge-cut metric is only an approximation of the total communicationsvolume incurred by parallel processing [33]. It is not a precise model of this quantity. Consider the examplein Figure 3. Here, three subdomains, A, B, and C are shown. The edge-cut of the (three-way) partitioningis seven. During parallel computation, the processor corresponding to subdomain A will need to send thedata for vertices 1 and 3 to the processor corresponding to subdomain B and the data for vertex 4 to theprocessor corresponding to subdomain C. Similarly, B needs to send the data for 5 and 7 to A and the datafor 7 and 8 to C. Finally, C needs to send the data for 9 to B and the data for 10 to A. This equals nineunits of data to be sent, while the edge-cut is seven. Edge-cut and total communication volume are not thesame because the edge-cut counts every edge cut, while data is required to be sent only one time if two ormore edges of a single vertex are cut by the same subdomain. (This is the case, for example, for vertex 3 andsubdomain B in Figure 3.) It should also be noted that total communication volume alone cannot accuratelypredict interprocessor communication overhead. A more precise measure is the maximum time required byany of the processors to perform communication (assuming that computation and communication occur inalternating phases). This depends on a number of factors, including the amount of data to be sent outof any one processor, as well as the number of processors with which a processor must communicate. Inparticular, on message-passing architectures, minimizing the maximum number of message start-ups thatany one processor must perform can sometimes be more important than minimizing the communicationsvolume [35]. Nevertheless, there still tends to be a strong correlation between edge-cuts and interprocessorcommunication costs for graphs of uniform degree (i.e., graphs in which most vertices have about the samenumber of edges). This is a typical characteristic of graphs derived from scienti�c simulations. Therefore,the min-cut partitioning problem is a reasonable model for minimizing the interprocessor communicationsof parallel scienti�c simulations.Computing a k-way Partitioning via Recursive Bisection Graphs are frequently partitioned into ksubdomains by recursively computing two-way partitionings (i.e., bisections) of the graph [6]. This methodrequires the computation of k�1 bisections. If k is not a power of two, then for each bisection, the appropriatesubdomain weights need to be speci�ed in order to ensure that the resulting k-way partitioning is balanced.For a large class of graphs derived from scienti�c simulations, recursive bisection algorithms are able tocompute k-way partitionings that are within a constant factor of the optimal solution [86]. Furthermore, ifthe balance constraint is su�ciently relaxed, then recursive bisection methods can be used to compute k-waypartitionings that are within log p of the optimal for all graphs [86]. Since the direct computation of a goodk-way partitioning is harder in general than the computation of a good bisection (although both problemsare NP-complete), recursive bisection has become a widely used technique.

CONTENTS 5
(a) (b)Figure 4: Two mesh bisections normal to the coordinate axes. In (a) the mesh is bisected normal to thex-axis. In (b) the mesh is bisected normal to the y-axis. The subdomain boundary in (a) is smaller thanthat in (b).0.3 Static Graph Partitioning TechniquesThe graph partitioning problem is known to be NP-complete. Therefore, in general it is not possible to com-pute optimal partitionings for graphs of interesting size in a reasonable amount of time. This fact, combinedwith the importance of the problem, has led to the development of several heuristic approaches [1, 2, 5, 6, 9,13, 16, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 38, 45, 49, 55, 59, 61, 62, 67, 69, 74, 75, 77, 85, 96, 106]. These canbe classi�ed as either geometric techniques [6, 23, 31, 59, 62, 67, 69, 77], combinatorial techniques [1, 2, 16,20, 22, 25, 28, 55], spectral techniques [37, 38, 74, 75, 85], combinatorial optimization techniques [5, 27, 106],or multilevel methods [9, 13, 26, 30, 45, 49, 61, 96]. In this section, we discuss several of these classes anddescribe the important schemes from them.0.3.1 Geometric TechniquesGeometric techniques [6, 23, 31, 59, 62, 67, 69, 77] compute partitionings based solely on the coordinate in-formation of the mesh nodes. Since these techniques do not consider the connectivity between the meshelements, there is no concept of edge-cut here. In order to minimize the interprocessor communicationsincurred due to parallel processing, geometric schemes are usually designed to minimize a related metric,such as the number of mesh elements that are adjacent to nonlocal elements (i.e., the size of the subdo-main boundary). Usually, these techniques partition the mesh elements directly, rather than the graphsthat model the structures of the computations. Because of this distinction, they are often referred to asmesh-partitioning schemes.Geometric techniques are applicable only if coordinate information exists for the mesh nodes. This is usuallytrue for meshes used in scienti�c simulations. Even if the mesh is not embedded in a k-dimensional space,there are techniques that are able to compute node coordinates automatically, based on the connectivity ofthe mesh elements [29]. Typically, geometric partitioners are extremely fast. However, they tend to computepartitionings of lower quality than schemes that take the connectivity of the mesh elements into account.For this reason, multiple trials are usually performed, with the best partitioning of these being selected.Coordinate Nested Dissection Coordinate Nested Dissection (CND) (also referred to as RecursiveCoordinate Bisection) is a recursive bisection scheme that attempts to minimize the boundary between thesubdomains (and therefore, the interprocessor communications) by splitting the mesh in half normal to itslongest dimension. Figure 4 illustrates how this works. Figure 4(a) gives a mesh bisected normal to the x-axis. Figure 4(b) gives the same mesh bisected normal to the y-axis. The subdomain boundary in Figure 4(a)is much smaller than that in Figure 4(b). This is because the mesh is longer in the direction of the x-axisthan in the direction of y-axis.The CND algorithm works as follows. The centers of mass of the mesh elements are computed, and theseare projected onto the coordinate axis that corresponds to the longest dimension of the mesh. This gives anordering of the mesh elements. (Note that this scheme can result in multiple mesh elements being projectedonto the same point along the selected dimension. Such \ties" in ordering can be broken arbitrarily.) Theordered list is then split in half to produce a bisection of the mesh elements1. Each subdomain can then be1Alternatively, the mesh nodes can be ordered and split in half instead of the mesh elements.

CONTENTS 6

(a) (b)Figure 5: An eight-way partitioning of a mesh computed by a CND scheme. First, the solid bisection wascomputed. Then the dashed bisections were computed for each of the subdomains. Finally, the dashed-and-dotted bisections were computed. The centers of mass of the mesh elements are shown in (a). The meshelements are shaded in (b) to indicated their subdomains.

Figure 6: A four-way partitioning computed by a CND scheme. First, the solid bisection was computed.Then the dashed bisections were computed for each of the subdomains. The upper- and lower-left subdomainsare disconnected.recursively subdivided by the same technique [6]. Figure 5 illustrates an eight-way partitioning computedby this method. Figure 5(a) shows the centers of mass of the mesh elements and the computed recursivebisections. First, the solid line bisected the entire mesh. Then, the dashed lines bisected the two subdomains.Finally, the dashed-and-dotted lines bisected the resulting subdomains. Figure 5(b) shows the mesh elementsshaded according to their subdomains.The CND scheme is extremely fast, requires little memory, and is easy to parallelize. In addition, partitioningsobtained by this scheme can be described quite compactly (just by the splitters used at each node of therecursive bisection tree). However, partitionings computed via CND tend to be of low quality. Furthermore,for complicated geometries CND tends to produce partitionings that contain disconnected subdomains.Figure 6 gives an example of this. Here, the upper- and lower-left subdomains are both disconnected.Several variations of CND have been developed that attempt to address its disadvantages [31]. However,even the most sophisticated variants tend to produce worse quality partitionings than more sophisticatedschemes.Recursive Inertial Bisection The CND scheme can only compute bisections that are normal to one ofthe coordinate axes. In many cases, this restriction can limit the quality of the partitioning. Figure 7 gives

CONTENTS 7
(b)(a)Figure 7: Bisection for a mesh are computed by the CND and RIB schemes. In (a) the mesh is bisectedby the CND scheme. In (b) the mesh is bisected by the RIB scheme. This scheme results in a signi�cantlysmaller subdomain boundary.

Figure 8: A Peano-Hilbert space-�lling curve is used to order the mesh elements. The eight-way partitioningthat is produced by this ordering is shown.an example. The mesh in Figure 7(a) is bisected normal to the longest dimension of the mesh. However, thesubdomain boundary is still quite long. This is because the mesh is oriented at an angle to the coordinateaxes. Taking this angle into account when orienting the bisection can result in a smaller subdomain boundary.One way to do so is to treat the mesh elements as point masses and to compute the principal inertial axisof the mass distribution. If the mesh is convex, then this axis will align with the overall orientation of themesh. A bisection line that is orthogonal to this will often result in a small subdomain boundary, as themesh will tend to be thinnest in this direction [73].The Recursive Inertial Bisection (or RIB) algorithm improves upon the CND scheme by making use of thisidea as follows. The inertial axis of the mesh is computed, and an ordering of the elements is produced byprojecting their centers of mass onto this axis. The ordered list is then split in half to produce a bisection.The scheme can be applied recursively to produce a k-way partitioning [62]. As an example, the bisectionof the mesh in Figure 7(b) is computed using the RIB algorithm. The solid arrow indicates the inertial axisof the mesh. The dashed line is the bisection. Here, the subdomain boundary is much smaller than thatproduced by the CND scheme in Figure 7(a).Space-�lling Curve Techniques The CND and RIB algorithms �nd orderings of the mesh elementsand then split the ordered list in half to produce a bisection. In these schemes, orderings are computed byprojecting the elements onto either the coordinate or inertial axes. A disadvantage of these techniques isthat orderings are computed based on a single dimension at a time. A scheme that considers more than onedimension may produce better partitionings.One such method orders the mesh elements according to the positions of their centers of mass along a space-�lling curve [65, 67, 69, 103] (or a related self-avoiding walk [32]). Space-�lling curves are continuous curves

CONTENTS 8

(a) (b) (c)Figure 9: The nodes of a �nite-element mesh (a). A three-ply neighborhood systems for the nodes (b). The(1, 3)-overlap graph for the mesh (c).that completely �ll higher-dimensional spaces such as squares or cubes. A number of such curves have beende�ned that �ll space in a locality-preserving way (e.g., Peano-Hilbert curves [39]). These produce orderingsof mesh elements that have the desirable characteristic that elements that are near to each other in spaceare likely to be ordered near to each other as well. After the ordering is computed, the ordered list of meshelements is split into k parts resulting in k subdomains. Figure 8 illustrates a space-�lling curve method forcomputing an eight-way partitioning of a quad-tree mesh.Space-�lling curve partitioners are fast and generally produce partitionings of somewhat better quality thaneither the CND or RIB schemes. They tend to work particularly well for classes of simulations in which thedependencies between the computational nodes are governed by their spatial proximity to one another as inn-body computations using hierarchical methods [103].Sphere-cutting Approach Miller, Teng, Thurston, and Vavasis [59] proposed a new class of graphs, calledoverlap graphs, that contains all well-shaped meshes, as well as all planar graphs. Meshes are consideredwell shaped if the angles and/or aspect ratios of their elements are bounded within some values. Most ofthe meshes that are used in scienti�c simulations are well shaped according to this de�nition. Miller, et al.,proved that overlap graphs have O(n(d�1)=d) vertex separators. In doing so, they extended results by Liptonand Tarjan [57] and others [60]. Note that a vertex separator is a set of vertices that, if removed, splitsthe graph into two roughly equal-sized subgraphs, such that no edge connects the two subgraphs. That is,instead of partitioning the graph between the vertices (and so cutting edges), the graph is partitioned alongthe vertices. For this formulation, the sum weight of the separator vertices should be minimized.Miller, et al., used the concept of a neighborhood system to de�ne an overlap graph. A k-ply neighborhoodsystem is a set of n spheres in a d-dimensional space such that no point in space is encircled by more than kof the spheres. An (�, k)-overlap graph contains a vertex for each sphere, with an edge existing between twovertices if the corresponding spheres intersect when the smaller of them is expanded by a factor of �. Figure 9illustrates these concepts. Figure 9(a) shows a set of points in a two-dimensional space. Figure 9(b) showsa three-ply neighborhood system for these points. Figure 9(c) shows the (1, 3)-overlap graph constructedfrom this neighborhood system.Gilbert, Miller, and Teng [23] describe an implementation of a geometric bisection scheme based on theseresults. This scheme projects each vertex of a d-dimensional (�, k)-overlap graph onto the unit (d+1)-dimensional sphere that encircles it. A random great circle of the sphere has a high probability of splittingthe vertices into three sets A, B, and C, such that no edge joins A and B, A and B each have at most d+1d+2nvertices, and C has only O(�k1=dn(d�1)=d) vertices [59]. Therefore, by selecting a few great circles at randomand picking the best separator from these, the algorithm can compute a vertex separator of guaranteedquality (in asymptotic terms) with high probability.

CONTENTS 9
3

4

5

5

6

7

6

7

7

6
4

3
2

1

2

3

4

55

5
6

0

1

4

5
5

4

66

5

edge-cut: 3 edge-cut: 8

Figure 10: A graph partitioned by the LND algorithm. The vertex in the extreme bottom-right was selectedand labeled zero. Then, the vertices were labeled in a breadth-�rst manner according to how far they arefrom the zero vertex. After half of the vertices had been labeled, a bisection (solid line) was constructedsuch that the labeled vertices are in one subdomain and the unlabeled vertices are in another subdomain.This �gure also shows a higher-quality bisection (dashed line) for the same graph.The sphere-cutting scheme is unique among those described in this chapter in that it guarantees the qualityof the computed bisection for well-shaped meshes. But it is not guaranteed to compute perfectly balancedbisections. It is proven in [59] that the larger subdomain will contain no more than d+1d+2n vertices. However,experiments cited in [23] on a small number of test graphs indicate that, in three dimensions, splits as bad as2 : 1 are rare, and most are within twenty percent. The authors of [23] suggest a modi�cation of the schemethat will result in balanced bisections by shifting the separating plane normal to its orientation.0.3.2 Combinatorial TechniquesWhen computing a partitioning, geometric techniques attempt to group together vertices that are spatiallynear to each other, whether or not these vertices are highly connected. Combinatorial partitioners, onthe other hand, attempt to group together highly connected vertices, whether or not these are near toeach other in space. That is, combinatorial partitioning schemes compute a partitioning based only on theadjacency information of the graph; they do not consider the coordinates of the vertices. For this reason, thepartitionings produced typically have lower edge-cuts and are less likely to contain disconnected subdomainsthan partitionings produced by geometric schemes. However, combinatorial techniques tend to be slowerthan geometric partitioning techniques and are not as amenable to parallelization.Levelized Nested Dissection A partitioning will have a low edge-cut if adjacent vertices are usually inthe same subdomain. The Levelized Nested Dissection (LND) algorithm attempts to put connected verticestogether. It starts with a subdomain containing a single vertex and incrementally adds adjacent vertices[22].More precisely, the LND algorithm works as follows. An initial vertex is selected and assigned the numberzero. Then all of the vertices that are adjacent to the selected vertex are assigned the number one. Next,all of the vertices that are not assigned a number and are adjacent to any vertex that has been assigneda number are assigned that number plus one. This process continues until half of the vertices have beenassigned a number. At this point, the algorithm terminates. The vertices that have been assigned numbersare in one subdomain, and the vertices that have not been assigned numbers are in the other subdomain.Figure 10 illustrates the LND algorithm. It shows the numbering starting with the extreme lower-rightvertex. Here, the solid line shows a bisection with an edge-cut of eight computed by the LND algorithm.This scheme tends to perform better when the initial seed is a pseudo-peripheral vertex (i.e., one of thepairs of vertices that are approximately the greatest distance from each other in the graph) as in Figure 10.Such a vertex can be found by a process that is similar to the LND algorithm. A random vertex is initially

CONTENTS 10

(a) (b)Figure 11: A bisection of a graph re�ned by the KL algorithm. The two shaded vertices will be swapped bythe KL algorithm in order to improve the quality of the bisection (a). The resulting bisection is shown in(b).selected to start the numbering of vertices. Here, all of the vertices are numbered. The vertex (or one of thevertices) with the highest number is likely to be in a corner of the graph. This vertex can be used eitheras an input to �nd another corner vertex (at the other end of the graph) or as the seed vertex for the LNDscheme.The LND algorithm ensures that at least one of the computed subdomains is connected (as long as theinput graph is fully connected). It tends to produce partitionings of comparable or better quality thangeometric schemes. However, even with a good seed vertex, the LND algorithm can sometimes produce poorquality partitionings. For example, the graph in Figure 10 contains a natural bisector shown by the dashedline. However, the LND algorithm was unable to �nd this bisection. For this reason, multiple trials of theLND algorithm are often performed, and the best partitioning from these is selected. Several variations andimprovements of levelized nested dissection schemes are studied in [12, 25, 79].Kernighan-Lin / Fiduccia-Mattheyses Algorithm (KL/FM) Closely related to the graph parti-tioning problem is that of partition re�nement. Given a graph with a suboptimal partitioning, the problemis to improve the partition quality while maintaining the balance constraint. This di�ers from the graphpartitioning problem only in that it requires an initial partitioning of the graph. Indeed, a re�nement schemecan be used as a partitioning scheme simply by using a random partitioning as its input.Given a bisection of a graph that separates the vertices into sets A and B, a powerful means of re�ning thebisection is to �nd two equal-sized subsets, X from A and Y from B, such that swapping X to B and Yto A yields the greatest possible reduction in the edge-cut. This type of swapping can be repeated until nofurther improvement is possible [55]. However, the problem of �nding optimal sets X and Y is intractableitself (just like the graph partitioning problem). For this reason, Kernighan and Lin [55] developed a greedymethod of �nding and swapping near-optimal sets X and Y (referred to as Kernighan-Lin or KL re�nement).The KL algorithm consists of a small number of passes through the vertices. During each pass, the algorithmrepeatedly �nds a pair of vertices, one from each of the subdomains, and swaps their subdomains. The pairsare selected so as to give the maximum improvement in the quality of the bisection (even if this improvementis negative). Once a pair of vertices has been moved, neither is considered for movement in the rest of thepass. When all of the vertices have been moved, the pass ends. At this point, the state of the bisectionat which the minimum edge-cut was achieved is restored. (That is, all vertices that were moved after thispoint are moved back to their original subdomains.) Another pass of the algorithm can then be performedby using the resulting bisection as the input. The KL algorithm usually takes a small number of such passesto converge. Each pass of the KL algorithm takes O(jV j2). Figure 11 illustrates a single swap made by theKL algorithm. In Figure 11(a), the two dark grey vertices are selected to switch subdomains. Figure 11(b)shows the bisection after this swap is made.

CONTENTS 11Fiduccia and Mattheyses present a modi�cation of the KL algorithm [20] (called Fiduccia-Mattheyses orFM re�nement) that improves its runtime without signi�cantly decreasing its e�ectiveness (at least withrespect to graphs arising in scienti�c computing applications). This scheme di�ers from the KL algorithm inthat it moves only a single vertex at a time between subdomains instead of swapping pairs of vertices. TheFM algorithm makes use of two priority queues (one for each subdomain) to determine the order in whichvertices are examined and moved. As in KL, the FM algorithm consists of a number of passes through thevertices. Prior to each pass, the gain of every vertex is computed (i.e., the amount by which the edge-cutwill decrease if the vertex changes subdomains). Then it is placed into the priority queue that correspondsto its current subdomain and ordered according to its gain. During a pass, the vertices at the top of eachof the two priority queues are examined. If the top vertex in only one of the priority queues is able toswitch subdomains while still maintaining the balance constraint, then that vertex is moved to the othersubdomain. If the top vertices of both of the priority queues can be moved while maintaining the balance,then the vertex that has the highest gain among these is moved. Ties are broken by selecting the vertexthat will most improve the balance. When a vertex is moved, it is removed from the priority queue andthe gains of its adjacent vertices are updated. (Therefore, these vertices may change their positions in thepriority queue.) The pass ends when neither priority queue has a vertex that can be moved. At this point,the highest quality bisection that was found during the pass is restored. With the use of appropriate datastructures, the complexity of each pass of the FM algorithm is O(jEj).KL/FM-type algorithms are able to escape from some types of local minima because they explore movesthat temporarily increase the edge-cut. Figure 12 illustrates this process. Figure 12(a) shows a bisection of agraph with an edge-cut of six. Here, the weights of the vertices and edges are one. There are twenty verticesin the graph. Therefore, a perfectly balanced bisection will have subdomain weights of ten. However, in thiscase we allow the subdomains to be up to ten percent imbalanced. Therefore, subdomains of weight elevenare acceptable2. Figure 12(b) shows the gain of each vertex. Since all of the gains are negative, moving anyvertex will result in the edge-cut increasing. Therefore, the bisection is in a local minimum. However, thealgorithm will still select one of the vertices with the highest gain and move it. The white vertex is selected.Figure 12(c) shows the new bisection, as well as the updated vertex gains. There are now two positive gainvertices. However, neither of these can be moved at this time. The black vertex has just moved, and so it isineligible to move again until the end of the pass. The other vertex with +1 gain is unable to move, as thiswill violate the balance constraint. Instead, one of the highest negative-gain vertices (shown in white) fromthe left subdomain is selected. Figure 12(d) shows the result of this move. Now there are two positive gainvertices that are able to move and two that are ineligible to move. The white vertex is selected. Figure 13shows the results of continued re�nement. By Figure 13(d), the bisection has reached another minimum withan edge-cut of two. The re�nement algorithm has succeeded in climbing out of the original local minimumand reducing the edge-cut from six to two.While KL/FM schemes are able to escape from certain types of local minima, this ability is still limited.Therefore, the quality of the �nal bisection obtained by KL/FM schemes is highly dependent on the qualityof the input bisection. Several techniques have been developed that try to improve these algorithms byallowing the movement of larger sets of vertices together (i.e., more than just a single vertex or vertex pair)[2, 16, 28]. These schemes improve the e�ectiveness of KL/FM re�nement at the cost of increased algorithmcomplexity. KL/FM-type re�nement algorithms tend to be more e�ective when the average degree of thegraph is large [9]. Furthermore, they perform much better when the balance constraints are relaxed. Whenperfect balance is desired, these schemes are quite constrained as to the re�nement moves that can be madeat any one time. As the imbalance tolerance increases, they are allowed greater freedom in making vertexmoves and can provide higher-quality bisections.0.3.3 Spectral MethodsAnother method of solving the bisection problem is to formulate it as the optimization of a discrete quadraticfunction. However, even with this new formulation, the problem is still intractable. For this reason, a class of2It is common for KL/FM-type algorithms to tolerate a slight amount of imbalance in the partitioning in an attempt to minimizethe edge-cut.

CONTENTS 12

(c) (d)
edge-cut: 8edge-cut: 7

-1

-1

-1

-2

-2
-2

-2

-2

-2

-2

-2

-3

-3

-3
-3

-4

+1

-3

0

-2
-2

-2

-2

-2

-2

-2

-3

-3

-3
-3

-4

+1

-3

0

+1

-3

+1

0

(a) (b)
edge-cut: 6edge-cut: 6

-1

-1

-1

-1

-1

-2

-2
-2

-2

-2

-2

-2

-2

-2

-3

-3

-3
-3

-4

+1

-1

+1

Figure 12: A bisection of a graph re�ned by a KL/FM algorithm. The white vertices indicate those selectedto be moved. In (a) the partitioning is in a local minimum. In (b) the algorithm explores moves that increasethe edge-cut. In (c) and (d) the edge-cut is increased, but now there are edge-cut reducing moves to bemade.graph partitioning methods, called spectralmethods, relax this discrete optimization problem by transformingit into a continuous one. The minimization of the relaxed problem is then solved by computing the secondeigenvector of the discrete Laplacian of the graph.More precisely, spectral methods work as follows. Given a graph G, its discrete Laplacian matrix LG isde�ned as (LG)qr = 8<: 1; if q 6= r, q and r are neighbors,�deg(q); if q = r,0; otherwise.LG is equal to A�D, where A is the adjacency matrix of the graph and D is a diagonal matrix in which D[i; i]is equal to the degree of vertex i. The discrete Laplacian LG is a negative semide�nite matrix. Furthermore,its largest eigenvalue is zero and the corresponding eigenvector consists of all ones. Assuming that the graphis connected, the magnitude of the second largest eigenvalue gives a measure of the connectivity of the graph.The eigenvector corresponding to this eigenvalue (referred to as the Fiedler vector), when associated withthe vertices of the graph, gives a measure of the distance (based on connectivity) between the vertices. Oncethis measure of distance is computed for each vertex, these can be sorted by this value, and the ordered listcan be split into two parts to produce a bisection [38, 74, 75]. A k-way partitioning can be computed byrecursive bisection. Figure 14 illustrates the spectral bisection technique. It shows a graph along with itsadjacency matrix A, degree matrix D, Laplacian LG, and the resulting bisected graph.While the recursive spectral bisection algorithm typically produces higher-quality partitionings than geo-metric schemes, calculating the Fiedler vector is computationally intensive. This process dominates theruntime of the scheme and results in overall times that are several orders of magnitude higher than geo-metric techniques. For this reason, great attention has been focused on speeding up the algorithm. First,the improvement of methods, such as the Lanczos algorithm [66], for approximating eigenvectors has madethe computation of eigenvectors practical. Multilevel methods have also been employed to speed up thecomputation of eigenvectors [4]3. Finally, spectral partitioning schemes that use multiple eigenvectors in3Note that multilevel eigensolver methods are not the same as the multilevel graph partitioning techniques discussed in Sec-tion 0.3.4.

CONTENTS 13

edge-cut: 4 edge-cut: 2
(c) (d)

-2

-2

-2

-2

-2

-3

-3
-3

-4

-3

-1

-5

-1

+2

-3

-2
-4

-3

-3

edge-cut: 6edge-cut: 7
(a) (b)

-2

-2

-2

-2

-2

-2

-3

-3
-3

-4

+1

-3

0

-1

-5

-5

-1

+2

-2

-2

-2

-2

-2

-3

-3
-3

-4

-3

-1

-5

-1

+2

-1

-1

-3

-2
-4

-2

-2

-2

-2

-2

-3

-3
-3

-4

-3

-5

-3

-2
-4

-3

-3

-2

-3

+1

0

+2

-2 -2

-3

Figure 13: The KL/FM algorithm from Figure 12 is continued here. Edge-cut reducing moves are shownfrom (a) through (d). By (d), the re�nement algorithm has reached a local minimum.order to divide the computation into four and eight parts at each step of the recursive decomposition havebeen investigated [38]. Since the computation of the additional eigenvectors is relatively inexpensive, thisscheme has a smaller net cost, while producing partitionings of comparable or better quality, compared tobisecting the graph at each recursive step.0.3.4 Multilevel SchemesRecently, a new class of partitioning algorithms has been developed [9, 13, 26, 30, 37, 45, 49, 61, 97] thatis based on the multilevel paradigm. This paradigm consists of three phases: graph coarsening, initialpartitioning, and multilevel re�nement. In the graph coarsening phase, a series of graphs is constructed bycollapsing together selected vertices of the input graph in order to form a related coarser graph. This newlyconstructed graph then acts as the input graph for another round of graph coarsening, and so on, until asu�ciently small graph is obtained. Computation of the initial bisection is performed on the coarsest (hencesmallest) of these graphs and so is very fast. Finally, partition re�nement is performed on each level graph,from the coarsest to the �nest (i.e., original graph) using a KL/FM-type algorithm. Figure 15 illustrates themultilevel paradigm.A common method for graph coarsening is collapsing together the pairs of vertices that form a matching. Amatching of the graph is a set of edges, no two of which are incident on the same vertex. Vertex matchings canbe computed by a number of methods. Widely used schemes include random matching, heavy-edge matching[45], maximum weighted matching [21], and approximated maximum weighted matching [61]. As an example,Figure 16(a) shows a random matching along with the coarsened graph that results from collapsing togethervertices incident on every matched edge. Figure 16(b) shows a heavy-edge matching that tends to selectedges with higher weights [45].The multilevel paradigm works well for two reasons. First, a good coarsening scheme can hide a large numberof edges on the coarsest graph. Figure 16 illustrates this point. The original graphs in Figures 16(a) and (b)have total edge weights of thirty-seven. After coarsening is performed on each, their total edge weights arereduced. Figures 16(a) and (b) show two possible coarsening heuristics, random and heavy-edge. In bothcases, the total weight of the visible edges in the coarsened graph is less than that on the original graph.Note that by reducing the exposed edge weight, the task of computing a good quality partitioning becomes

CONTENTS 14
1 2

3
4

5 6

1 2

3
4

5 6

GL = A - D

6

5

4

3

2

1

1 2 3

6

5

4

3

2

1

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 5 64

1

1

1

1

1

1

1

1

1

1 1

1

1

1

2

2

3

3

2

2 -2

-2

-3

-3

-2

-2

1

1

1

1 1

1

1

1 1

1

11

11

4 5 6

A D

Input Graph Partitioned Graph

Figure 14: A graph, along with its adjacency matrix A, degree matrix D, and Laplacian LG. The Fiedlervector of LG associates a value with each vertex. The vertices are then sorted according to this value. Abisection is obtained by splitting the sorted list in half.easier. For example, a worst case partitioning (i.e., one that cuts every edge) of the coarsest graph will beof higher quality than the worst case partitioning of the original graph. Also, a random bisection of thecoarsest graph will tend to be better than a random bisection of the original graph.The second reason that the multilevel paradigm works well is that incremental re�nement schemes such asKL/FM become much more powerful in the multilevel context. Here, the movement of a single vertex acrossthe subdomain boundary in one of the coarse graphs is equivalent to the movement of a large number ofhighly connected vertices in the original graph, but is much faster. The ability of a re�nement algorithmto move groups of highly connected vertices all at once allows the algorithm to escape from some types oflocal minima. Figure 17 illustrates this phenomenon. It shows a partitioned graph (included are the edgeweights for the graph) both before and after coarsening. The partitioning for the uncoarsened graph (on theleft-hand side) is in a local minimum. However, the partitioning for the coarsened graph (on the right side)is not. That is, edge-cut reducing moves can be made here. As discussed in Section 0.3.2, modi�cations ofKL/FM schemes have been developed that attempt to move sets of vertices at once in order to improve thee�ectiveness of re�nement [2, 16, 28]. However, computing good sets to move is computationally intensive.Multilevel schemes bene�t from moving multiple vertices at the same time without having to compute thesesets.Preliminary theoretical work that explains the e�ectiveness of the multilevel paradigm has been done in [44].Multilevel Recursive Bisection The multilevel paradigm was developed independently by Bui andJones, [9] in the context of computing �ll-reducing matrix reorderings; by Hendrickson and Leland [37], inthe context of �nite-element mesh partitioning; and by Hauck and Borriello [30] (called Optimized KLFM)and by Cong and Smith [13], for hypergraph partitioning4. Karypis and Kumar studied this paradigmextensively in [45] by evaluating a variety of coarsening, initial partitioning, and re�nement schemes inthe context of graphs from many di�erent application domains. Their evaluation showed that the overallparadigm is quite robust and consistently outperformed the spectral partitioning method in both speedand quality of partitioning. The evaluation also showed that the heavy-edge matching heuristic is verye�ective in hiding edges in the coarsest graph. Figure 16 gives an example of this. The random matching inFigure 16(a) results in a total exposed edge weight of thirty, while the heavy-edge matching in Figure 16(b)results in a total exposed edge weight of only twenty-one. When heavy-edge matching is used, the initial4A hypergraph is a generalization of a graph in which edges can connect not just two, but an arbitrary number of vertices.

CONTENTS 15

G 4

G 3

G 2

G 1

G 0

G 3

G 2

G 1

G 0

C
oa

rs
en

in
g

Ph
as

e
U

ncoarsening and R
efinem

ent Phase

Initial Partitioning PhaseFigure 15: The three phases of the multilevel graph partitioning paradigm. During the coarsening phase,the size of the graph is successively decreased. During the initial partitioning phase, a bisection is computed.During the uncoarsening and re�nement phase, the bisection is successively re�ned as it is projected to thelarger graphs. G0 is the input graph, which is the �nest graph. Gi+1 is the next level coarser graph of Gi.G4 is the coarsest graph.partitioning that is computed on the coarsest graph is often not too di�erent from the �nal partitioningobtained after multilevel re�nement. This allows the use of greatly simpli�ed (and therefore fast) variants ofKL/FM schemes during the uncoarsening phase. These simpli�ed schemes signi�cantly speed up re�nementwithout compromising the quality of the partitioning. Furthermore, these simpli�ed variants are much moreamenable to parallelization than the original KL/FM heuristic that is inherently serial [24]. Karypis andKumar also showed that as long as a good matching scheme is used and KL/FM re�nement is performedon each level graph, the method of computing the initial partitioning on the coarsest graph does not havemuch impact on the �nal solution quality.Multilevel recursive bisection partitioning algorithms are available in several public domain libraries, suchas Chaco [36], MeTiS [47], and SCOTCH [68], and are used extensively for graph partitioning in a variety ofdomains. Additional variations of the heavy-edge heuristic are presented in [51] in the context of hypergraphpartitioning. These variations are implemented in the hMetis [46] library for partitioning hypergraphs.Multilevel k-way Partitioning Karypis and Kumar [49] present a scheme for re�ning a k-way parti-tioning that is a generalization of simpli�ed variants of the KL/FM bisection re�nement algorithm. Usingthis k-way re�nement scheme, Karypis and Kumar present a k-way multilevel partitioning algorithm in [49]whose runtime is linear in the number of edges (i.e., O(jEj)); whereas the runtime of multilevel recursivebisection schemes is O(jEj log k). Experiments on a large number of graphs arising in various domains(including �nite-element methods, linear programming, VLSI, and transportation) show that this schemeproduces partitionings that are of comparable or better quality than those produced by multilevel recursivebisection, while requiring substantially less time. For example, partitionings of graphs containing millionsof vertices can be computed in only a few minutes on a typical workstation. For many of these graphs,the process of graph partitioning takes less time than the time to read the graph from disk into memory.Compared with multilevel spectral bisection [37, 74, 75], multilevel k-way partitioning is usually two ordersof magnitude faster and produces partitionings with generally smaller edge-cuts. The runtimes of multilevelk-way partitioning algorithms are usually comparable to the runtimes of small numbers (2-4) of runs of

CONTENTS 16

1

1
3

8 6

5

6

[2]

[2]

[2]

[2]

[2]

edge weight: 30

[2]

[2]

[2][2]

[2]

5

4

1 5
1

3

5

edge weight: 37

edge weight: 21

edge weight: 37

2
1

1
2

1

3

2
3

2

1

1

1

3

4

1

2

1
2

1

3

2
3

2

1

1

3

3

4

1

1

1 1

1

44

1

1
3

(a)

Random Matching Heavy-edge Matching

(b)Figure 16: A random matching of a graph along with the coarsened graph (a). The same graph is matched(and coarsened) with the heavy-edge heuristic in (b). The heavy-edge matching minimizes the exposed edgeweight.geometric recursive bisection algorithms [23, 31, 59, 62, 77] but tend to produce higher-quality partitioningsfor a variety of graphs, including those originating in scienti�c-simulation applications.Multilevel k-way graph partitioning algorithms are available in the JOSTLE [94] and MeTiS [47] softwarepackages.0.3.5 Combined SchemesAll of the graph partitioning techniques discussed in this section have individual advantages and disadvan-tages. Combining di�erent types of schemes intelligently can maximize the advantages without su�ering allof the disadvantages. In this section, we brie
y describe a few commonly-used combinations.KL/FM-type algorithms are often used to improve the quality of partitionings that are computed by othermethods. For example, an initial partitioning can be computed by a fast geometric method, and thenthe relatively low quality partitioning can be re�ned by a KL/FM algorithm. Multilevel schemes use thistechnique, as well, by performing KL/FM re�nement on each coarsened version of the graph after an initialpartitioning is computed (by either LND [45], spectral [37], or other methods [26]). As another example,spectral methods can be used to compute coordinate information for vertices [29]. These coordinates canthen be used by a geometric scheme to partition the graph [85].

CONTENTS 17
After Coarsening

1 1
1 1

1

1

1

2

2

110
1010

10

10

10
1010

10

10

10
1010

10

10

10
1010

10

10

Figure 17: An example of a partitioned graph (with edge weights) before and after coarsening. The par-titioning for the uncoarsened graph is in a local minima, while the partitioning for the coarsened graph isnot.0.3.6 Qualitative Comparison of Graph Partitioning SchemesThe large number of graph partitioning schemes reviewed in this section di�er widely in the edge-cut qualityproduced, runtime, degree of parallelism, and applicability to certain kinds of graphs. Often, it is not clearas to which scheme is better under di�erent scenarios. In this section, we categorize properties of graphpartitioning algorithms commonly used in scienti�c-simulation applications. This task is quite di�cult, asit is not possible to precisely model the properties of the graph partitioning algorithms. Furthermore, formost of the schemes, su�cient data on the edge-cut quality and runtime for a common pool of benchmarkgraphs is not available. The relative comparison of di�erent schemes draws upon the experimental results in[23, 31, 38, 45]. We try to make reasonable assumptions whenever enough data is not available. For the sakeof simplicity, we have chosen to represent each property in terms of a small discrete scale. In the absence ofextensive data, it is not possible to do much better than this in any case.Figure 18 compares three variations of spectral partitioners [4, 37, 74, 75], a multilevel algorithm [49], an LNDalgorithm [22], a Kernighan-Lin algorithm (with random initial partitionings) [55], a CND algorithm [31],two variations of the RIB algorithm [36, 62], and two variations of the geometric sphere-cutting algorithm[23, 59].For each graph partitioning algorithm, Figure 18 shows a number of characteristics. The �rst column showsthe number of trials that are performed for each partitioning algorithm. For example, for the KL algorithm,di�erent trials can be performed each starting with a di�erent random partitioning of the graph. Each trialis a di�erent run of the partitioning algorithm, and the best of these is selected. As we can see from thistable, some algorithms require only a single trial either because multiple trials will give the same partitioningor a single trial gives very good results (as in the case of multilevel graph partitioning). However, for someschemes (e.g., KL and geometric partitioning), di�erent trials yield signi�cantly di�erent edge-cuts. Hence,these schemes usually require multiple trials in order to produce good quality partitionings. For multipletrials, we only show the case of ten and �fty trials, as often the quality saturates beyond �fty trials or theruntime becomes too large.The second column shows whether the partitioning algorithm requires coordinates for the vertices of thegraph. Some algorithms such as CND and RIB are applicable only if coordinate information is available.Others (e.g., combinatorial schemes) only require the sets of vertices and edges.The third column of Figure 18 shows the relative quality of the partitionings produced by the various schemes.Each additional circle corresponds to roughly ten percent improvement in the edge-cut. The edge-cut qualityfor CND serves as the base, and it is shown with one circle. Schemes with two circles for quality should�nd partitionings that are roughly ten percent better than CND. This column shows that the quality of the

CONTENTS 18
1

1

1

1

50

10

1

1

1

1

1

10

50

1

1

Multilevel Spectral Bisection

Multilevel Partitioning

Kernighan-Lin

Nee
ds

 C
oo

rd
ina

te
s

Num
be

r o
f T

ria
ls

no

no

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

10 yes

yes50

Deg
re

e
of

 P
ar

all
eli

sm

Qua
lity

Lo
ca

l V
iew

Glob
al

View

Run
 T

im
e

Mulitlevel Spectral Bisection-KL

Coordinate Nested Dissection

Levelized Nested Dissection

Geometric Sphere-cutting

Geometric Sphere-cutting-KL

Recursive Inertial Bisection

Recursive Inertial Bisection-KL

Recursive Spectral Bisection

Figure 18: Graph partitioning schemes rated with respect to quality, runtime, degree of parallelism andrelated characteristics.partitionings produced by the multilevel graph partitioning algorithm and the multilevel spectral bisectionwith KL is very good. The quality of geometric partitioning with KL re�nement is equally good when �ftyor more trials are performed. The quality of the other schemes is worse than the above three by variousdegrees. Note that for both KL partitioning and geometric partitioning, the quality improves as the numberof trials increases.The reason for the di�erences in the quality of the various schemes can be understood if we consider thedegree of quality as a sum of two quantities that we refer to as local view and global view. A graphpartitioning algorithm has a local view of the graph if it is able to do localized re�nement. According tothis de�nition, all the graph partitioning algorithms that perform KL/FM-type re�nement possess this localview, whereas the others do not. Global view refers to the extent that the graph partitioning algorithmtakes into account the structure of the graph. For instance, spectral bisection algorithms take into accountonly global information of the graph by minimizing the edge-cut in the continuous approximation of thediscrete problem. On the other hand, a single trial of the KL algorithm does not utilize information aboutthe overall structure of the graph, since it starts from a random bisection. For schemes that require multiplerandom trials, the degree of the global view increases as the number of trials increases. The global view ofmultilevel graph partitioning is among the highest. This is because multilevel graph partitioning capturesglobal graph structure in two ways. First, it captures global structure through the process of coarsening;second, it captures global structure during initial graph partitioning by performing multiple trials.The sixth column of Figure 18 shows the relative time required by di�erent graph partitioning schemes.CND, RIB, and geometric sphere-cutting (with a single trial) require relatively small amounts of time. Weshow the runtime of these schemes by one square. Each additional square corresponds to roughly a factorof ten increase in the runtime. As we can see, spectral graph partitioning schemes require several orders ofmagnitude more time than the faster schemes. However, the quality of the partitionings produced by the

CONTENTS 19

Figure 19: A helicopter blade rotating through a mesh. As the blade spins, the mesh is adapted by re�ningit in the regions that the blade has entered and de-re�ning it in the regions that are no longer of interest.(Figure provided by Rupak Biswas, NASA Ames Research Center.)faster schemes is relatively poor. The quality of these schemes can be improved by increasing the number oftrials and/or by using the KL/FM re�nement, both of which increase the runtime of the partitioner. On theother hand, multilevel graph partitioning requires a moderate amount of time and produces partitionings ofvery high quality.The degree of parallelizability of di�erent schemes di�ers signi�cantly and is depicted by a number of trianglesin the seventh column of Figure 18. One triangle means that the scheme is largely sequential, two trianglesmeans that the scheme can exploit a moderate amount of parallelism, and three triangles means that thescheme can be parallelized quite e�ectively. Schemes that require multiple trials are inherently parallel, asdi�erent trials can be done on di�erent (groups of) processors. In contrast, a single trial of KL is verydi�cult to parallelize and appears inherently serial [24]. Multilevel schemes that utilize relaxed variationsof KL/FM re�nement and the spectral bisection scheme are moderately parallel in nature.0.4 Load Balancing of Adaptive ComputationsFor large-scale scienti�c simulations, the computational requirements of techniques relying on globally re�nedmeshes become very high, especially as the complexity and size of the problems increase. By locally re�ningand de-re�ning the mesh either to capture
ow-�eld phenomena of interest [7] or to account for variations inerrors [67], adaptive methods make standard computational methods more cost e�ective. One such exampleis numerical simulations for improving the design of helicopter blades [7]. (See Figure 19.) In order to capture
ow-�eld phenomena of interest accurately, the �nite-element mesh must be extremely �ne both around thehelicopter blade and in the vicinity of the sound vortex created by the blade. It should be coarser in otherregions of the mesh for maximum e�ciency. As the simulation progresses, neither the blade nor the soundvortex remains stationary. Therefore, the new regions of the mesh that these enter need to be re�ned, whilethose regions that are no longer of key interest should be de-re�ned. These dynamic adjustments to themesh result in some processors having signi�cantly more (or less) work than others and thus cause loadimbalance. Similar issues exist for problems in which the amount of computation associated with each meshelement changes over time [18]. For example, in particles-in-cells methods that advect particles through amesh, large temporal and spatial variations in particle density can introduce substantial load imbalance.In both of these types of applications, it is necessary to dynamically load balance the computations asthe simulation progresses. This dynamic load balancing can be achieved by using a graph partitioningalgorithm. In the case of adaptive �nite-element methods, the graph either corresponds to the mesh obtainedafter adaptation or else corresponds to the original mesh with the vertex weights adjusted to re
ect errorestimates [67]. In the case of particles-in-cells, the graph corresponds to the original mesh with the vertexweights adjusted to re
ect the particle density. We will refer to this problem as adaptive graph partitioningto di�erentiate it from the static graph partitioning problem that arises when the computations remain �xed.

CONTENTS 20Adaptive graph partitioning shares most of the requirements and characteristics of static graph partitioningbut also adds an additional objective. That is, the amount of data that needs to be redistributed among theprocessors in order to balance the load should be minimized. In order to accurately measure this cost, weneed to consider not only the weight of a vertex, but also its size [63]. Vertex weight is the computationalcost of the work represented by the vertex, while size re
ects its redistribution cost. Thus, the repartitionershould attempt to balance the partitioning with respect to vertex weight while minimizing vertex migrationwith respect to vertex size. Depending on the representation and storage policy of the data, size and weightmay not necessarily be equal [63].Oliker and Biswas studied various metrics for measuring data redistribution costs in [63]. They presented themetrics TotalV andMaxV. TotalV is de�ned as the sum of the sizes of vertices that change subdomainsas the result of repartitioning. TotalV re
ects the overall volume of communications needed to balance thepartitioning. MaxV is de�ned as the maximum of the sums of the sizes of those vertices that migrate intoor out of any one subdomain as a result of repartitioning. MaxV re
ects the maximum time needed by anyone processor to send or receive data. Results in [63] show that measuring the MaxV can sometimes be abetter indicator of data redistribution overhead than measuring the TotalV. However, many repartitioningschemes [63, 80, 81, 100] attempt to minimize TotalV instead of MaxV for the following reasons: (i)TotalV can be minimized during re�nement by the use of relatively simple heuristics; minimizing MaxVtends to be more di�cult. (ii) The MaxV is lower bounded by the amount of vertex weight that needsto be moved out of the most overweight subdomain (or into the most underweight subdomain). For manyproblems, this lower bound can dominate the MaxV and so no improvement is possible. (iii) MinimizingTotalV often tends to do a fairly good job of minimizing MaxV.Repartitioning Approaches A repartitioning of a graph can be computed by simply partitioning thenew graph from scratch. Since no consideration is given to the existing partitioning, it is unlikely thatvertices will be assigned to their original subdomains with this method. Therefore, this approach will tendto require much more data redistribution than is necessary in order to balance the load.An alternate strategy is to attempt to perturb the input partitioning just enough so as to balance it. This canbe accomplished trivially by the following cut-and-paste repartitioning method: Excess vertices in overweightsubdomains are simply swapped into one or more underweight subdomains (regardless of whether these sub-domains are adjacent) in order to balance the partitioning. While this method will optimally minimize dataredistribution, it can result in signi�cantly higher edge-cuts compared with more sophisticated approachesand will typically result in disconnected subdomains. For these reasons, it is usually not considered a viablerepartitioning scheme for most applications. A better approach is to use a di�usion-based repartitioningscheme. These schemes attempt to minimize the data redistribution costs while signi�cantly decreasing thepossibility that subdomains become disconnected.Figure 20 illustrates these methods for a graph whose vertices and edges have weights of one. The shadingof a vertex indicates the original subdomain to which it belongs. In Figure 20(a), the original partitioningis imbalanced because subdomain 3 has a weight of six, while the average subdomain weight is only four.The edge-cut of the original partitioning is twelve. In Figure 20(b), the original partitioning is ignoredand the graph is partitioned from scratch. This partitioning also has an edge-cut of twelve. However,thirteen out of twenty vertices are required to change subdomains. That is, TotalV is thirteen. MaxV issix. In Figure 20(c), cut-and-paste repartitioning was used. Here, only two vertices are required to changesubdomains and MaxV is also two. The edge-cut of this partitioning is sixteen, and subdomain 1 is nowdisconnected. Figure 20(d) gives a di�usive repartitioning that presents a compromise between those inFigure 20(b) and (c). Here, TotalV is four, MaxV is two, and the edge-cut is fourteen.0.4.1 Scratch-Remap RepartitionersThe example in Figure 20(b) illustrated how partitioning from scratch resulted in the lowest edge-cut of thethree repartitioning methods. This is expected since it is possible to use a state-of-the-art graph partitionerto compute the new partitioning from scratch. However, this repartitioning resulted in the highest data

CONTENTS 21

(c) (d)
edge-cut: 14edge-cut: 16

TotalV: 2
MaxV: 2 MaxV: 2

TotalV: 4

(a) (b)
edge-cut: 12 edge-cut: 12

TotalV: 13
MaxV: 6

2
3

1

4

1

4

3

2

4

3

2

1

2

1

4
3

1

Figure 20: Various repartitioning schemes. An example of an imbalanced partitioning (a). This partitioningis balanced by partitioning the graph from scratch (b), cut-and-pasted repartitioning (c), and di�usiverepartitioning (d).redistribution costs. To understand this, it is necessary to examine the partitionings in Figures 20(a) and(b). Notice that in Figure 20(a), subdomain 1 is on the left, subdomain 3 is on the right, and subdomain 4is on the bottom. For the partitioning in Figure 20(b), subdomain 1 is on the right, subdomain 3 is onthe bottom, and subdomain 4 is on the top left. A large amount of the data redistribution required forthe partitioning in Figure 20(b) is brought about because the subdomains are labeled suboptimally. Simplychanging the subdomain labels of the new partitioning in accordance with the old partitioning (withoutotherwise modifying the partitioning) can signi�cantly reduce the data redistribution cost [88].Oliker and Biswas [63] present a number of repartitioning schemes that compute new partitionings fromscratch and then intelligently map the subdomain labels to those of the original partitionings in order tominimize the data redistribution costs. We refer to this method as scratch-remap repartitioning. Partitionremapping is performed as follows: (i) Construct a similarity matrix, S, of size k� k. A similarity matrix isone in which the rows represent the subdomains of the old partitioning, the columns represent the subdomainsof the new partitioning, and each element, Sqr, represents the sum of the sizes of the vertices that are insubdomain q of the old partitioning and in subdomain r of the new partitioning. (ii) Select k elements suchthat every row and column contains exactly one selected element and such that the sum of the selectedelements is maximized. This corresponds to the remapping in which the amount of overlap between theoriginal and the remapped partitionings is maximized, and hence, the total volume of data redistributionrequired in order to realize the remapped partitioning is minimized. (iii) For each element Sqr selected,rename domain r to domain q on the remapped partitioning. Figure 21 illustrates such a remapping process.Here, similarity matrix S has been constructed based on the example in Figure 20. The �rst row of S indicatesthat subdomain 1 on the old partitioning (Figure 20(a)) consists of zero vertices from subdomains 1 and 2 onthe new partitioning (Figure 20(b)) and one vertex from each of subdomains 3 and 4 on the new partitioning.Likewise, the second row indicates that subdomain 2 on the old partitioning consists of two vertices fromeach of subdomains 2 and 4 on the new partitioning and zero vertices from the other two subdomains. Thethird and fourth rows are constructed similarly. In this example, we select underlined elements S14, S22,

CONTENTS 22
2

2

New Partition

O
ld

 P
ar

tit
io

n

Remapping

1

1

11

2

4

13

1

1

MaxV: 3
TotalV: 6edge-cut: 12

(c)(b)(a)

21

3

4

4

3

2

2 3 4

2

3

4

4

2

3

Figure 21: A similarity matrix, the corresponding remapping, and the remapped partitioning from Fig-ure 20(b).
(a) (b) (c)Figure 22: An imbalanced partitioning and two repartitioning techniques. The partitioning in (a) is imbal-anced. It is balanced by an incremental method in (b) and by a scratch-remap method in (c).S31, and S43. This combination maximizes the sum of the sizes of the selected elements. Running throughthe selected elements, subdomain 1 on the newly computed partitioning is renamed 3, and subdomains 2, 3,and 4 are renamed 2, 4, and 1, respectively. Figure 21(c) shows the remapped partitioning. Here, TotalVis six and MaxV is three.Although the remapping phase reduces the data redistribution costs (without a�ecting the edge-cut), scratch-remap schemes still tend to result in higher redistribution costs than schemes that attempt to balance theinput partitioning by minimal perturbation (e.g., cut-and-paste and di�usion-based schemes). For example, ifthe newly adapted graph is only slightly di�erent from the original graph, then partitioning from scratch couldproduce a new partitioning that is still substantially di�erent from the original and requires many verticesto be moved even after the remapping phase. On such a graph, the imbalance could easily be correctedby moving only a small number of vertices. Figure 22 illustrates an example of this. The partitioningin Figure 22(a) is slightly imbalanced. The upper-right subdomain has �ve vertices, while the averagesubdomain weight is four. In Figure 22(b), the partitioning is balanced by moving a single vertex fromthe upper-right subdomain to the lower-right subdomain. Therefore, both TotalV and MaxV are one.Figure 22(c) shows a new partitioning that has been computed from scratch and then optimally remappedto the partitioning in Figure 22(a). Despite this optimal remapping, the repartitioning has a TotalV ofseven and a MaxV of two. All three of the partitionings have similar edge-cuts.The reason that the scratch-remap scheme does so poorly here with respect to data redistribution is becausethe information that is provided by the original partitioning is not utilized until the �nal remapping process.At this point, it is too late to avoid high data redistribution costs even if we compute an optimal remapping.The problem in our example is that the partitioning in Figure 22(a) is shaped like a `+', while the partition-ing in Figure 22(c) forms an `x'. Both of these are of equal quality, so a static partitioning algorithm couldeasily compute either of these. However, we would like the partitioning algorithm used in a scratch-remaprepartitioner to drive the computation of the partitioning toward that of the original partitioning, whenever

CONTENTS 23possible, without a�ecting the quality. A scratch-remap algorithm can potentially do this if it is able toextract and use the information implicit in the original partitioning during the computation of the new par-titioning. An algorithm called Locally-Matched Multilevel Scratch-Remap (LMSR) that tries to accomplishthis is presented in [81]. LMSR decreases the amount of data redistribution required to balance the graphcompared to naive scratch-remap schemes, particularly for slightly imbalanced graphs [81].0.4.2 Di�usion-based RepartitionersDi�usive load balancing schemes attempt to minimize the di�erence between the original partitioning andthe �nal repartitioning by making incremental changes in the partitioning to restore balance. Subdomainsthat are overweight in the original partitioning export vertices to adjacent subdomains. These may furtherexport vertices to their neighbors in an e�ort to reach global balance. By limiting the movement of verticesto neighboring subdomains, these schemes attempt to minimize the edge-cut and maintain connected sub-domains. As an example, the repartitioning in Figure 20(d) is obtained by a di�usive process. In this case,subdomain 3 migrates a vertex to each of subdomains 2 and 4. This causes the recipient subdomains tobecome overweight. Each next migrates a vertex to subdomain 1.Any di�usion-based repartitioning scheme needs to address two questions: (i) How much work should betransferred between processors? and (ii) Which tasks should be transferred? The answer to the �rst questiontells us how to balance the partitioning, while the answer to the second tells us how to minimize the edge-cutas we do this. A lot of work has focused on answering the �rst question in the context of balancing unrelatedtasks that are unevenly distributed among processors [8, 14, 15, 40, 41, 42, 105, 107]. These take the machinearchitecture, but not the interdependencies of the tasks, into consideration when computing the amount ofwork to transfer between processors. More recently, in the context of adaptive computational simulations,work has focused not only on how much, but also which tasks to transfer [18, 64, 65, 67, 70, 80, 81, 87, 92,93, 99, 100]. In the rest of this section, we focus on these schemes.Schemes for determining how much work to transfer between processors can be grouped into two categories.Di�usion schemes that base the exchange of work among the processors only on their respective work loads(and not on the loads of distant processors) [80] are called local di�usion algorithms. Other schemes [18,64, 65, 67, 70, 80, 81, 87, 92, 93, 99, 100], use global views of the processor loads to balance the partitioning.We call these global di�usion schemes. Most global di�usion schemes either perform di�usion in a recursivebisection manner [18, 87, 93], utilize space-�lling curves [65, 67, 70], or compute
ow solutions [64, 80, 81, 99,100] that prescribe the amount of work to be moved between pairs of processors.Recursive bisection di�usion schemes [18, 87, 93] split the subdomains into two groups and then attempt tobalance these groups. Next, both of the (balanced) groups are split in two and the algorithm recurses onthese subgroups.Adaptive space-�lling curve partitioners [65, 67, 70] can compute repartitionings by maintaining the originalordering of the mesh elements. Here, the weights associated with the ordered mesh elements are changedto re
ect the structural changes in the computation. All that is required to compute a repartitioning is torecompute the k-way splitting of the ordered list with respect to the new weights.Flow solutions are usually computed in order to optimize some objective. Ou and Ranka [64] present aglobal di�usion scheme that optimally minimizes the one-norm of the
ow using linear programming. Sucha scheme will minimize TotalV provided that the weights and sizes of the vertices are equal. Hu and Blake[42] present a method that optimally minimizes the two-norm of the
ow. They prove that such a
owsolution can be obtained by solving the linear equation (�L)� = b, where b is the vector containing the loadof each subdomain minus the average subdomain load, L is the Laplacian matrix (as de�ned in Section 0.3.3)of the graph that models the subdomain connectivity (i.e., the subdomain connectivity graph), and �, the
ow solution, is a vector with k elements. An amount of vertex weight equal to �q � �r needs to be movedfrom subdomain q to subdomain r for every r that is adjacent to q in order to balance the partitioning.Figure 23 illustrates the di�erence between one- and two-norm minimization of the
ow solution. This�gure shows the subdomain connectivity graph for a nine-way partitioning along with the two di�erent

CONTENTS 24
(a)

one-norm: 40
two-norm: 400

10

10

10

10

(b)
one-norm: 51.4
two-norm: 245.6

5.7

5.7

5.7

5.7

4.3

4.3
4.3

4.3

1.4 1.4

1.4

2.9

2.9

1.4

Figure 23: Two di�erent
ow solutions for the subdomain graph of an imbalanced partitioning. The one-normof the data migration is minimized in (a). The two-norm of the data migration is minimized in (b).
ow solutions. Here, the two dark subdomains are overweight by ten, while the two white subdomainsare underweight by ten. The weight of the rest of the subdomains equals the average subdomain weight.The
ow solution in Figure 23(a) minimizes the one-norm of the data movement. The
ow solution inFigure 23(b) minimizes the two-norm of the data movement. The one-norm minimization solution canminimize TotalV, but will not in general minimize MaxV, as most of the
ow is sent through a few links.The two-norm minimization solution more evenly distributes the
ow through the links (and thus tends toresult in lower values for MaxV), but requires greater total
ow (and therefore, worse TotalV), comparedto the one-norm solution.The
ow solution indicates how much vertex weight needs to be transfered between each pair of adjacentsubdomains. The second problem is to determine exactly which vertices to move so as to minimize theedge-cut of the resulting partitioning. One possibility is to repeatedly transfer layers of vertices along thesubdomain boundary until the desired amount of vertex weight has been transferred [64, 93]. A more precisescheme is to move one vertex at a time across the subdomain boundary, each time selecting the vertex thatwill result in the smallest edge-cut [99]. This scheme, like the KL/FM algorithm, utilizes only a local view ofthe graph, and can make (globally) poor selections. This problem can be corrected if the transfer of verticesis performed in a multilevel context [80, 100]. Such schemes, called multilevel di�usion algorithms, performgraph coarsening and then begin di�usion on the coarsest graph. During the uncoarsening phase, verticesare moved to achieve (or maintain) load balance, while also trying to improve the edge-cut. By beginningdi�usion on the coarsest graph, these algorithms are able to move large chunks of highly connected vertices ina single step. Thus, the bulk of the work required to balance the partitioning is done quickly. Furthermore,by moving highly connected vertices together, high-quality edge-cuts can often be maintained. Experimentalresults show that multilevel di�usion can compute partitionings of higher quality than schemes that performdi�usion only on the original graph [80, 100] and is often faster.Partitionings that are highly imbalanced in localized areas, di�usion-based schemes require vertex
ow topropagate over long distances. For this class of problems, it is bene�cial to determine not only how muchand which vertices to move, but also when vertices should move [15]. A di�usion algorithm, called WavefrontDi�usion, that determines the best time to migrate vertices is presented in [81]. In Wavefront Di�usion,the
ow of vertices moves in a wavefront starting from the most overweight subdomains. This methodguarantees that all subdomains will contain the largest possible selection of vertices when it is their turn toexport vertices. Thus, subdomains are able to select those vertices for migration that will best minimize edge-cut and data redistribution costs. Wavefront Di�usion obtains signi�cantly lower data redistribution costswhile maintaining similar or better edge-cut results compared to di�usion schemes that do not determinethe best time to migrate vertices, especially for partitionings that are highly imbalanced in localized areas[81].Trade-o� Between Edge-cut and Data Redistribution Costs Often, the objective of minimizingthe data redistribution cost is at odds with the objective of minimizing the edge-cut. For applications inwhich the mesh is frequently adapted or the amount of state associated with each element is relatively high,

CONTENTS 25minimizing the data redistribution cost is preferred over minimizing the edge-cut. For applications in whichrepartitioning occurs infrequently, the key objective of a repartitioning scheme will be obtaining the minimaledge-cut.While a number of coarsening and re�nement heuristics have been developed [80, 95] that can control thetrade-o�s between these two objectives to some extent, most adaptive partitioners naturally minimize onein preference to the other. For example, Wavefront Di�usion tends to minimize data redistribution costsbetter than the LMSR algorithm. However, the LMSR algorithm tends to minimize the edge-cut of therepartitioning better than Wavefront Di�usion. As such, the two provide the user with a limited controlof the trade-o�s among these objectives. A new scheme, called the Uni�ed Repartitioning Algorithm [84],has been developed that gives the user a more �ne-tuned control of the trade-o�s among the objectives.Experimental results on a variety of problems show that the Uni�ed Repartitioning Algorithm is able toreduce the sum of the inter-processor communication overhead incurred during the iterative mesh-basedcomputation and the data redistribution costs required to balance the load as well as or better than otherrepartitioning schemes.0.5 Parallel Graph PartitioningThe ability to perform partitioning in parallel is important for many reasons. The amount of memory onserial computers is often not enough to allow the partitioning of graphs corresponding to large problems thatcan now be solved on massively parallel computers and workstation clusters. A parallel graph partitioningalgorithm can take advantage of the signi�cantly higher amount of memory available in parallel computers topartition very large graphs. Also, as heterogeneous systems of parallel machines are integrated into a singlesystem of systems (e.g., the NASA Information Power Grid [43]), the role of graph partitioning will change.Here, the exact number of processors and/or the architectural characteristics of the hardware assignedto a computation will not be known until immediately before the computation is permitted to execute.Parallel graph partitioning is crucial for e�ciency in such an environment. In the context of adaptive graphpartitioning, the graph is already distributed among processors, but needs to be repartitioned due to thedynamic nature of the underlying computation. In such cases, having to bring the graph to one processorfor repartitioning can create a serious bottleneck that could adversely impact the scalability of the overallapplication.Work in parallel graph partitioning [3, 24, 31, 50, 52, 78, 96] has been focused on geometric [31, 78], spectral[3], and multilevel partitioning schemes [50, 52, 96]. Geometric graph partitioning algorithms tend to be quiteeasy to parallelize. Typically, these require a parallel sorting algorithm. Spectral and multilevel partitionersare more di�cult to parallelize. Their parallel asymptotic runtimes are the same as that of performing aparallel matrix{vector multiplication on a randomly partitioned matrix [52]. This is because the input graphis not well distributed across the processors. If the graph is �rst partitioned and then distributed across theprocessors accordingly, the parallel asymptotic runtimes of spectral and multilevel partitioners drop to thatof performing a parallel matrix{vector multiplication on a well-partitioned matrix. Thus, performing thesepartitioning schemes e�ciently in parallel requires a good partitioning of the input graph [52, 96]. In the caseof static graph partitioning, we cannot expect the input graph to be partitioned already, since this is exactlywhat we are trying to do. However, for the adaptive graph partitioning problem, we can expect the inputpartitioning to be of high quality (that is, have a low edge-cut, even though it will be imbalanced). For thisreason, parallel adaptive graph partitioners [81, 100] tend to run signi�cantly faster than static partitioners.Since the runtimes of most parallel geometric partitioning schemes are not a�ected by the initial distributionof the graph, they can be used to compute a partitioning for multilevel (or spectral) partitioning algorithms.That is, a rough partitioning of the input graph can be computed by a fast geometric approach. This parti-tioning can be used to redistribute the graph prior to performing parallel multilevel (or spectral) partitioning[53]. Use of this \boot-strapping" approach signi�cantly increases the parallel e�ciency of the more accuratepartitioning scheme by providing it with data locality.Parallel multilevel algorithms for graph partitioning are available in the ParMeTiS [53] and JOSTLE [94]libraries.

CONTENTS 26

(a) (b) (c) (d)
edge-cut: 4
computation: 18 and 18
memory: 20 and 44

edge-cut: 4

memory: 32 and 32

edge-cut: 6
computation: 18 and 18
memory: 32 and 32

computation: 24 and 12computation
memoryFigure 24: An example of a computation with nonuniform memory requirements. Each vertex in the graphis split into two amounts. The size of the lightly-shaded portion represents the amount of computationassociated with the vertex, while the size of the dark portion represents the amount of memory associatedwith the vertex. The bisection in (b) balances the computation. The bisection in (c) balances the memory,but only the bisection in (d) balances both of these.0.6 Multi-constraint, Multi-objective Graph PartitioningIn recent years, with advances in the state of the art of scienti�c simulation, sophisticated classes of compu-tations such as multiphase, multiphysics, and multimesh simulations have become commonplace. For manyof these, the traditional graph partitioning formulation is not adequate to ensure their e�cient executionon high-performance parallel computers. Instead, new graph partitioning formulations and algorithms arerequired to meet the needs of these. In this section, we describe some important classes of scienti�c simula-tions that require more generalized formulations of the graph partitioning problem in order to ensure theire�ciency on high-performance machines; we discuss these requirements; and we describe new, generalizedformulations of the graph partitioning problem as well as algorithms for solving these problem.Multiphysics Simulations In multiphysics simulations, a variety of materials and/or processes are simu-lated together. The result is a class of problems in which the computation as well as the memory requirementsare not uniform across the mesh. Existing partitioning schemes can be used to divide the mesh among theprocessors such that either the amount of computation or the amount of memory required is balanced acrossthe processors. However, they cannot be used to compute a partitioning that simultaneously balances bothof these quantities. Our inability to do so can either lead to signi�cant computational imbalances, limitinge�ciency, or signi�cant memory imbalances, limiting the size of problems that can be solved using parallelcomputers. Figure 24 illustrates this problem. It shows three possible partitionings of a graph in whichthe amount of computation and memory associated with a vertex can be di�erent throughout the graph.The partitioning in Figure 24(b) balances the computation among the subdomains, but creates a seriousimbalance for memory requirements. The partitioning in Figure 24(c) balances the memory requirement,while leaving the computation imbalanced. The partitioning in Figure 24(d), that balances both of these,is the desired solution. In general, multiphysics simulations require the partitioning to satisfy not just one,but a multiple number of balance constraints. (In this case, the partitioning must balance two constraints,computation and memory).Multiphase Simulations Multiphase simulations consist of m distinct computational phases, each sepa-rated by an explicit synchronization step. In general, the amount of computation performed for each elementof the mesh is di�erent for di�erent phases. The existence of the synchronization steps between the phasesrequires that each phase be individually load balanced. That is, it is not su�cient to simply sum up therelative times required for each phase and to compute a decomposition based on this sum. Doing so may lead

CONTENTS 27

Figure 25: A mesh for a particle-in-cell computation. Here, both the mesh elements and the particles shouldbe balanced across the subdomains.to some processors having too much work during one phase of the computation (these may still be workingafter other processors are idle) and not enough work during other phases (these may be idle while otherprocessors are still working). Instead, it is critical that every processor have an equal amount of work fromall of the phases of the computation. A traditional partitioning scheme can be used to balance the load acrossthe processors for a single phase of the computation. However, the load may be seriously imbalanced for theother phases. Another method is to use m distinct partitionings, each of which balances the load of a singlephase only. This method requires that costly data redistribution be performed after each phase in order torealize the partitioning corresponding to the next phase. A better method is to compute a single partitioningthat simultaneously balances the work performed in each of the phases. In this case, no redistribution of thedata is necessary, and all of the phases are well balanced.Figure 25 gives an example. It shows the mesh for a simulation of particles moving through space. Thiscomputation is composed of two phases. The �rst phase is a mesh-based computation. The second phaseis a particle-based computation. In order to load balance such an application, each processor must have aroughly equal amount of both the mesh computation and the particle computation. One such bisection isshown. It splits both the mesh elements and the particles in half.Figure 26 shows another example. This is the mesh associated with the numerical simulation of the portsand the combustion chamber of an internal combustion engine. In this particular problem, the overallcomputation is performed in six phases. (Each corresponds to a di�erent shade in the �gure.) In order tosolve such a multiphase computation e�ciently on a parallel machine, every processor should contain anequal number of mesh elements of each di�erent shade. Figure 27 shows two subdomains of an eight-waypartitioning of the mesh in Figure 26. This partitioning balances all six phases while also minimizing theinterprocessor communications. (Note that not all of the shades are visible in Figures 26 and 27.)Multimesh Computations An important class of emerging numerical methods are multimesh computa-tions. Multiple meshes arise in several settings that use grids to discretize partial di�erential equations. Forexample, some operations are innately more e�cient on structured grids, such as radiation transport sweepsor FFTs. However, complex geometries are better �tted with unstructured meshes. In some simulations,both kinds of grids may be used throughout the computation. Similarly, various codes that solve for multiplephysical quantities may use separate grids to solve the appropriate equations for each variable. For example,consider a simulation of the welding of a joint between two parts, a process in which the parts are pressedtogether and thermally annealed [71]. One grid could be used for the solution of the stress{strain relationsthat mediate the mechanical deformation of the parts. A second grid could be used to solve the heat equationfor thermal conduction in the system. Since the regions of high strain may be distinct from those with highthermal gradients, each grid can be individually tailored to accurately represent the relevant physics.Now consider the implementation of such a multiphysics example on a distributed-memory parallel machine.A typical time step consists of computing a solution on the �rst mesh, interpolating the result to the secondmesh, computing a solution on the second mesh, interpolating it back to the �rst mesh, and so on. One way ofperforming this type of computation in parallel is to partition the meshes separately so that every processor

CONTENTS 28

Figure 26: An internal combustion engine simulation is an example application whose computation is per-formed in multiple phases. Each shade represents elements active during a di�erent phase. (Figure providedby Analysis and Design Application Company Limited.)has a portion of each mesh. This approach will balance the computations and minimize the communicationsduring each of the solution phases. However, because the di�erent meshes are partitioned independently,there is no assurance that an individual processor will own portions of the meshes that spatially overlap.Therefore, the amount of communication performed during the interpolation and transfer of the solutiondata can be quite high, even if an e�cient approach is used to manage this communication [71]. Ideally,we would like to partition the di�erent meshes such that each processor performs an equal amount of workfor every mesh. At the same time, we would like to minimize the amount of interprocessor communicationsrequired during the computations of the solutions, as well as that required during the interpolation andtransfer of the solutions.Domain Decomposition-based Preconditioners The two keys to the e�cient solution of systems ofsparse linear equations via iterative methods are (i) the ability to perform the matrix{vector multiplicatione�ciently in parallel, and (ii) minimizing the number of iterations required for the method to converge. Thematrix{vector multiplication is typically implemented by �rst reordering the sparse matrix to minimize thenumber of nonzero elements that are o� of the block diagonal. Then a striped partitioning of the matrixand the vector is used. Here, an interprocessor communication is required for every nonzero element o� ofthe block diagonal. A high-quality partitioning of the graph corresponding to the sparse matrix provides areordering such that the number of interprocessor communications is minimized. Use of various precondi-tioners can minimize the number of iterations required for the solution to converge. There are a numberof preconditioning schemes that construct a preconditioner of each block of the block diagonal separately.These are combined to form a preconditioner for the entire matrix. Examples are block-diagonal precondi-tioners and local ILU preconditioners. These preconditioners ignore the intra-subdomain interactions thatare represented by the nonzero elements o� of the block diagonal.Since the matrix reordering is commonly obtained by a graph partitioner, this ensures that the number ofnonzeros that are ignored in the preconditioner is relatively small. Therefore, the matrix{vector multiplica-tions will be computed e�ciently. However, this ordering does not attempt to minimize the magnitude ofthese ignored nonzeros. Therefore, it could be the case that while the number of nonzero elements is small,the sum of the ignored nonzeros is quite large. The consequence of this is that the preconditioner may notbe as e�ective as it could be if the sum of the ignored elements was minimized [56]. That is, the number ofiterations for the method to converge may not be minimized. The magnitude of the ignored elements couldbe minimized directly by a partitioning that is computed using the magnitude of the elements as the edgeweights of the graph. However, such an approach will not minimize the communication overhead incurred bythe matrix{vector multiplication. This is because an ordering computed in this way would not minimize thenumber of ignored elements. Ideally, we would like to obtain an ordering that minimizes both the number

CONTENTS 29

Figure 27: Two subdomains of an eight-way partitioning computed by the multi-constraint graph partitionerimplemented in MeTiS 4.0 are shown. Note, that all of the subdomains have an equal number of elementsof each shade (although they are not all visible). (Figure provided by Analysis and Design ApplicationCompany Limited.)of intra-domain interactions (reducing the communication overhead) and the numerical magnitude of theseinteractions (potentially leading to a better preconditioner).Figures 28 through 30 illustrate this problem. Figure 28 shows a partitioning of a graph that minimizesthe edge-cut and the corresponding matrix ordered with respect to this partitioning. Here, there are only asmall number of ignored nonzero entries o� of the diagonal. However, their magnitudes are high compared tothe other elements. Figure 29 shows a partitioning of a graph that minimizes the magnitude of the ignoredentries and the matrix ordered accordingly. Here, there are quite a bit more ignored entries compared tothe ordering shown in Figure 28. However, the magnitudes of these entries are small. Figure 30 shows thepartitioning that attempts to minimize both the number and the magnitude of the ignored entries as well asthe corresponding matrix.0.6.1 A Generalized Formulation for Graph PartitioningThe common characteristic of these problems is that they require the computation of partitionings thatsatisfy an arbitrary number of balance constraints and/or an arbitrary number of optimization objectives.Traditional graph partitioning techniques have been designed to balance only a single constraint (i.e., thevertex weight) and to minimize only a single objective (i.e., the edge-cut). An extension of the graphpartitioning formulation that can model these problems is to assign a weight vector of size m to each vertexand a weight vector of size l to each edge. The problem becomes that of �nding a partitioning that minimizesthe edge-cuts with respect to all l weights, subject to the constraints that each of the m weights is balancedacross the subdomains. This multi-constraint, multi-objective graph partitioning problem is able to modelall of the problems described above e�ectively.For example, the problem of balancing computation and memory can be modeled by associating a vectorof size two with each vertex (i.e., a two-constraint problem), where the elements of the vector represent thecomputation and memory requirements associated with the vertex. Similarly, the problem of computing anordering for a system of sparse linear systems preconditioned by a block-diagonal method can be modeled byassigning a vector of size two to each edge (i.e., a two-objective problem), where the elements of the vectorrepresent the number of nonzero entries (all ones in this case) and the magnitude of these entries.Computing decompositions for multimesh computations is a multi-constraint, multi-objective problem. Fig-

CONTENTS 30
2

1

1

1
1

2
5

2

1

3

5

10

3

12

12

2
2

1

3

2

1

5
1

1

1

5
5

5

1

2

3

10

3

12

2

1

1

2

2

edge-cut: 12
magnitude: 66

1

1

3

3

1

1

5

2

2

10

10

1

1

12

12

1

12

12

10

12

1

3 2

5

5

1 2

3

3

5

1

2

2

5 2

2

1

2

52

2

1

1

1

1

2

5 3

15

22

2

5

1

3

1

1

1

5

1

1

10

2

2

3

3

2

2

2

5

11

5

1

3 --

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

12

1Figure 28: A partitioning of a graph that minimizes the number of edges cut by the partitioning along withthe associated sparse matrix ordered accordingly.
1

3

2

1

5
1

1

5
5

5

10

3

12

2

2

1

1

5

2

1

3

5

3

12

12

2
1

2

10
1

2

2

1

2

1

3

1

2

1

edge-cut: 23
magnitude: 36

2

2

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

-- 1

1

3

3

5

5

1

1

3

3

12

12

1

15

5

2

2

3

3

1

1

1

1

1

1

5

5

1

1

10

10

2

2

5

5

1

1

2

2

2

2

5

5

2

2

1

1

2

2

2

2

12

12

10

10

1

1

3

3

1

1

1

1

1

1

2

2

2

2

5

5

12

12 3

3Figure 29: A partitioning of a graph that minimizes the sum magnitude of the edges cut by the partitioningalong with the associated sparse matrix ordered accordingly.ure 31 illustrates an example for a simple case with two meshes. Figure 31(a) shows a pair of overlappinggraphs (one with light, circular vertices and dotted edges and the other with dark, square vertices and solidedges). Additionally, dashed lines are included that show the interactions required in order to facilitate theinterpolation and transfer process. Figure 31(b) shows the graph that models this problem. Here, the twographs (and additional edges) from Figure 31(a) are combined. Every square vertex is given a weight of (1,0) and every circular vertex is given a weight of (0, 1). Solid edges are weighted (1, 0, 0). Dotted edges areweighted (0, 1, 0). Dashed edges are weighted (0, 0, 1). (Note that not all of the vertices and edges arelabeled here.) Figure 32 gives a four-way partitioning of this graph. Here, both types of vertices are balancedand their edge-cuts are minimized. At the same time, minimizing the number of dashed edges cut has helpedto ensure that regions from the two graphs that spatially overlap tend to be in the same subdomain. Thisminimizes the communications incurred by the interpolation and transfer process.Multi-constraint Graph PartitioningTheoretical work relating to multi-constraint graph partitioning includes the Ham-sandwich Theorem andits generalization [89]. This theorem states that a single plane can divide three bounded and connectedregions in half in a three-dimensional space. If two of the regions are interpreted as slices of bread and oneas a slice of ham, then the conclusion is that a single stroke of a knife can evenly divide the sandwich in two

CONTENTS 31
1

5

5
5

5

10

3

2

2

1

5

2

5

3

12

2

2

1

1

3

2

1

1

2

3
1

2

2

1

1

12

2

3

10

1

1

1

1

12

edge-cut: 15
magnitude: 45

5

5

1

1

1

1

3

3

3

3

12

12

1

1

2

2

5

5 2

2

3

3 1

1

1

1

5

5

1

1

2

2

10

10

5

5

2

2

2

2

1

1

2

2

1

1

12

12

10

10

1

1

12

12

1

1

1

1

3

3

5

5

3

3

2

2

1

1 5

5

2

2

2

2 2

2

1

1

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

Figure 30: A partitioning that minimizes both the number and the magnitude of the edges cut by thepartitioning along with the associated sparse matrix ordered accordingly.
(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)(0,1,0)

(1, 0)
(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)
(1, 0)

(0, 1)

(0, 1)

(0, 1)

(1, 0)

(1, 0)

(0, 1)

(0, 1)

(0, 1)

(0, 1) (0,1,0)

(1,0,0)

(0,0,1)

(1, 0)

(1, 0)

(1,0,0)

(0,1,0)

(0,0,1)

(0, 1)

(a) (b)Figure 31: An example of two overlapping meshes (light circles and dark squares) along with dashed inter-polation edges (a) and the corresponding multi-constraint multi-objective formulation (b).so that all three slices are cut exactly in half. Also, Djidjev and Gilbert [19] proved that if a vertex separatortheorem holds for a class of graphs (for example, Lipton and Tarjan's planar separator theorem [57]), thenthe theorem also holds for graphs in which the vertices have an arbitrary number of distinct weights.Multi-constraint graph partitioning algorithms have recently been developed by a number of researchers [48,72, 83, 102, 104]. These vary in their generality and complexity. A method is presented in [102] that utilizesa slight modi�cation of a traditional graph partitioner as a black box in order to compute partitioningsfor multiphase computations. This method partitions disjoint subsets of vertices sequentially. Vertices aregrouped together depending on the �rst phase of the multiphase computation in which they are active. Aftera set of vertices is partitioned, their subdomains are locked. Subsequent partitioning of other sets of verticesare in
uenced by the locked vertices. In this way, free vertices that are highly connected to locked verticesare likely to be assigned to the same subdomains as their neighbors. This scheme is su�cient for partitioningthe multiphase mesh shown in Figure 26.A more complex and more general algorithm is presented in [48]. This is a multilevel scheme that extendsthe coarsening and re�nement phases to handle multiple balance constraints. A key component of thisalgorithm is the initial partitioning algorithm. Here, a partitioning needs to be computed that balancesmultiple constraints. The authors present a lemma that proves that a set of two-weight objects can bepartitioned into two disjoint subsets such that the di�erence between either of the weights of the two sets isbounded by twice the maximum weight of any object. They further show that this bound can be generalized

CONTENTS 32

solid edge-cut: 10 dotted edge-cut: 12 dashed edge-cut: 12

1

1

3

2

4

Figure 32: The partitioned meshes from Figure 31.
2n

d
ob

je
ct

iv
e

1st objectiveFigure 33: A number of solution points for a two-objective optimization problem. The lightly-shaded pointsare Pareto optimal.to m weights. However, maintaining the weight bound depends on the presence of su�ciently many objectswith certain weight characteristics (an assumption that usually holds for medium- to large-size graphs). Thelemma leads to an algorithm for computing such a bisection. This scheme is su�cient for a wide range ofmultiphase, multiphysics, and multimesh simulations (including all of the examples described in this section).A parallel formulation of the multi-constraint partitioner [48] is described in [83]. Experimental results showthat this formulation can e�ciently compute partitionings of similar quality to the serial algorithm andscales to very large graphs. For example, the parallel multi-constraint graph partitioner is able to computea three-constraint 128-way partitioning of a 7 million vertex graph in about 7 seconds on 128 processors ofa Cray T3E.Multi-objective Graph PartitioningFor any single-objective optimization problem (such as the traditional graph partitioning problem), anoptimal solution exists in the feasible solution space. In multi-objective optimization, there is no singleoverall optimal solution, although there is an optimal solution for each one of the objectives. Consider theset of solution points for the two-objective optimization problem shown in Figure 33. The optimally minimal

CONTENTS 33

pareto frontier

pareto-optimal points

optimally minimal values

2n
d

ob
je

ct
iv

e
1st objective

.
.

.

Figure 34: The Pareto frontier for a two-objective optimization problem. The optimally minimal values ofeach objective are also shown.values for the two objectives are shown by the dashed lines. In this set, two unique points have the (same)optimal value for the �rst objective. However, their values for the second objective di�er. Clearly, we wouldprefer the lightly-shaded point over the black point, as this one is equal with respect to the �rst objective andhas a better (smaller) value for the second objective. In this set of solution points, we can quickly determinethat most of the points are not of interest. The solutions that are of interest are those that are not dominatedby any other solution, regardless of whether they have optimal values for any of the objectives. These arecalled the Pareto-optimal points. A solution is Pareto-optimal if there is no feasible solution for which onecan improve the value of any objective without worsening the value of at least one other objective [58]. InFigure 33, the lightly-shaded points (and only these points) are Pareto-optimal. The set of all of Pareto-optimal points is called the Pareto frontier [58]. (See Figure 34.) In general, multi-objective optimizationproblems have many Pareto-optimal solutions. One of the implications of multiple Pareto-optimal solutionsis that the de�nition of the desired solution becomes ambiguous. Every multi-objective optimization schemerequires that some method be used in order to disambiguate the de�nition of a desired solution. In thecontext of multi-objective graph partitioning, the user should specify the area along the Pareto frontier inwhich they are interested, and by doing so, control the trade-o�s among the objectives.The key challenge in solving the multi-objective partitioning problem is to allow the user to control thetrade-o�s among the di�erent objectives. This is particularly di�cult when the objectives are dissimilar innature, as such objectives cannot readily be combined. A new method of reformulating the multi-objectivegraph partitioning problem so that it can be solved using a traditional (i.e., single-objective) partitioneris presented in [82]. This method provides the user with a �ne-tuned control of the trade-o�s among theobjectives, results in predictable partitionings, and is able to handle dissimilar objectives. Speci�cally, thealgorithm computes a multi-objective partitioning based on a user-speci�ed preference vector. This vectordescribes how the trade-o�s among the objectives should be enforced. For example, if there are two objectivesand the user supplies a preference vector of (1, 1), then the algorithm will allow one objective to move awayfrom its optimal value by some amount only if the other objective moves toward its optimal value by morethan that amount. For the case of three objectives with a preference vector of (6, 2, 1), the algorithm willprefer a new solution only if 6x+2y+ z > 0, where x is the gain with respect to the �rst objective, y is thegain with respect to the second objective, and z is the gain with respect to the third objective.A number of multi-constraint and multi-objective graph partitioning algorithms, as well as some of theirparallel formulations, have been implemented in the MeTiS [47] and ParMeTiS [53] libraries. Serial andparallel multiphase partitioning algorithms [102] are implemented in the JOSTLE [94] library.

CONTENTS 340.7 ConclusionsThe state of the art in graph partitioning for high-performance scienti�c simulations has improved dra-matically over the past decade. Improvements in the speed, accuracy, generality, and scalability of graphpartitioners have led to signi�cant milestones. For example, extremely large graphs (over 0.5 billion vertices)have been partitioned on machines consisting of thousands of processors in only a couple of minutes [54].However, despite impressive achievements, there is still work to be done in the �eld. In this section, wediscuss some of the limitations of current graph partitioning problem formulations (many of which werehighlighted by Hendrickson and Kolda [35]), as well as areas of future work. We end this chapter by chartingthe functionality of some of the publicly available graph partitioning software packages.Limitations of the Graph Partitioning Problem Formulation As discussed in Section 0.1, the edge-cut metric is not a precise model of the interprocessor communication costs incurred by parallel processing.Nor is it even a precise model of the total communications volume [33]. While the min-cut formulation hasproved e�ective for the well-shaped meshes that are common to scienti�c simulations, alternative formulationsare still needed for more general cases. As an example of recent work in this area, Catalyurek and Aykanat [10]have developed a hypergraph partitioning formulation that precisely models total communication volume.Experimental results comparing the hypergraph partitioning model to the traditional graph partitioningmodel show that for graphs of nonuniform degree, using the hypergraph model can signi�cantly decreasethe interprocessor communication costs compared to using the graph model. However, for graphs of uniformdegree, the hypergraph model provides only a modest improvement and requires more runtime comparedto state-of-the-art graph partitioners [10]. While the hypergraph partitioning formulation allows us toprecisely minimize communications volume, it does not allow us to minimize other important components ofinterprocessor communication cost such as the message start-up time or the time required for the processorwith the most communication (i.e., minimize the maximum processor communication time). Developing newformulations and algorithms that do so is an open area of research in the �eld.Other Application Modeling Limitations In addition to being imprecise, the traditional partitioningformulation is inadequate for many important classes of scienti�c simulation. For example, the standardgraph partitioning formulation can e�ectively model only square, symmetric sparse matrices. However, gen-eral rectangular and unsymmetric matrices are required for solving linear systems, least squares problems,and linear programs [34]. Bipartite graph partitioning [34] and multi-constraint graph partitioning [48,83] can be e�ective for these types of applications. Also, minimizing the edge-cut of a partitioning doesnot ensure the numerical scalability of iterative methods. Numerical scalability means that as the num-ber of processors increases, the convergence rate of the iterative solver remains constant. Vanderstraeten,Keunings, and Farhat [91] have shown that the numerical scalability of a class of iterative solvers can bemaintained if partitionings are computed such that their subdomains have low average aspect ratios. Thetraditional partitioning formulation does not optimize subdomain aspect ratios. Walshaw, Cross, Diekmann,and Schlimbach developed graph partitioning schemes that attempt to minimize the average aspect ratioof the subdomains [98]. Experimental results show that these schemes are able to compute partitioningswith signi�cantly better subdomain aspect ratios than traditional partitioners. However, they often result inworse edge-cuts. While these results are promising, it is desirable for a partitioning to minimize both of theseobjectives (edge-cut and aspect ratio) simultaneously. Recent work in multi-objective graph partitioning [82]may also be relevant here to control the trade-o� between these two objectives.Architecture Modeling Limitations When traditional graph partitioners are used for mapping compu-tations onto parallel machines, there is an assumption that the target architecture is
at and homogeneous[17, 35]. While it is true that many current architectures display similar computing powers, bandwidths, andlatencies regardless of the processors involved, heterogeneous and hierarchical architectures are becomingincreasingly commonplace. For example, consider the problem of decomposing a mesh for parallel process-ing on an architecture that consists of a cluster of heterogeneous workstations connected by a high-speed,high-latency network to a distributed-memory multiprocessor in which each node consists of a four-processorshared-memory machine. Here, both the computational and communicational speeds depend on the speci�c

CONTENTS 35
Cha

co

Jo
stl

e
M

eti
s

ParM
eti

s

PARTY

SCOTCH

S-H
ARP

Geometric Schemes

Coordinate Nested Dissection
Recursive Inertial Bisection

Spectral Methods

Recursive Spectral Bisection
Multilevel Spectral Bisection

Combinatorial Schemes

Levelized Nest Dissection
KL/FM

Multilevel Schemes

Multilevel Recursive Bisection
Multilevel k-way Partitioning

Parallel Graph Partitioners

Dynamic Repartitioners

Parallel Static Partitioning
Parallel Dynamic Partitioning

Other Formulations

Space-filling Curve Methods

Multi-constraint Graph Partitioning
Multi-objective Graph Partitioning

Diffusive Repartitioning
Scratch-Remap Repartitioning

Multilevel Fill-reducing Ordering

Figure 35: A chart illustrating the functionality of a number of publicly available software packages.processors involved. Standard graph partitioners do not take such considerations into account when com-puting a partitioning. Partitioning for heterogeneous and hierarchical architectures is especially importantin meta-computing environments [43]. In such an environment, it may be impossible to predict the type (ortypes) of machines or even the exact number of processors that a simulation will be executed on until imme-diately prior to execution. In this case, both computational speeds and communication costs can
uctuatewidely, even between repeated executions of the same simulation. Alternative (e.g., hierarchical and other[11, 90, 101]) partitioning methods are starting to be applied to such problems, but more work still needs tobe done.Functionality of Available Graph Partitioning Packages Many of the graph partitioning schemesdescribed in this chapter have been implemented in publicly available software packages. Figure 35 chartsthe functionality of some the more widely used packages. These are Chaco [36], JOSTLE [94], MeTiS [47],ParMeTiS [53], PARTY [76], SCOTCH [68], and S-HARP [87].

CONTENTS 36AcknowledgmentsThe authors would like to thank Rupak Biswas, Bruce Hendrickson, Abani Patra, Robert Preis, and ChrisWalshaw as well as the CRPC book reviewers for their insightful comments on earlier drafts of this chap-ter. This work was supported by DOE contract number LLNL B347881, by NSF grants CCR-9972519,EIA-9986042, and ACI-9982274, by Army Research O�ce contracts DA/DAAG55-98-1-0441, by Army HighPerformance Computing Research Center cooperative agreement number DAAH04-95-2-0003/contract num-ber DAAH04-95-C-0008, the content of which does not necessarily re
ect the position or the policy of thegovernment, and no o�cial endorsement should be inferred. Additional support was provided by the IBMPartnership Award, and by the IBM SUR equipment grant. Access to computing facilities was provided byAHPCRC and the Minnesota Supercomputer Institute.

Bibliography[1] C. Ashcraft and J. Liu. A partition improvement algorithm for generalized nested dissection. Technical Report BCSTECH-94-020, York University, North York, Ontario, Canada, 1994.[2] C. Ashcraft and J. Liu. Using domain decomposition to �nd graph bisectors. Technical report, York University, NorthYork, Ontario, Canada, 1995.[3] S. Barnard. PMRSB: Parallel multilevel recursive spectral bisection. In Proc. Supercomputing '95, 1995.[4] S. Barnard and H. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning unstructuredproblems. In Proc. 6th SIAM Conf. Parallel Processing for Scienti�c Computing, pages 711{718, 1993.[5] E. Barnes, A. Vannelli, and J. Walker. A new heuristic for partitioning the nodes of a graph. SIAM Journal on DiscreteMathematics, 1:299{305, 1988.[6] M. Berger and S. Bokhari. Partitioning strategy for nonuniform problems on multiprocessors. IEEE Transactions onComputers, C-36(5):570{580, 1987.[7] R. Biswas and R. C. Strawn. A new procedure for dynamic adaption of three-dimensional unstructured grids. AppliedNumerical Mathematics, 13:437{452, 1994.[8] J. Boillat. Load balancing and poisson equation in a graph. Concurrency: Practice and Experience, 2:289{313, 1990.[9] T. Bui and C. Jones. A heuristic for reducing �ll in sparse matrix factorization. In 6th SIAM Conf. Parallel Processingfor Scienti�c Computing, pages 445{452, 1993.[10] U. Catalyurek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multipli-cation. IEEE Transactions on Parallel and Distributed Systems, 10(7):673{693, 1999.[11] J. Chen and V. Taylor. ParaPART: Parallel mesh partitioning tool for distributed systems. In Proc. IRREGULAR'99,1999.[12] Y. Chung and S. Ranka. Mapping �nite element graphs on hypercubes. Journal of Supercomputing, 6:257{282, 1992.[13] J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to circuit partitioning in vlsi design.In Proc. ACM/IEEE Design Automation Conference, pages 755{760, 1993.[14] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and DistributedComputing, 7(2):279{301, 1989.[15] R. Diekmann, A. Frommer, and B. Monien. E�cient schemes for nearest neighbor load balancing. Parallel Computing,25:789{812, 1999.[16] R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph bisections. In D. Hsu, A. Rosenberg, andD. Sotteau, editors, Interconnection Networks and Mapping and Scheduling Parallel Computations, volume 21, pages57{73. AMS Publications, DIMACS Volume Series, 1995.[17] R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for distributed memory machines. Parallel andDistributed Processing for Computational Mechanics: Systems and Tools, 1998.[18] P. Diniz, S. Plimpton, B. Hendrickson, and R Leland. Parallel algorithms for dynamically partitioning unstructured grids.Proc. 7th SIAM Conf. Parallel Proc., pages 615{620, 1995.[19] H. Djidjev and J. Gilbert. Separators in graphs with negative and multiple vertex weights. Algorithmica, 23:57{71, 1999.[20] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network partitions. In In Proc. 19th IEEE DesignAutomation Conference, pages 175{181, 1982.[21] H. Gabow. Data structures for weighted matching and nearest common ancestors with linking. In Proc. of the 1st AnnualACM-SIAM Symposium on Discrete Algorithms, pages 434{443, 1990.[22] A. George and J. Liu. Computer Solution of Large Sparse Positive De�nite Systems. Prentice-Hall, Englewood Cli�s,NJ, 1981.[23] J. Gilbert, G. Miller, and S. Teng. Geometric mesh partitioning: Implementation and experiments. In Proceedings ofInternational Parallel Processing Symposium, 1995.[24] J. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing multiprocessor. InternationalJournal of Parallel Programming, pages 498{513, 1987.37

BIBLIOGRAPHY 38[25] T. Goehring and Y. Saad. Heuristic algorithms for automatic graph partitioning. Technical Report UMSI-94-29, Universityof Minnesota Supercomputing Institute, 1994.[26] A. Gupta. Fast and e�ective algorithms for graph partitioning and sparse matrix reordering. IBM Journal of Researchand Development, 41(1/2):171{183, 1996.[27] W. Hager and Y. Krylyuk. Graph partitioning and continuous quadratic programming. SIAM Journal on DiscreteMathematics, To appear, 1999.[28] W. Hager, S. Park, and T. Davis. Block exchange in graph partitioning. In P. Pardalos, editor, Approximation andComplexity in Numerical Optimization: Continuous and Discrete Problems. Kluwer Academic Publishers, 1999.[29] K. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17(3):219{229, 1970.[30] S. Hauck and G. Borriello. An evaluation of bipartitioning technique. In Proc. Chapel Hill Conference on AdvancedResearch in VLSI, 1995.[31] M. Heath and P. Raghavan. A Cartesian parallel nested dissection algorithm. SIAM Journal of Matrix Analysis andApplications, 16(1):235{253, 1995.[32] G. Heber, R. Biswas, and G. Gao. Self-avoiding walks over adaptive unstructured grids. Concurrency: Practice andExperience, to appear 2000.[33] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no clothes? In Proc. Irregular'98, pages218{225, 1998.[34] B. Hendrickson and T. Kolda. Partitioning rectangular and structurally nonsymmetric sparse matrices for parallelprocessing. SIAM J. Sci. Comput. (to appear), 1999.[35] B. Hendrickson and T. Kolda. Graph partitioning models for parallel computing. Parallel Computing (to appear), 2000.[36] B. Hendrickson and R. Leland. The chaco user's guide, version 2.0. Technical Report SAND94-2692, Sandia NationalLaboratories, 1994.[37] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In Proceedings of Supercomputing '95.ACM Press, December 1995.[38] B. Hendrickson and R. Leland. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations.SIAM Journal on Scienti�c Computing, 16:452{469, 1995.[39] D. Hilbert. Uber die stetige abbildung einer linie auf ein
achenstuck. Math Annalen, 38, 1891.[40] G. Horton. A multi-level di�usion method for dynamic load balancing. Parallel Computing, 9:209{218, 1993.[41] Y. Hu and R. Blake. An improved di�usion algorithm for dynamic load balancing. Parallel Computing, 25:417{444, 1999.[42] Y. Hu, R. Blake, and D. Emerson. An optimal migration algorithm for dynamic load balancing. Concurrency: Practiceand Experience, 10:467{483, 1998.[43] W. Johnston, D. Gannon, and B. Nitzberg. Grids as production computing environments: The engineering aspectsof nasa's information power grid. In Proc. Eighth IEEE International Symposium on High Performance DistributedComputing, 1999.[44] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In Proceedings of Supercomputing '95, 1995.[45] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journalon Scienti�c Computing, 20(1):359{392, 1998.[46] G. Karypis and V. Kumar. h MeTiS 1.5: A hypergraph partitioning package. Technical report, Dept. of Computer Scienceand Engineering, Univ. of Minnesota, 1998.[47] G. Karypis and V. Kumar. MeTiS 4.0: Unstructured graph partitioning and sparse matrix ordering system. Technicalreport, Dept. of Computer Science and Engineering, Univ. of Minnesota, 1998.[48] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In Proceedings of Supercomputing'98, 1998.[49] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and DistributedComputing, 48(1), 1998.[50] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal ofParallel and Distributed Computing, 48(1), 1998.[51] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of the Design and AutomationConference, 1999.[52] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs. Siam Review, 41(2):278{300,1999.[53] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel graph partitioning and sparse matrix ordering library.Technical report, Dept. of Computer Science and Engineering, Univ. of Minnesota, 1997.[54] J. Keasler. Partitioning challenges in ale3d, 1999. Talk presented at the Workshop on Graph Partitioning and Applications:Current and Future Directions, AHPCRC, MN.[55] B. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning graphs. The Bell System Technical Journal,49(2):291{307, 1970.

BIBLIOGRAPHY 39[56] D. Keyes, 1998. Personal communications.[57] R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36:177{189,1979.[58] M. Makowski. Methodology and a modular tool for multiple criteria analysis of lp models. Technical Report WP-94-102,IIASA, 1994.[59] G. Miller, S. Teng, W. Thurston, and S. Vavasis. Automatic mesh partitioning. In A. George, John R. Gilbert, andJ. Liu, editors, Sparse Matrix Computations: Graph Theory Issues and Algorithms. IMA Volumes in Mathematics andits Applications. Springer-Verlag, 1993.[60] G. Miller and S. Vavasis. Density graphs and separators. In Second Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 331{336, 1991.[61] B. Monien, R. Preis, and R. Diekmann. Quality matching and local improvement for multilevel graph-partitioning.Technical report, University of Paderborn, 1999.[62] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving �nite element equations on concurrent computers. In A. K. Noor,editor, American Soc. Mech. Eng, pages 291{307, 1986.[63] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured meshes. Journal of Parallel andDistributed Computing, 52(2):150{177, 1998.[64] C. Ou and S. Ranka. Parallel incremental graph partitioning using linear programming. Proceedings Supercomputing '94,pages 458{467, 1994.[65] C. Ou, S. Ranka, and G. Fox. Fast and parallel mapping algorithms for irregular and adaptive problems. Journal ofSupercomputing, 10:119{140, 1996.[66] B. Parlett, H. Simon, and L. Stringer. On estimating the largest eigenvalue with the lanczos algorithm. Mathematics ofComputation, 38(137):153{165, 1982.[67] A. Patra and D. Kim. E�cient mesh partitioning for adaptive hp �nite element methods. In International Conferenceon Domain Decomposition Methods, 1998.[68] F. Pellegrini and J. Roman. SCOTCH: A software package for static mapping by dual recursive bipartitioning of processand architecture graphs. HPCN-Europe, Springer LNCS 1067, pages 493{498, 1996.[69] J. Pilkington and S. Baden. Partitioning with space�lling curves. Technical Report CS94-349, Dept. of Computer Scienceand Engineering, Univ. of California, 1994.[70] J. Pilkington and S. Baden. Dynamic partitioning of non-uniform structured workloads with space�lling curves. Technicalreport, Dept. of Computer Science and Engineering, Univ. of California, 1995.[71] S. Plimpton, B. Hendrickson, and J. Stewart. A parallel rendezvous algorithm for interpolation between multiple grids.In Proc. Supercomputing '99, 1999.[72] A. Poe and Q. Stout. Load balancing 2-phased geometrically based problems. In Proc. 9th SIAM Conf. Parallel Processingfor Scienti�c Computing, 1999.[73] A. Pothen. Graph partitioning algorithms with applications to scienti�c computing. In D. Keyes, A. Sameh, andV. Venkatakrishnan, editors, Parallel Numerical Algorithms. Kluwer Academic Press, 1996.[74] A. Pothen, H. Simon, and K. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal of MatrixAnalysis and Applications, 11(3):430{452, 1990.[75] A. Pothen, H. Simon, L. Wang, and S. Barnard. Towards a fast implementation of spectral nested dissection. InSupercomputing '92 Proceedings, pages 42{51, 1992.[76] R. Preis and R. Diekmann. PARTY - a software library for graph partitioning. Technical report, University of Paderborn,1997.[77] P. Raghavan. Line and plane separators. Technical Report UIUCDCS-R-93-1794, Department of Computer Science,University of Illinois, Urbana, IL 61801, February 1993.[78] P. Raghavan. Parallel ordering using edge contraction. Technical Report CS-95-293, Department of Computer Science,University of Tennessee, 1995.[79] P. Sadayappan and F. Ercal. Mapping of �nite element graphs onto processor meshes. IEEE Transactions on Computers,C-36:1408{1424, 1987.[80] K. Schloegel, G. Karypis, and V. Kumar. Multilevel di�usion schemes for repartitioning of adaptive meshes. Journal ofParallel and Distributed Computing, 47(2):109{124, 1997.[81] K. Schloegel, G. Karypis, and V. Kumar. Wavefront di�usion and LMSR: Algorithms for dynamic repartitioning ofadaptive meshes. Technical Report TR 98-034, Dept. of Computer Science and Engineering, Univ. of Minnesota, 1998.[82] K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for multi-objective graph partitioning. In Proc. EuroPar '99,pages 322{331, 1999.[83] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-constraint graph partitioning. TechnicalReport TR 99-031, Dept. of Computer Science and Engineering, Univ. of Minnesota, 1999.[84] K. Schloegel, G. Karypis, and V. Kumar. A uni�ed algorithm for load-balancing adaptive scienti�c simulations. In Proc.Supercomputing 2000, 2000.

BIBLIOGRAPHY 40[85] H. Simon, A. Sohn, and R. Biswas. HARP: A fast spectral partitioner. In Ninth ACM Symposium on Parallel Algorithmsand Architectures, pages 43{52, 1997.[86] H. Simon and S. Teng. How good is recursive bisection? SIAM J. Scienti�c Computing, 18(5):1463{1445, 1997.[87] A. Sohn. S-HARP: A parallel dynamic spectral partitioner. Technical report, Dept. of Computer and Information Science,New Jersey Institute of Technology, 1997.[88] A. Sohn and H. Simon. JOVE: A dynamic load balancing framework for adaptive computations on an SP-2 distributed-memory multiprocessor. Technical Report 94-60, Dept. of Computer and Information Science, New Jersey Institute ofTechnology, 1994.[89] A. Stone and J. Tukey. Generalized \sandwich" theorems. In The Collected Works of John W. Tukey. Wadsworth, Inc.,1990.[90] J. Teresco, M. Beall, J. Flaherty, and M. Shephard. Hierarchical partition model for adaptive �nite element computation.Technical report, Dept. of Computer Science, Rensselaer Polytechnic Institute, 1998.[91] D. Vanderstraeten, R. Keunings, and C. Farhat. Beyond conventional mesh partitioning algorithms and minimum edgecut criterion: Impact on realistic applications. SIAM: Parallel Processing for Scienti�c Computing, pages 611{614, 1995.[92] R. VanDriessche and D. Roose. Dynamic load balancing of iteratively re�ned grids by an enhanced spectral bisectionalgorithm. Technical report, Dept. of Computer Science, K. U. Leuven, 1995.[93] A. Vidwans, Y. Kallinderis, and V. Venkatakrishnan. Parallel dynamic load-balancing algorithm for three-dimensionaladaptive unstructured grids. AIAA Journal, 32:497{505, 1994.[94] C. Walshaw. Parallel JOSTLE userguide. Technical Report Userguide Version 1.2.9, University of Greenwich, London,UK, 1998.[95] C. Walshaw and M. Cross. Load-balancing for parallel adaptive unstructured meshes. In M. Cross et al., editor, Proc.Numerical Grid Generation in Computational Field Simulations, pages 781{790. ISGG, Mississippi, 1998.[96] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh partitioning. Technical Report 99/IM/44,University of Greenwich, London, UK, 1999.[97] C. Walshaw and M. Cross. Mesh partitioning: a multilevel balancing and re�nement algorithm. SIAM J. Sci. Comput.,(to appear).[98] C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel mesh partitioning for optimising domain shape.Technical Report 98/IM/38, School of Computing and Mathematical Sciences, University of Greenwich, London, UK,1998.[99] C. Walshaw, M. Cross, and M. Everett. Dynamic mesh partitioning: A uni�ed optimisation and load-balancing algorithm.Technical Report 95/IM/06, Centre for Numerical Modelling and Process Analysis, University of Greenwich, London,UK, 1995.[100] C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph partitioning for adaptive unstructured meshes. Journalof Parallel and Distributed Computing, 47(2):102{108, 1997.[101] C. Walshaw, M. Cross, M. Everett, S. Johnson, and K. McManus. Partitioning & mapping of unstructured meshes toparallel machine topologies. In A. Ferreira and J. Rolim, editors, Proc. Irregular '95: Parallel Algorithms for IrregularlyStructured Problems, volume 980 of LNCS, pages 121{126. Springer, 1995.[102] C. Walshaw, M. Cross, and K. McManus. Multiphase mesh partitioning. Technical Report 99/IM/51, University ofGreenwich, London, UK, 1999.[103] M. Warren and J. Salmon. A parallel hashed oct-tree n-body algorithm. Proceedings of Supercomputing '93, pages 12{21,1993.[104] J. Watts, M. Rie�el, and S. Taylor. A load balancing technique for multi-phase computations. Proc. of High PerformanceComputing `97, pages 15{20, 1997.[105] J. Watts and S. Taylor. A practical approach to dynamic load balancing. IEEE Transactions on Parallel and DistributedSystems, (to appear).[106] H. Wolkowicz and Q. Zhao. Semide�nite programming relaxations for the graph partitioning problem. Technical ReportCORR Report 96-17, Department of Combinatorics, University of Waterloo, 1996.[107] C. Xu and F. Lau. The generalized dimension exchange method for load balancing in k-ary ncubes and variants. Journalof Parallel and Distributed Computing, 24:72{85, 1995.

