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ABSTRACT 
In this paper we investigate the problem of heterogeneous sensor 
deployment in preferential areas. The problem considers many of 
the sensors characteristics such as mobility, state-switching, 
reliability, and mobility cost; in addition, the problem takes into 
consideration that the monitored field areas may differ in their 
monitoring requirements from time to time. Different prediction 
methods namely Markov, double exponential smoothing, triple 
exponential smoothing, simple average, and weighted average are 
used to predicate the monitoring field preferential areas. Our 
approach in solving such problem starts by formulating the 
problem mathematically to show its complexity and to solve 
small-scale problems optimally. Then, we propose three different 
algorithms for large scale problems. The first algorithm deals 
with structured deployment where the monitored field is assumed 
accessible. The second and third algorithms deal with real time 
deployment where the sensed data is used for future planning and 
sensor relocation. The second algorithm is a centralized algorithm 
while the third algorithm is a distributed algorithm. An extensive 
set of experiments are conducted to show the performance of the 
proposed methods and algorithms.   
 
Categories and Subject Descriptors 
C2.1 [Network Architecture and Design]: Sensor network 
deployment- heterogeneous sensors on preferential areas 
 
General Terms 
Algorithms, Performance, Design, Reliability, Experimentation 

Keywords 
Sensor Networks, preferential Areas, Security, Monitoring, 
Sensor Deployment, Distributed Algorithms. 

1. INTRODUCTION 
The advances in sensing technology lead to the usage of sensor 
networks in many applications. For instance, sensors have been 
used to monitor animals in habitat areas and monitor patients’ 
health.  In addition, sensor networks have been used to monitor 
critical infrastructures such as gas, transportation, energy, and 
water pipelines as well as important buildings. Such applications 

require sensors to live for a long time which leads to a large body 
of research in efficient energy algorithms and protocols. 
 

The monitored fields have been modeled differently due to the 
application requirements. Dividing the monitored fields into 
virtual grid of cells seems to be suitable for applications with 
mobile sensors  [2] and critical infrastructure monitoring 
applications  [10]. On the other hand, a free model might be 
suitable for applications such as health monitoring where patients 
can be located using different methods. In this paper, we divide 
the monitored field into a virtual grid of cells and assign a weight 
for each cell. This weight represents the importance of each cell 
or the monitoring requirement of this cell. However, this weight 
might differ from time to time. For instance, sensors could be 
used to monitor an airport; the runways monitoring importance 
certainly will increase when a flight is using it. Monitoring 
certain areas in a school might differ in their importance during 
the day due to the students’ activities; while this importance will 
be the minimum during the night. 
 

Currently, we have mobile sensors that can move from one place 
to another. For instance, sensors could be mounted on a robot or 
attached to animals or human bodies. This movement could help 
in the deployment of other sensors or could be utilized to cover 
blind spots in the monitored field  [6]. However, the movement is 
always costly in terms of the sensors energy. Therefore, sensors 
movement has to be carefully decided. In addition, due to the 
sensors energy limitations many of the proposed algorithms and 
protocols utilize the switching capabilities of the sensors. For 
instance, Berfield at el. in  [1] propose a distributed scheduling 
algorithm that assigns predefined slot for each sensor. The 
authors claim that their algorithm increases the sleeping time for 
each sensor; therefore it saves the sensors energy. In addition, 
sensors reliability is considered in many of the research proposals 
such as  [8] and  [4]. 
 

Sensor deployment represents the first phase in forming any 
sensor network. Deployment algorithms basically could be 
classified into two classes which are arbitrary and 
structured/offline. In the latter, the access to the monitored field is 
assumed granted and sensors could be placed in their exact 
positions. In such situation, sensors optimal placement could be 
examined such as in [5].  On the other hand, arbitrary deployment 
assumes limited access to the monitored field as well as large 
number of sensors to be deployed.  Sensors in this case could be 
deployed using flying robots or unmanned aerial vehicles  [3]. 
Most of the previous deployment algorithms consider only some 
of the sensors parameters (e.g. energy).  The monitored field 
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parameters (e.g. preferential areas and obstacles) are also ignored 
during the deployment process. In addition, current research 
proposals did not take the field activities into account after or 
even before the deployment. In other words, re-locating the 
sensors after the initial deployment according to the monitored 
field requirements did not have that much attention in the sensor 
networks community.  
 

In this paper, we consider sensor deployment taking into account 
most of the monitored field as well as the sensors parameters. We 
believe that considering such parameters during the deployment 
process will increase the performance of the network as well as 
prolong its lifetime. Not only we consider the sensor deployment 
but also we study the re-placement of the sensors based on the 
monitored field activates. We propose to use some of the simple 
and efficient prediction algorithms to utilize sensors capabilities 
such as mobility, reliability, and switching. Moreover, the 
problem is formulated mathematically for small-scale deployment 
problems. Nevertheless, we propose centralized and distributed 
sensor deployment algorithms for dense networks. An exhaustive 
set of experiments are conducted to show the affect of utilizing 
such capabilities on the performance and lifetime of the sensor 
network.  
 

The paper is organized as follows: in the next section, the 
problem is formally defined; in section 3 different solutions to the 
deployment problem is explained including the mathematical 
formulation, structured, real-time, and distributed algorithms.  
Section 4 depicts the experimental results; finally, the paper 
concludes in section 5.   

2. PROBLEM DEFINITION, MODELING, 
AND FORMULATION  
A deployment field F(A) with differential security requirements is 
to be monitored for a time horizon of length T. In addition, a set 
of heterogeneous sensors |S| is given. These sensors differ in their 
capabilities such as lifespan/lifetime, allowed number of state-
switching, allowed number of moves, movement cost, and 
reliability. The objectives are to achieve the maximum coverage 
of the monitored field, exploit sensors’ capabilities, prolong 
sensor network lifetime, and increase the security of the 
monitored field. The latter is enhanced by using the highest 
reliable sensors on the most important areas in the field.  The 
deployment problem is modeled as follows:  
 
The monitored field is divided into a number of zones |A|. Each 

zone  is associated with a time-varying weight function , 
where . This weight function defines the importance of the 
observations (surveillance requirement) in this zone over the 
horizon .  A sensor lifespan Ls is the number of time units that 
the sensor was used to monitor one or more zones of the 
monitored field.  Each sensor lifespan is associated with a cost
. Therefore, sensors lifespan could be represented in terms of 

energy by . In addition to lifespan, sensors are assumed to 
have an allowed number of state-switching Ps in which a sensor 

 can change its state from “on” to “off” or vice versa based 
on the field requirements. For instance, a sensor  could be 
switched to “off” at time  to save its lifetime for a different 

zone with a higher security requirement  at different times. 

The security requirement represent s the field preferential 
monitoring requirement in which it differs with time and could be 
estimated based on the monitored area history or collected by a 
centralized node in case of real time monitoring. Moreover, a 
sensing device could be stationary or mobile. If a stationary 
device is deployed on a zone , this device is assumed to 
remain in this zone for its entire lifespan. On the contrary, a 
mobile sensor can cover multiple zones over a time period T. All 
mobile devices are assumed to have no restrictions on the start or 
the end locations of their deployment, but they have restrictions, 
Ms , per sensor on the number of moves from zone to another.  A 
sensor transfer between two zones is assumed to be associated 
with a cost. This cost is expressed in terms of the loss in the 

device lifespan . Nevertheless, each sensor is 

characterized by a predefined reliability  that typically 
changes over time.  
Considering the heterogeneity of sensing devices and the 
differentiated security requirements, an optimal deployment 
scheme is required. The scheme should exploit the sensors’ 
capabilities as well as cover the most important areas of the 
monitored field.  

3. SOLUTION APPROACH  
Our solution approach to the large-scale deployment problems 
presented in this paper includes two phases which are the 
prediction and the sensor deployment algorithms. In the 
prediction phase, different prediction methods are implemented 
and tested on real field data taken from sensors already deployed 
at different places in our school for this purpose. We 
experimented with different prediction methods such as Simple 
Moving and Weighted Average, Markov Chain, Double 
Exponential Smoothing, and Triple Exponential Smoothing. 
There are some other prediction methods that might perform 
better than the selected ones. However, their computation 
complexities are not suitable for a limited sensor capability. For 
instance, Kalman filter  [5] runs 135 slower than double 
exponential smoothing algorithm. Due to the limited space in this 
paper, the reader is referred to Error! Reference source not 
found.  [5] for the details of the prediction methods. These 
methods are compared to each other in terms of the amount of 
computation as well as the accuracy.   
Once the monitored field weights are available, we use one of our 
proposed algorithms to solve the deployment problem. In our 
previous work  [9], the deployment problem is formulated in the 
form of an integer mathematical program and tested for small-
scale problems. The formulation expresses the complexity of the 
problem and the exact solution that can be used only for small-
scale problems. Therefore, we propose three different algorithms 
which are Offline Sensor Deployment Algorithm (OSDA), Real-
time Sensor Deployment Algorithm (RSDA), and Distributed 
Real-time Sensor Deployment Algorithm (DRSDA). In OSDA 
the deployment, is based on the prediction data during the 
monitoring horizon. On the other hand, RSDA is combined of 
two steps; the first step considers the initial sensor deployment 
while the second step considers the real time sensor 
rearrangement based on the sensed data from the monitored field.  
In DRSDA, we are trying to minimize the number of messages to 
be sent from the sink node to the sensors every time a 
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replacement is required. Nodes are clustered into a number of 
groups where each cluster head acts as a sink node. These cluster 
heads may coordinate for better monitoring as well. 

3.1 Offline Sensor Deployment Algorithm 
(OSDA)  
OSDA runs in two phases; in the first phase, we use our 
prediction algorithms to predict the weights t

iw  of each cell over 
the horizon T. In the second phase, we deploy the sensors 
accordingly.  As depicted in Table 1 (part A), the algorithm 
works as follows:   
1- For the entire horizon T, sensors are sorted based on their 

reliability and the cells are sorted based on their importance.   
2- Assign the highest reliable sensor to the highest weight cell 

at any given time with taking into consideration the 
consumed energy for each sensor. The consumed energy is 
due to the switching as well the mobility.  

If a sensor’s energy is depleted, remove it from the sensors’ list. 

3.3 RSDA: Real-Time Sensor Deployment 
Algorithm 
In this section, we elaborate on our real time deployment 
algorithm. Again, the deployment is done in two phases; in the 
first phase, the next time cells weighs are predicted while in the 
second phase, we deploy the sensors based on predicted values. In 
other words, based on the available history for each cell, the cells 
next time weights are predicted. Then, the sensors are deployed 
accordingly. Fortunately, we developed many of the prediction 
algorithms; all of them predict for one future time unit but the 
triple exponential smoothing algorithm predicts for three future 
time units. Once the sensors are deployed for the first time, the 
real cells weights are sensed and added to the cells weights 
history; then new weights are predicted. According to this 
prediction, some of the mobile sensors might be re-placed for 
better coverage. 
 

Once more, the question in such case, is it better to use triple 
exponential smoothing prediction and plan the mobile sensors 
movement for three times a head or plan it only for one time a 
head? This question will be answered in the experimental results 
section.   The algorithm can be formally described in Table 1 
(part B). 

Table 1: OSDA and RSDA algorithm 
Input:  
         A    the numbers of cells in the monitored field  

       t
iw     monitored field weight history for k time units where     

          kt� and Ai�  
        Es    sensor’s initial energy where Ss�  
        se   sensor’s monitoring energy per unit of time t, where  

        Ss�  

       d
sE    sensor’s moving energy per distance d  

        Eon  sensor’s switching on energy  
           Eoff  sensor’s switching off energy  
        T    the monitoring horizon 

       t
sR  sensor’s reliability where   Tt�  and Ss�  

        s�  sensor’s energy threshold where Ss� . It means that   

               s energy cannot be less  than s�  

   md  sensor’s consumed energy due to moving a meter. 
 
PART A: OSDA ALGORITHM  
Output : 
     Sensors deployment schemes  
Steps:  

1. Predict the cells weights  t
iw  for the T times using one of 

the prediction algorithms based on the k times history, where 
t >k ; 

2. T� � sort t
iw  where ktandTtAi ��� ,  ; 

3. T� �sort  t
sR  where , Ss� and ktandTt ��  

4. T� , assign s with the highest t
sR  to Ai� with the 

highest t
iw  

4.1. Compute the current sensors energy sC based on 
current deployment scheme as follows:   
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Where   t
sX  is a binary variable that is set to 1 if the sensor is 

used in monitoring process ,  Y    is a binary variable 

that is set to 1 if the sensor is switched to on ,  t
sZ   is a 

binary variable that is set to 1 if the sensor is switched to 

off,  t
sd   is the distance that the sensor moved at time t.   

 

4.2. If ( sC > s� )   
4.2.1.  neglect the current  assignment  
4.2.2. Remove the sensor from the sensors list  
4.2.3. Print the sensor deployment scheme 
4.2.4. Continue  

4.3. Else if ( sC = s� )   
4.3.1. Remove the sensor from the sensors list  
4.3.2. Print the sensor deployment scheme 
4.3.3. Continue 

PART B: RSDA ALGORITHM  
Output : 
     Sensors deployment and replacement  schemes  
Steps:  

1. Predict the cells weights  t
iw  for the 1  time using one of the 

prediction algorithms based on the k times history, where t >k ; 

2. sort ct
iw  where ktandTtAi cc ��� ,  , where ct  is the 

current time unit ; 
3. sort  tc

sR  where , Ss� and ktcandTtc �� ; 

4. S� , assign s with the highest t
sR  to Ai� with the highest 

t
iw  

5. Compute the current sensors energy sC based on current 
deployment scheme as follows:   
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, Where   

t
sX  is a binary variable that is set to 1 if the sensor is used in 

monitoring process ,  Y    is a binary variable that is set to 1 if the 
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sensor is switched to on ,  t
sZ   is a binary variable that is set to 1 if 

the sensor is switched to off,  t
sd   is the distance that the sensor 

moved at time t.    

6. If ( sC > s� )        
a.  neglect the current  assignment  
b. Remove the sensor from the sensors list  
c. Print the sensor deployment scheme 
d. Continue  

  7.   Else if ( sC = s� )   
a. Remove the sensor from the sensors list  
b. Print the sensor deployment scheme 
c. Get the current cells weights from the sensors  
d. Add the cells weights to the history  
e. If number of sensor in the sensors list > 0 go to step 2  else go to 

step 8 
1. Stop 

 

3.4 DRSDA: Distributed Real-Time Sensor 
Deployment Algorithm  
In the previous section, we proposed a centralized real-time 
deployment algorithm where the overall prediction is done at the 
sink node and a message for sensors that need to change its state 
is sent every time unit. In addition, RSDA prioritized the 
importance of the monitored areas/cells over the sensors lifetime. 
In other words, the algorithm does not take into consideration the 
number of messages that need to be sent from the sink to the 
nodes in the network. It also assumed one hop network where 
every node is directly connected to the sensors. RSDA is 
expected to perform well (see the experimental result section) 
when a small number of sensors are deployed. However, in a 
dense network, changes in the sensors states as well as the 
topology might require forming an ad hoc network as well as 
sending a large number of messages to the deployed sensors.  
 

Therefore, in this section, we introduce a distributed real-time 
sensor deployment algorithm named DRSDA. The algorithm 
considers a dense sensor network that is deployed in a large area. 
Therefore, the area is partitioned into subareas and a node is 
selected to act as a sink node for each partition. At the same time, 
it acts as a cluster head for a number of sensors that are initially 
deployed on its partition. In other words, the overall area is 
initially partitioned into p subareas. Then, a cluster head is 
selected for the deployed sensors in each partition. A cluster head 
is changed periodically to balance the nodes energy. After 
selecting the cluster head for each partition, RSDA is applied 
within each partition.  We adapted the clustering algorithm 
proposed in  [11] to fit our problem modeling. Such clustering is 
expected to minimize the number of exchanged messages among 
the sensors and the sink node. 

4. SIMULATION RESULTS   
In this section, we limit ourselves to some of the experiments that 
have been conducted, based on our C# simulation, due to the 
strict limitations on the paper number of pages. A set of 
experiments is used to compare the performance of the proposed 
algorithms. All sensors parameters are based on Mica2 
characteristics such as initial energy, monitoring energy, 
switching energy, and reliability. 

4.1 OSDA and Optimal Solution  
In this section, we report our finding in comparing the optimal 
solution to OSDA algorithm. In general and as explained in  [9], 
the optimal solution was limited to almost 20 cells, 10 sensors, 
and 12 unit of times.  We used the same experiments 
configuration presented in  [9] and compared its results to OSDA 
algorithm. It turned to be, on average; OSDA gives 80% of the 
optimal solution and consumes almost 20% of the optimal 
solution required computation. 

4.2 Prediction Algorithms Comparison 
To select the best prediction algorithm, we experimented with the 
five prediction algorithms proposed in this paper for the 
deployment problem. In order to compare between the predictions 
algorithms, we selected the Mean Square Error (MSE) as an 
evaluation value.  As shown in Figure 1, six cells are selected to 
be monitored in this experiment where different history lengths 
are used to measure the performance of the algorithms.  
 

As can be seen, the first three algorithms (Markov, Moving 
average, and Weighted average) perform almost the same. 
However, it seems that the best two prediction algorithms are 
double and triple exponential where the MSE is the least. We are 
taking the triple exponential smoothing into consideration while 
the double slightly over performs it due to its importance in 
generating the next three predicted values instead of only one 
predicted value. In addition, in terms of processing our 
experiments show that Markov chain requires the most processing 
capabilities and moving average requires the least. 

 
Figure 1: Prediction algorithms comparison 

 
Figure 2: Comparison between RSDA and DRSDA in terms 

of the dissipated energy  

4.3 Effect of the Number of Nodes on RSDA 
and DRSDA Dissipated Energy 
In this set of experiments, we compare between the RSDA and 
DRSDA in terms of the dissipated energy.  As shown in Figure 2, 
the number of nodes is increasing gradually from 100 to 1000 
nodes. The average dissipated energy per node is measured in 
each case due to the real time deployment process. In all 
experiments, using DRSDA, the monitored area is divided into 
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subareas and a node is selected to serve as a cluster head for each 
subarea. In addition, this results id due to different number of 
subareas. The average values where the initial energy is generated 
randomly using a normal distribution function. 
 

As can be seen in Figure 2, DRSDA reduces the average 
dissipated energy per node by almost 45%. For instance, using 
1000 nodes, the dissipated energy percentage of RSDA is 12% of 
the overall sensors’ energy while DRSDA consumes only 7% of 
the overall sensors’ energy.  

4.4 Effect of the Number of Nodes on RSDA 
and DRSDA Coverage Performance 
In this section, a set of experiments is conducted to study the 
effect of the number of nodes on RSDA and DRSDA coverage 
performance. Again, the number of nodes is increased from 100 
to 1000 nodes. In DRSDA, different number of partitions is used 
and the coverage performance is averaged over all the conducted 
experiments. The coverage performance is computed by 
multiplying the covered cell weight by the sensors reliability at 
the time of monitoring. The coverage performance is computed 
over half monitoring day which is 12 hours. 

 
Figure 3: Comparsion between RSDA and DRSDA in terms 

of the coverage performance 

 
Figure 4: Comparison between RSDA and DRSDA with 

various numbers of partitions 

As shown in Figure 3, DRSDA performance is slightly less than 
RSDA coverage. However, it is a tradeoff between saving the 
sensors energy and coverage as given in Figure 2. At the same 
time, it seems that the coverage difference may increase with the 
number of the number of subareas used with DRSDA algorithm 
as shown in Figure 4. The results show that the increasing in the 
number of subareas gives less coverage performance due to the 
limited number of movements allowed to mobile sensors; mobile 
sensors movement are restricted within the their subareas. Figure 
4 results are based on different network topologies for 1000 
heterogeneous nodes. 

5. CONCLUSION
 

In this paper, we studied five prediction methods for predicting 
the importance of the monitored area. These prediction methods 
include Markov, simple average, weighted average, double 
exponential smoothing, and triple exponential smoothing 
algorithms. Our experiments show that the double and triple 
exponential smoothing algorithms are the least error values. In 
addition, we proposed three different deployment algorithms; the 
first algorithm considered the offline deployment where the cells 
importance is predicted for the monitored time and the sensors 
deployed accordingly. In the second algorithm, the cells 
importance is predicted per unit of time using double exponential 
smoothing or by three time units using triple exponential 
smoothing algorithm. Then the sink node sends a message to the 
nodes that need to change its location or state. Moreover, we 
proposed another distributed algorithm to save some of the sink 
messages that need to be sent every time unit to the sensors. This 
algorithm is based on dividing the monitored area into subareas 
and a node is selected to act as the sink for this area.  By 
comparing the centralized and the distributed approaches, we 
found that there is a tradeoff between saving the sensors energy 
using the distributed algorithm and enhancing the coverage 
performance using the centralized approach. 
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