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Molecular Dynamics:A Introduction �Lloyd D. FosdickJanuary 19, 19951 IntroductionMolecular dynamics is concerned with simulating the motion of moleculesto gain a deeper understanding of chemical reactions, uid ow, phase tran-sitions, droplet formation, and other physical phenomena that derive frommolecular interactions. These studies include not only the motion of manymolecules as in a uid, but also the motion of a single large molecule con-sisting of hundreds or thousands of atoms, as in a protein. Much of thiswork uses simple classical Newtonian mechanics. This tutorial is concernedonly with these classical systems and uses mathematical concepts that shouldbe familiar to most upper division undergraduates in a physical science orengineering curriculum.Computers are a critically important tool for these studies because theresimply is no other way to trace the motion of a large number of interactingparticles. The earliest of these computations were done in the 1950s by BerniAlder and Tom Wainwright at Lawrence Livermore National Laboratory.They studied the distribution of molecules in a liquid, using a model in which�This work has been supported by the National Science Foundation under an Ed-ucational Infrastructure grant, CDA-9017953. It has been produced by the HPSCGroup, Department of Computer Science, University of Colorado, Boulder, CO 80309.Please direct comments or queries to Elizabeth Jessup at this address or e-mailjessup@cs.colorado.edu.Copyright c1994 by the HPSC Group of the University of Colorado1



2 Molecular Dynamicsthe molecules are represented as hard spheres which interact like billiard balls[Alder & Wainright 59, Alder & Wainright 60]. Using the fastest computerat that time, an IBM 704, they were able to simulate the motions of 32 and108 molecules in computations requiring 10 to 30 hours. Now it is possible toperform hard sphere computations on systems of over a million particles. Ahard sphere model, with millions of molecules, has been used at NASA AmesResearch Center by Leonardo Dagum to simulate hypersonic ow conditionsencountered by ight vehicles at high altitudes [Dagum 88]. Computationsusing a more realistic molecular model known as Lennard-Jones have beenperformed at IBM Kingston by Lawrence Hannon, George Lie, and EnricoClimenti to study the ow of uids [Hannon et al. 86]. In these computationsthe uid was represented by � 104 interacting molecules. Even though thisis miniscule compared with the number of molecules in a gram of water, thebehavior of the ow was like that in a real uid.Another class of molecular dynamics computations is concerned with theinternal motion of molecules especially proteins and nucleic acids, vital com-ponents of biological systems. The goal is to gain a better understanding ofthe function of these molecules in biochemical reactions. Interestingly, it hasbeen found that quantum e�ects do not have much inuence on the overalldynamics of proteins except at low temperatures. Thus classical mechanicsis su�cient to model the motions, but still the computational power requiredfor following the motion of a large molecule is enormous. For example, sim-ulating the motion of a 1,500-atom molecule, a small protein, for a timeinterval of 10�10 seconds is a six hour computation on a Cray X-MP.Martin Karplus and Andrew McCammon, in an interesting article \TheMolecular Dynamics of Proteins" [Karplus & McCammon 86], describe a dis-covery concerning the molecule myoglobin that could only have been madethrough molecular dynamics. The interest in myoglobin comes about be-cause it stores oxygen in biological systems. Whales, for example, are ableto stay under water for long periods of time because of a large amount ofmyoglobin in their bodies. It was known that the oxygen molecule bindsto a particular site in the myoglobin molecule but it was not understoodhow the binding could take place. X-ray crystallography work shows thatlarge protein molecules tend to be folded up into compact three-dimensionalstructures, and in the case of myoglobin the oxygen sites were known to liein the interior of such a structure. There did not seem to be any way that anoxygen atom could penetrate the structure to reach the binding site. Molec-CUBoulder : HPSC Course Notes



Molecular Dynamics 3ular dynamics provided the answer to this puzzle. The picture of a moleculeprovided by X-ray crystallography shows the average positions of the atomsin the molecule. In fact these atoms are in continuous motion, vibratingabout positions of equilibrium. Molecular dynamics simulation of the inter-nal motion of the molecule showed that a path to the site, wide enough foran oxygen atom, could open up for a short period of time.Scienti�c visualization is particularly important for understanding theresults of a molecular dynamics simulation. The millions of numbers repre-senting a history of the positions and velocities of the particles is not a veryrevealing picture of the motion. How is one to recognize the formation of avortex in this mass of data, or the nature of the bending and stretching of alarge molecule? How is one to gain new insights? Pictures and animationsenable the scientist to literally see the formation of vortices, to view proteinbending, and thus to gain new insights into the details of these phenomena.Computations that involve following the motion of a large number of in-teracting particles, whether the particles are atoms in a molecule, or moleculesof a uid or solid, or even particles in the discrete model of a vibrating stringor membrane are similar in the following respect. They involve a long seriesof time steps, at each of which Newton's laws are used to determine the newpositions and velocities from the old positions and velocities and the forces.The computations are quite simple but there are many of them. To achieveaccuracy, the time steps must be quite small, and therefore many are re-quired to simulate a signi�cantly long real time interval. In computationalchemistry the time step is typically about a femtosecond (10�15 seconds),and the total computation may represent � 10�10 seconds which could costabout 100 hours of computer time. The amount of computation at each stepcan be quite extensive. In a system consisting of n particles the force com-putations at each step may involve O(n2) operations. Thus it is easy to seethat these computations can consume a large number of machine cycles. Inaddition, animation of the motion of the system can make large demands onmemory.The objective of this tutorial is to help you gain some understandingof the nature of these computations. We use the term particle to refer tothe interacting objects: atoms or molecules. We concentrate on three di�er-ent models: Hooke's law, Lennard-Jones, and hard sphere. In the Hooke'slaw model the force acts as if the particles were connected to their neigh-bors by springs. Lennard-Jones is a model with forces that are stronglyCUBoulder : HPSC Course Notes



4 Molecular Dynamicsrepulsive at very short interparticle distances, attractive at larger distances,and extremely weak attractive at very large distances. In the hard spheremodel, already mentioned, the particles interact as if they were billiard balls{ they bounce o� each other when they are a certain distance apart, oth-erwise they do not interact. Normally the Lennard-Jones model is used for3-dimensional systems, but it is instructive to use it also for 1-dimensionaland 2-dimensional systems.After describing these models we discuss the equations of motion for eachmodel, and then we consider numerical methods for solving these equations.Solving the equations of motion for the Hooke's Law model and the LennardJones model is intrinsically di�erent from solving them for the hard spheremodel. Solving the equations of motion for the hard sphere model requiressolving some simple problems in geometry; in particular, we must determinewhen and where two spheres moving at constant velocity will collide. In onedimension this is extremely simple, but in two and three dimensions you needto draw on a knowledge of vector analysis. With Hooke's Law and LennardJones models we must solve a system of di�erential equations. For this weuse two numerical methods: Euler's method and Verlet's method. We useEuler's method because it is the simplest of any method we could reasonablyuse and thus it provides the easiest introduction to some of the basic ideas ofnumerically solving the equations of motion. Verlet's method is only slightlymore complex but more accurate. It is the simplest of the numerical methodsused in serious molecular dynamics computations.Finally, we consider the exact solution of the equations of motion for theHooke's Law model. This is the only model of the three considered herethat admits an exact solution. Exact solutions are important for us becausethey provide a means for testing the accuracy of our numerical methods. Anunderstanding of this part of the tutorial requires some elementary knowledgeof matrix eigenvalues and eigenvectors.2 ModelsModels of particle systems are characterized by the nature of the interactionsbetween the particles. Generally it is assumed that the forces between theparticles are conservative, two-body forces; that is, energy is conserved andthe total force acting on a particle due to the other particles is the sum ofCUBoulder : HPSC Course Notes



Molecular Dynamics 5the forces between pairs of particles. Thus the force acting on particle i isgiven by an expression of the formfi = nXj=1j 6=i fi;j; (1)where fi is the total force on particle i due to the other particles, fi;j is theforce on particle i due to particle j, and n is the number of particles in thesystem. Force is a vector quantity, so the sum in equation (1) is a vectorsum. The order of the indices is important: the �rst index identi�es theparticle acted on, the second index identi�es the particle causing the action.Newton's third law tells us thatfi;j + fj;i = 0: (2)There is an important relation between potential energy and force in aconservative system. If r is the position of a particle, f(r) the force actingon it, and �(r) its potential energy, thenf(r) = �r�(r): (3)Thus we can describe a model in terms of the force or the potential energy.For example, if �(r) = krk2; where r = 264 xyz 375 ; (4)then the three components of the force arefx = �@�@x = �2x; (5)fy = �@�@y = �2y;fz = �@�@z = �2z:Since potential energy is a scalar quantity it is often more convenient todescribe the model in terms of its potential energy function, �.CUBoulder : HPSC Course Notes



6 Molecular DynamicsAt a point of minimum potential energy the partial derivatives of thepotential energy are zero, and thus it is a point at which all of the forces arezero. Accordingly we call this point an equilibrium point .We now consider three models, referred to as the Hooke's law model, HLfor short, the Lennard-Jones model, LJ for short, and the hard sphere model,HS for short. Of these three, the LJ model comes closest to representing realmolecular systems. On the other hand, the LJ model presents the mostdi�cult computational challenge. The HL model is an approximation to theLJ model when the particles have low kinetic energy, thus remaining close totheir equilibrium positions; similarly, the HS model is an approximation tothe LJ model when the particles have high kinetic energy, or when attractiveforces are very weak.2.1 Hooke's Law modelIn the HL model the potential energy of a particle is proportional to thesquare of its displacement from its equilibrium position. Figure 1 shows thepotential energy function for a particle in a 1-dimensional system; and �gure 2shows the force on the particle that, according to equation (3), must beproportional to the displacement of the particle from its equilibrium position,and directed towards it. The equations for the potential energy, and forceare: �(x) = k2 (x� xeq)2 + �min; (6)f(x) = �k(x� xeq);where k is a constant, sometimes referred to as the force constant ; �min is aconstant, the minimum potential energy; and xeq is the equilibrium positionof the particle. Notice that f(x) = �d�(x)dx (7)as required by equation (3). Thus the force is proportional to the displace-ment of the particle from its equilibrium position and it is directed towardsthe equilibrium position. The most familiar example of a system subject toa HL force is a small mass suspended by a spring: it moves up and downunder the inuence of a HL force imposed by the spring, �gure 3.CUBoulder : HPSC Course Notes



Molecular Dynamics 7

Figure 1: Potential energy of a particle in the HL model varies as the squareof its displacement from equilibrium.
CUBoulder : HPSC Course Notes



8 Molecular Dynamics

Figure 2: Force on a particle in the HL model is proportional to its displace-ment from equilibrium and in the direction of the equilibrium point.
CUBoulder : HPSC Course Notes



Molecular Dynamics 9
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Figure 3: The motion of a small mass suspended from a spring typi�es themotion of a particle subject to an HL force.In two dimensions this model is described by�(x; y) = k2 ((x� xeq)2 + (y � yeq)2) + �min; (8)which we may write more compactly as�(r) = k2kr � reqk2 + �min: (9)We now consider the more interesting case of HL models for systems ofmore than one particle, starting with the 2-particle case. It helps to thinkof a physical system of two masses connected by a spring as illustrated in�gure 4. The force of the spring acts along a line joining the particles thatwe take to be the x axis. We assume that when the particles are separatedby a distance d the spring is neither stretched or compressed, so the systemis in equilibrium. When the distance between the particles is less than d thespring is compressed and the force acts to drive the particles apart; when thespring is stretched the force acts to bring the particles closer together. Thepotential energy function is�(x1; x2) = k2 (x1 � x2 + d)2 + �min: (10)CUBoulder : HPSC Course Notes



10 Molecular Dynamics���� ����- ��AA��AA��AA����� ����� -��BBBB����BBBB����BBBB��Figure 4: The motion of two small masses connected by a spring illustratesthe nature of the motion of a 2-particle system in the HL model.-xi i i iFigure 5: A 1-dimensional, 4-particle HL model. Motion is restricted to thex dimension and is oscillatory.The forces can be obtained by taking the appropriate derivatives of the po-tential energy giving f1(x1; x2) = �k(x1 � x2 + d); (11)f2(x1; x2) = k(x1 � x2 + d):A 1-dimensional, 4-particle system is shown in �gure 5. An illustrationof the motion of this system is shown in �gure 6 The potential energy of thissystem is�(x1; x2; x3; x4) = k2 ((x1�x2+d)2+(x2�x3+d)2+(x3�x4+d)2)+�min: (12)This system is in equilibrium when the particles are ordered from left toright, each a distance d from its neighbors. The forces aref1(x1; x2) = �k(x1 � x2 + d); (13)CUBoulder : HPSC Course Notes



Molecular Dynamics 11
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12 Molecular Dynamics

Figure 7: Potential energy of a particle in the LJ model.f2(q1; q2; q3) = �k(2q2 � q1 � q3);f3(q2; q3; q4) = �k(2q3 � q2 � q4);f4(q3; q4) = �k(q4 � q3):2.2 Lennard-Jones modelWe consider a three-dimensional system. The potential energy function fora pair of particles, 1 and 2, in the LJ model is given by�(r1; r2) =  1kr1 � r2k12 � 2kr1 � r2k6! : (18)The units have been chosen to locate the minimum of the potential energyat kr1 � r2k = 1, and the value of the minimum equal to �1. This potentialfunction is illustrated in �gure 7. Considering the slope of this function wesee that the force is strongly repulsive at small distances, and is attractiveCUBoulder : HPSC Course Notes



Molecular Dynamics 13i iii���� @@@@��� PPPFigure 8: Minimum energy con�guration for 4 particles in a 3-dimensionalLJ model: particles are located at the corners of a regular tetrahedron.at large distances, becoming extremely weak at very large distances. Thecrossover between the repulsive region and the attractive region occurs wherekr1�r2k = 1, the point of minimum potential energy. Note that at this pointthe force of the interaction is zero since the derivative of � is zero.The forces on particle 1 can be determined from the basic formula, equa-tion (3): f1;x = 12 1kr1 � r2k14 � 1kr1 � r2k8! (x1 � x2); (19)f1;y = 12 1kr1 � r2k14 � 1kr1 � r2k8! (y1 � y2);f1;z = 12 1kr1 � r2k14 � 1kr1 � r2k8! (z1 � z2):In a many-particle LJ system the force on each particle is determined bysumming over the pairwise interactions, using the above formulas. Since theforce between widely separated pairs is very weak it is sometimes neglected:a cuto� distance is chosen, and the force between particles separated by morethan the cuto� is ignored.The equilibrium con�guration is not easily determined. If there are onlyfour particles, then the particles are at the corners of a regular tetrahedron,as shown in �gure 8. But what about larger systems?Particle coordinates for equilibrium con�gurations of 5 and 6 particlesare shown in table 11. Pictures of these con�gurations are shown in �gures 9and 10.1These results were obtained by Elizabeth Eskow using minimization software devel-oped by Robert Schnabel. CUBoulder : HPSC Course Notes



14 Molecular Dynamics5 Particles 6 Particlesx y z x y z0.751308 0.888623 1.293299 5.951021 6.316232 5.3567960.906831 1.164906 0.343358 6.260952 5.532089 4.8275081.619112 0.680194 0.846874 6.271016 5.496511 5.8223530.418779 1.771369 0.967718 5.294356 5.769662 4.8457831.398694 1.623815 1.085234 5.614350 4.949941 5.3113405.304420 5.734084 5.840627Table 1: x-, y-, z-coordinates of particles in a 5-particle LJ model, and a6-particle LJ model.
Figure 9: Minimum energy con�guration for 5 particles.CUBoulder : HPSC Course Notes



Molecular Dynamics 15
Figure 10: Minimum energy con�guration for 6 particles.2.3 Hard sphere modelThis model is best visualized as a collection of hard, perfectly elastic, balls| like ball bearings, or billiard balls. The interactions between particlesare like collisions between these balls. Two-dimensional and one-dimensionalversions of this model, as well as the three-dimensional model, are studied:in two dimensions it is called the hard disk model , and in one dimension it iscalled the hard rod model .The potential energy for a pair of particles is�(r1; r2) = ( 0; kr1 � r2k > �1; kr1 � r2k � � (20)Thus there is no force acting on the particles except at the instant whenthey are a distance � apart. At that point an instantaneous force is applied,causing a change in velocities. We discuss this further in the next sectionwhen we consider the equations of motion. For the present it is su�cient tothink of the collision as if it were between two billiard balls of radius �.The HS model can be viewed as an approximation to the LJ model withhigh-velocity particles. When particles in the LJ model are moving at highvelocities the e�ect of the attractive force is quite small. The particles moveat high speed in straight lines (approximately) until they get close enoughCUBoulder : HPSC Course Notes



16 Molecular DynamicsAtom Length (cm.) Time (sec.)He 2:87� 10�8 3:38 � 10�14Ne 3:10� 10�8 6:80 � 10�14Ar 3:83� 10�8 1:54 � 10�13Kr 4:11� 10�8 1:95 � 10�13Xe 4:43� 10�8 2:42 � 10�13Table 2: Length and time scale factors for the LJ model.for the repulsive force to come into play, at which time they collide as in thehard sphere model. The repulsive force rises so steeply in the LJ model ithas almost the same e�ect as a collision between hard spheres of diameterslightly less than 1.2.4 Units and the connection with real systemsThe models all have potentials that depend only on distance; i.e. they arespherically symmetric. Therefore they serve best as models for systems com-posed of atoms of helium (He), neon (Ne), argon (Ar), Krypton (Kr), orXenon (Xe). Our computations with the LJ model apply to any of these sys-tems by appropriate choice of a scale factor for length and time. In table 2we show the scale factors for length and time for these elements. The inter-pretation of the numbers in this table can be illustrated for the case of argon:the length entry means that a distance of 1 unit, krk = 1, in the formula forthe LJ potential equation (18) represents 3:83�10�8 cm.; similarly, the timeentry means that a time unit of 1 in the equations of motion (next section)represents 1:54 � 10�13 seconds, assuming the mass we use in the equationsof motion is 1.3 Equations of motionNewton's second law gives us the equation for the motion of a particle:ma = f; (21)CUBoulder : HPSC Course Notes



Molecular Dynamics 17where m is the particle's mass, a is its acceleration, and f is the force actingon it. From this equation and a knowledge of the initial position and theinitial velocity of the particle we can, in principle, determine its position andvelocity at future times. In a system of interacting particles their motion isdetermined by solving many of these equations, one for each particle. Theequations are interdependent because the force on a particle is a functionof the position of some or all of the other particles. The solution of theseequations is our major concern in the next section. In this section we lookat the form of these equations for the di�erent models in order to gain anunderstanding of the nature of the problems we are trying to solve.3.1 One-dimensional systems.The equations of motion for a 1-dimensional system of two interacting par-ticles are: m1 �x1 = f1; (22)m2 �x2 = f2;where the acceleration is represented by �x; that is,�xi = d2xidt2 : (23)We assume that all particles have the same mass: m = m1 = m2.If we write the equations of motion in matrix form we havem " �x1�x2 # = " f1f2 # : (24)These equations can be written more compactly asm�x = f; (25)with the understanding that �x and f are the vectors in equation (24). Wecould express the equations of motion for a system of n particles by exactlythe same simple equation, with �x denoting a vector of n accelerations, andCUBoulder : HPSC Course Notes



18 Molecular Dynamicsm1 m2 m3 m4k1;2 k2;3 k3;4i i i iFigure 11: A 4-particle HL model with unequal masses and unequal forceconstants.f(x) denoting a vector of n forces. For example, the explicit matrix equationof a four-particle system, �gure 5, ism26664 �x1�x2�x3�x4 37775 = 26664 f1f2f3f4 37775 (26)The equations of motion for four particles in the HL model arem �q1 = �k(q1 � q2); (27)m �q2 = �k(2q2 � q1 � q3);m �q3 = �k(2q3 � q2 � q4);m �q4 = �k(q4 � q3);where the qis were de�ned in the last section, equation (15).We assumed that the particles are identical so that a common force con-stant, and common masses are used throughout. You might check yourunderstanding of these equations by deriving the equations of motion for anon-homogeneous HL model consisting of four particles with unequal masses,and unequal force constants, as illustrated in �gure 11.The equations of motion for two particles with LJ forces, acting in justone dimension, arem �x1 = 12 1(x1 � x2)13 � 1(x1 � x2)7! ; (28)m �x2 = 12 1(x2 � x1)13 � 1(x2 � x1)7! :CUBoulder : HPSC Course Notes



Molecular Dynamics 19In a 4-particle system they arem �x1 = 12 4Xj=2 1(x1 � xj)13 � 1(x1 � xj)7! ; (29)m �x2 = 12 4Xj=1j 6=2  1(x2 � xj)13 � 1(x2 � xj)7! ;m �x3 = 12 4Xj=1j 6=3  1(x3 � xj)13 � 1(x3 � xj)7! ;m �x4 = 12 4Xj=1j 6=4  1(x4 � xj)13 � 1(x4 � xj)7! ;In the 2-particle example the particles are in equilibrium when they are unitdistance apart, but the 4-particle case is a little di�erent. When the particlesare unit distance apart, then the force on each is almost, but not exactly, zero:although the force from particles unit distance away is zero, particles 2 and 3units away exert a small attractive force. In fact the forces for unit separationare: f1 = +0:0978;f2 = +0:0923;f3 = �0:0923;f4 = �0:0978:Therefore if we placed the particles at locations 0, 1, 2, 3 along the x axis wewould expect the �rst two to start moving to the right, and the second twoto start moving to the left.The equations of motion for the HS model must be expressed a littledi�erently. Consider two particles moving along the x axis. Their positionsare given by x1 = x(0)1 + _x1(0)(t� t(0)); (30)x2 = x(0)2 + _x2(0)(t� t(0)); (31)where x(0)i denotes position at time t(0), and the velocities, _xi, are the veloc-ities at t(0). If the particles are moving towards each other, then they willCUBoulder : HPSC Course Notes



20 Molecular Dynamicscollide at some time, say t(1). At this instant they change their velocities andthe new positions are given byx1 = x(1)1 + _x1(1)(t� t(1)); (32)x2 = x(1)2 + _x2(1)(t� t(1)): (33)Of course if the particles are moving away from each other, then there is nocollision. Thus solving the equations of motion in this case amounts to deter-mining the time of the next collision; moving the particles to their positionsat that time; and then determining the new velocities of the colliding parti-cles. This process is repeated over and over. Thus we compute the motionfrom collision to collision.A 1-dimensional HS model like this is not very interesting because theparticles gradually move farther and farther apart, going o� to +1 or �1.But we can make it interesting if we put \walls" on left and right constrainingthe particles to remain in some interval. When a particle hits the wall thenwe can assume it bounces back, i.e. reverses its velocity. Or we can assumethat the particles are con�ned to a circle, as if we joined left and right endsof an interval of the x axis | this kind of assumption is referred to as a\periodic boundary condition."3.2 Two-dimensional systemsWe now assume r = " xy # : (34)The position of the ith particle is denoted ri. With this understanding wecan write the equations of motion for an n-particle system exactly as before,equation (25), but with r in place of x:m�r = f: (35)Consider a 2-particle system withr = " r1r2 # ; (36)CUBoulder : HPSC Course Notes



Molecular Dynamics 21-6y x1 2r1 r2r1 � r2i i�����������������*��������9Figure 12: A 2-particle, 2-dimensional system.= 26664 x1y1x2y2 37775 : (37)These coordinates are illustrated in �gure 12. Thus we can write the equa-tions of motion as follows: m26664 �x1�y1�x2�y2 37775 = 26664 f1;xf1;yf2;xf2;y 37775 (38)where fi;x and fi;y are the x- and y-components of the force on particle i.The forces are directed along the line through the centers of the twoparticles, as illustrated in �gure 13.Now we can write the equations of motion for 2-particle HL and LJ modelsusing equation (38) and the forces given in the last section. The equationsof motion for a 2-particle HL model arem26664 �x1�y1�x2�y2 37775 = k(1� dkrk)26664 x1 � x2y1 � y2x2 � x1y2 � y1 37775 ; (39)CUBoulder : HPSC Course Notes



22 Molecular Dynamics
-6y x� ? -6��������f1;x f2;xf1;y f2;yi i���9 ���:f1 f2Figure 13: Force vectors in a 2-particle, 2-dimensional system.and for a 2-particle LJ model they arem26664 �x1�y1�x2�y2 37775 = 12 1kr1 � r2k14 � 1kr1 � r2k8!26664 x1 � x2y1 � y2x2 � x1y2 � y1 37775 ; (40)The equations for an n-particle system have the same form, the onlydi�erence being that when n > 2, a pairwise sum over interactions must bemade to determine fi;x,fi;y; e.g., for the LJ modelfi;x = 12 nXj=1j 6=i  1kri � rjk14 � 1kri � rjk8! (xi � xj); (41)fi;y = 12 nXj=1j 6=i  1kri � rjk14 � 1kri � rjk8! (yi � yj):Thus in an n-particle system the equations of motion are:m266664 �r1�r2...�rn 377775 = 266664 f1f2...fn 377775 ; (42)where �ri and fi are two-element column vectors:�ri = " �xi�yi # ; fi = " fi;xfi;y # (43)CUBoulder : HPSC Course Notes



Molecular Dynamics 23The equations of motion for a 2-dimensional HS system are the obviousextension of the 1-dimensional equations. We can write the equation for theith particle in vector form as follows;ri = r(1)i + _ri(1)(t� t(1)) (44)The work of the computation is determining when the next collision will oc-cur. Here there is an essential di�erence from the 1-dimensional computation.In 1-dimension only the particles on the left and right of a given particle arecollision candidates; furthermore, these particles remain candidates for theentire calculation | in one dimension neighbors remain neighbors. Not so intwo dimensions. Now the number of possibilities we must examine is muchlarger. Naively, we might consider every pair of particles but we can do bet-ter than this. One can, for example, divide space into bins of a certain size.If the bin size is chosen appropriately then for a given particle its collisioncandidates are the other particles in the same bin or in neighboring bins.Another scheme uses a timetable of predicted collision times. Supposethat at some point we determine for every particle the time and partner forits next collision, assuming no other collisions take place. Thus we producea timetable for collisions. The entry with the earliest collision time in thetimetable is the next collision. Once we process that collision, we need toupdate the timetable. This updating process takes some work, but it maylead to less work overall than the naive approach. The updating processinvolves looking for a new collision partner for each of the two particles thatjust collided. When those collision partners have been found some otherentries in the timetable may need to be updated, any that had one memberof the colliding pair as a collision partner must be updated.There is no need to consider 3-dimensional systems separately. The for-mulas and issues are the same as for the 2-dimensional systems just discussed.The only di�erence being that a z component must be added to the vectors.4 Numerical solution of the equations of mo-tion.In general the equations of motion do not admit an analytic solution sothey must be solved numerically. The numerical method is normally a timeCUBoulder : HPSC Course Notes



24 Molecular Dynamicsstepping algorithm; that is, the solution is generated incrementally in timestarting from a set of initial conditions. This solution is simply a list ofnumbers, usually the particle positions and velocities at the time steps. Thepositions and velocities at any one time represent the state of the system atthat time.The process of generating the numerical solution is easy to describe inbroad outline, though the details can be rather di�cult. The broad outline isthis. Starting from an initial state at a given time, the state at a slightly latertime is computed, then the next state, and so on. The time interval betweenstates is either constant or variable; in order to control the error, it mustbe kept small enough so that values of important variables undergo littlechange, but if the interval is too small then the computation becomes tooslow. More complex algorithms usually accumulate less error per step and sobigger steps are possible, but they also take more time per step. Obviouslythese tradeo�s are an important consideration in designing a program forsolving a molecular dynamics problem. Normally the state is not recorded atevery time step, they are too close together. Instead, a di�erent time intervalthat is a multiple of the time step is used for recording results. Importantphysical parameters such as energy, momentum, mean separation of particles,and so forth may be recorded during the computation or generated later fromthe state information.Accuracy of the numerical solution is an important consideration. As apractical matter this usually must be estimated by indirect methods. Run-ning the computation for di�erent values of the time step is one indirect tech-nique, and running with di�erent numerical precision is another. Changingfrom single to double precision is relatively easy, and there are software toolsfor still higher precision [Bailey 91]. Special cases in which an exact solutionis possible to test an algorithm are also used. The HL model is one of thesespecial cases. It is possible to express the solution of the equations of motionfor this system in terms of the eigenvalues and eigenvectors of a certain ma-trix. Although the eigenvalues and eigenvectors may have to be computednumerically, the error from computation is negligible compared with the er-ror from a time stepping algorithm. Therefore the HL model admits, for allpractical purposes, an exact solution against which numerical solutions canbe compared.The e�ciency of these computations on vector and parallel computersdepends on the models and the algorithms. The HL model, for example, canCUBoulder : HPSC Course Notes



Molecular Dynamics 25be run very e�ciently on a vector computer but the HS model cannot. Inmost particle systems the neighbors of a particle change with time, thus theset of interacting pairs change and because of this an e�cient decompositionof the computation for a parallel computer can be di�cult to �nd.For HL and LJ systems we use algorithms for solving second order di�er-ential equations. We consider two of these algorithms: Euler's method andVerlet's method. The HS system is essentially di�erent since no di�erentialequation needs to be solved. The work of the computation consists mainlyin determining when the next collision occurs. For this we use only the naivealgorithm mentioned: consideration of the more e�cient algorithms wouldcarry us beyond the scope of this tutorial.4.1 Euler's methodA discussion of the basic ideas of Euler's method can be found in the tuto-rial [Fosdick 91] and any elementary numerical analysis book, for example[Conte & de Boor 80, Burden & Faires 85]. We describe it briey in termsof the equations we are interested in solving. We begin withm�x = f(x); (45)with initial conditions x(0) = x(0); _x(0) = _x(0): (46)The �rst step is to write the second order di�erential equation, equation (45),as a pair of coupled �rst order di�erential equations:m _u = f(x); (47)_x = u;where u is just a new name for _x. The next step is to use Euler's method onthese equations to get the following formulas for generating the solution attimes h, 2h, 3h, : : :: x(t+ h) � x(t) + hu(t); (48)u(t+ h) � u(t) + hmf(x(t)): (49)CUBoulder : HPSC Course Notes



26 Molecular DynamicsThe code segment for this computation is:DO T = 1,NSTEPX(T+1) = X(T) + H*U(T)U(T+1) = U(T) + (H/M)*F(X(T))END DOThe extension of these formulas to multiparticle, multidimensional prob-lems is straightforward. The code segment for a 3-dimensional computationon an n-particle system, assuming all particles have the same mass, is:DO T = 1,NSTEPCALL FORCE(X,Y,Z,FX,FY,FZ)DO I = 1,NPARTX(I) = X(I) + H*U(I)Y(I) = Y(I) + H*V(I)Z(I) = Z(I) + H*W(I)U(I) = U(I) + (H/M)*FX(I)V(I) = V(I) + (H/M)*FY(I)W(I) = W(I) + (H/M)*FZ(I)END DO..(Write positions and velocities)..END DOThe procedure FORCE evaluates the the forces on the particles from theircurrent positions that are stored in the arrays X, Y, Z and returns the x-,y-, and z-components of the forces in the arrays FX, FY, FZ. The remarkafter the inner loop indicates a block of code that would write position andvelocity information. Generally this information is not written at every timestep because H is so small; rather it is written at a larger interval that is anCUBoulder : HPSC Course Notes
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Figure 14: Error in numerical solution by Euler's method of 1-dimensional,4-particle HL model: h = 0:01, k=m = 1. The curves have been shiftedvertically: the point of zero error for a particular curve is its position at t=0.integer multiple of H. Therefore, this block of code would include a test todetermine if writing should take place at the current time.If f(x) is well-behaved it can be shown that the error in the computedsolution is O(h). As an illustration of the error in solving the equations ofmotion with Euler's method we show the error as a function of time for a1-dimensional, 4-particle HL system in �gure 14. This result was obtainedwith a stepsize of h = 0:01. If we reduce the stepsize by a factor of ten,that is h = 0:001, then we get the results shown in �gure 15. Comparison ofthe error for the two di�erent values of h shows that the peaks in the errorhave been reduced by about a factor of 10 as we would expect because h isreduced by reduced by this factor and the error should be O(h).While Euler's method has the virtue of simplicity it is far less accuratethan other methods we might use. Verlet's method is still a relatively simplemethod but gives much better accuracy.4.2 Verlet's methodThe name we give to this method is commonly used in the molecular dynam-ics literature, but it is known in mathematics as St�ormer's method . ActuallyCUBoulder : HPSC Course Notes



28 Molecular Dynamics
Figure 15: Error in numerical solution by Euler's method of 1-dimensional,4-particle HL model: h = 0:001, k=m = 1. The curves have been shiftedvertically: the point of zero error for a particular curve is its position at t=0.there is a class of St�ormer methods, of which this is the simplest. Henricishows that the error in this method is O(h2) [Henrici 62].The basic idea is to approximate the second derivative with a �nite dif-ference, �x � x(t+ h)� 2x(t) + x(t� h)h2 : (50)The error in this approximation of the second derivative is O(h2), as shownin [Fosdick 91]. If we use this approximation in equation (45) we obtainx(t+ h) � 2x(t)� x(t� h) + h2f(x(t)): (51)This, then, is the basis of the algorithm. We can generate the solution withthe following code segment:DO T = 1,NSTEPX(T+1) = 2*X(T) - X(T-1) + H**2*F(X(T))END DOCUBoulder : HPSC Course Notes



Molecular Dynamics 29There are important di�erences between this code segment and the cor-responding code for Euler's method. Notice that two previous values of X arerequired at each time step, unlike Euler's method which required just one.Notice also that the force term has a factor H**2, not H as in Euler's method.And, �nally, notice that the velocity does not appear.Something special must be done to start the iteration because the initialvalues for the problem are usually position and velocity, not two positionvalues. A Taylor series expansion can be used to compute x(h) given x(0)and _x(0): x(h) � x(0) + h _x(0) + h22 f(x(0)): (52)The fact that the force term is O(h2) implies that we are adding a verysmall number to a much larger number at every step, resulting in a loss inaccuracy. This can be mitigated by using a di�erent form of the algorithm,called the summed form:DO T = 1,NSTEPDX(T) = DX(T-1) + H*F(X(T))X(T+1) = X(T) + H*DX(T)END DOIt is easy to verify that this is mathematically equivalent to the original algo-rithm: DX(T) is simply the name of (X(T+1) - X(T))/H). In other words, ifall computations were exact (no roundo� error) then this code would producethe same result as the original. But real computations are not exact and thesummed form gives a more accurate result.The velocity can be computed from the position using a central di�erenceapproximation: _x(t) � x(t+ h)� x(t� h)2h : (53)Alternatively, it can be computed within the algorithm as follows:CUBoulder : HPSC Course Notes



30 Molecular Dynamics
Figure 16: Error in numerical solution by Verlet's method of 1-dimensional,4-particle HL model: h = 0:01, k=m = 1. The curves have been shiftedvertically: the point of zero error for a particular curve is its position at t=0.DO T = 1,NSTEPX(T+1) = X(T) + H*(U(T) + H*F(X(T))/2)U(T+1) = U(T) + H*(F(X(T+1))+F(X(T)))/2END DOAn e�cient implementation of this only requires one computation of theforce at each time step, and saving it for use in the next time step. Thisform has the numerical accuracy of the summed form, but it requires morecomputations per time step. If velocities are not needed then the summedform should be used. If double precision arithmetic is used then the originalunsummed form of the algorithm may give acceptable accuracy.An idea of the di�erence in accuracy between Euler's method and Verlet'smethod is illustrated in �gures 16 and 17, which correspond to �gures 14and 15: the same computation except Verlet's method was used. Comparisonof the peaks in these error curves with the corresponding curves for Euler'smethod shows that Verlet's method is far more accurate than Euler's method:for h = 0:01 the error in Verlet's method is smaller than the error in Euler'sCUBoulder : HPSC Course Notes
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Figure 17: Error in numerical solution by Verlet's method of 1-dimensional,4-particle HL model: h = 0:001, k=m = 1. The curves have been shiftedvertically: the point of zero error for a particular curve is its position at t=0.method by a factor of 10�3. Comparison of the error in Verlet's method forh = 0:01 with that for h = 0:001 shows that the error is reduced by about afactor of 100, con�rming the O(h2) behavior of the error.Extension of this algorithm to three dimensional, multiparticle systemsshould be evident from the discussion of Euler's method.4.3 Hard sphere collisionsDetermining the motion of a system of particles that are modeled as hardspheres does not require solving a di�erential equation, so the methods de-scribed above do not apply. Since hard sphere particles travel in straight lineswith constant speed between collisions we only need to know when collisionsoccur and the velocities after collision in order to follow the motions of theparticles. It sounds simple, but determining the sequence of collisions is acomputationally intensive task. Bear in mind that we must determine whichpair of particles will collide next after each collision, a task that must takeinto consideration all pairs of particles. We consider the easy case of a onedimensional system �rst. CUBoulder : HPSC Course Notes
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2Figure 18: Collision of hard sphere particles in one dimension: (a) one timeunit before collision; (b) instant of collision; (c) one time unit after collision.In this illustration particle 1 is travelling at four times the speed of particle2 before the collision. At collision the particles exchange velocities so afterthe collision particle 2 is travelling at four times the speed of particle 1.4.3.1 One-dimensional systemIn one dimension the particles collide head-on as illustrated in �gure 18. Theconservation laws require that the total momentum and total energy do notchange. Therefore we have:u1;old + u2;old = u1;new + u2;new (conservation of momentum); (54)u21;old + u22;old = u21;new + u22;new (conservation of energy);where u denotes velocity, and it is assumed that both particles have the samemass. These equations can be solved easily for u1;new and u2;new:u1;new = u2;old; u2;new = u1;old (55)Thus the particles simply exchange velocities when they collide.Assume we have a system of hard-sphere particles ordered along the x-axisso that x1 < x2 < : : : < xn: (56)CUBoulder : HPSC Course Notes



Molecular Dynamics 331 2 3 4 5 6 -xn n n n n n- � � - � �Figure 19: A 6-particle, one-dimensional system of hard spheres.as illustrated in �gure 19 for n = 6. To determine the time of the nextcollision me must consider all pairs, executing a segment of code that lookslike this: COLLTIME = INFINITYDO I = 1,N-1IF ((U(I+1) - U(I) .LT. 0)COLLTIMENEW = (X(I+1) - X(I))/(U(I) - U(I+1))IF(COLLTIMENEW .LT. COLLTIME)COLLPART = ICOLLTIME = COLLTIMENEWEND IFEND IFEND DOAfter execution of this segment we know that the time of the next collisionis COLLTIME and that the collision partners are particles I and I+1, providedthat COLLTIME 6= INFINITY. The code segment we execute at a collisionupdates the positions of all particles, and the velocities of the colliding pair.It looks like this: CUBoulder : HPSC Course Notes



34 Molecular DynamicsDO I = 1,NX(I) = X(I) + U(I)*COLLTIMEEND DOTMP = U(COLLPART)U(COLLPART) = U(COLLPART + 1)U(COLLPART + 1) = TMP4.3.2 2,3-dimensional systemsIn 2- and 3-dimensional systems collisions are not necessarily head on, theymay be oblique, as illustrated in �gure 20.In an oblique collision the interaction or impact is along the line drawnbetween the centers of the particles at the instant of collision: there is noforce exerted on the particles in the plane tangent to the two particles atthe point of impact | our HS model assumes that the particles are perfectlysmooth. An analysis like that used for the one dimensional case shows that inan oblique collision the particles exchange the components of their velocitiesalong the line between the centers of the particles, no other velocity compo-nents are changed. Thus the e�ect of an oblique collision is as illustrated in�gure 21.The critical part of the computation for updating velocities is the deter-mination of which particles will collide next. In its simplest form the steps inthis computation are as follows. We let ri and _ri denote the position vectorand velocity vector of the ith particle, and we let � denote the diameter of aparticle. It is convenient to de�ne new position and velocity vectorsri;j = ri � rj; _ri;j = _ri � _rj (57)that represent the position and velocity of the ith particle relative to the jthparticle. If we want to be explicit about the relative position at time t thenwe write ri;j(t). The test to determine if two particles collide can be brokeninto two parts: determine if they are approaching each other; if they areapproaching each other then determine their distance of closest approach.The particles are approaching each other if the component of their relativeCUBoulder : HPSC Course Notes
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Figure 20: Collision of hard spheres in two dimensions: positions at one timeunit before collision (dotted circles); at collision (dashed circle); and one timeunit after collision (solid circles) are shown. Particles 1 and 2 are travellingat the same speed, s, before the collision. Particle 2 is travelling along aline that is 45� from the x-axis. At collision they exchange x-componentsof velocity; their y-components of velocity are unchanged. Therefore, aftercollision particle 1 is travelling in the x-direction at speed s=p2, while particle2 is travelling upward and to the right, at an angle of arctan(1=p2) to thex-axis, with a speed equal to sq3=2 . CUBoulder : HPSC Course Notes
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40 Molecular DynamicsYou should be able to verify that this formula gives the same result for the1-dimensional case as obtained earlier, equation (55).At this point you have all of the necessary formulas for constructinga program to solve the equations of motion by Euler's method or Verlet'smethod for any of the models | HL, LJ, or HS.5 Exact solution of the equations of motionfor HL model.We noted earlier that the Hooke's Law model is special because, unlike theother models, it admits an exact solution. Here we outline the main ideasleading to the exact solution. In order to understand the material in thissection, you need to know about eigenvalues and eigenvectors of matrices atan elementary level; for example, see [Fosdick 91, section 5.4].Consider �rst the simple case of a single particle moving under the inu-ence of an HL force, illustrated earlier in �gure 3. The equation of motionfor this particle is m�q(t) = �kq(t); (64)where m is the mass of the particle, k is the force constant, and q(t) is thedisplacement of the particle from its equilibrium position at time t.It is easy to verify that q(t) = Q cos(!t+ �) (65)satis�es equation (64). If we substitute this expression for q(t) into equa-tion (64) we obtain�mQ!2 cos(!t+ �) = �kQ cos(!t+ �): (66)The left side agrees with the right side provided that! = s km: (67)Therefore q(t) = Q cos�qk=m t+ �� (68)CUBoulder : HPSC Course Notes



Molecular Dynamics 41is a solution.What about the parameters Q and � appearing in this solution? We showhere that they are determined by the initial conditions for the motion. Noticethat when t = 0 we haveq(0) = Q cos(�); _q(0) = �!Q sin(�): (69)Therefore, if we impose the initial conditionsq(0) = 1; _q(0) = 0; (70)we easily �nd that Q = 1; � = 0: (71)Thus for the initial conditions given in equation (70) the solution to theequations of motion is q(t) = cos�qk=m t� (72)Thus the solution is a periodic function of time, with frequency (2�)�1qk=m.Now we turn to the more complicated case of a chain of four particles con-sidered earlier and illustrated in �gure 5. Following the one particle exampleabove, we �rst \guess" a solution and then show that this guess satis�es theequations of motion provided certain parameters related to the frequency ofthe motion are satis�ed. We will �nd that there are three distinct solutions,known as \modes". These modes correspond to the general solution, equa-tion (68), for the one-particle case. The initial conditions determine a linearcombination of the modes that is the particular solution, corresponding toequation (72).The equations of motion for four particles in the HL model were given inequation (27). It is convenient to express them in matrix form:m�q = �kMq (73)where q is a vector and M is a matrix:q = 26664 q1q2q3q4 37775 ; M = 26664 1 �1 0 0�1 2 �1 00 �1 2 �10 0 �1 1 37775 : (74)CUBoulder : HPSC Course Notes



42 Molecular DynamicsOf course q is a function of time but for simplicity we often write q ratherthan q(t).We proceed by analogy with the one-particle case just considered, guess-ing that the solution to these four equations has the form:q = Q cos(!t+ �); Q = 26664 Q1Q2Q3Q4 37775 : (75)This looks like the solution for the one particle case except q and Q arenow vectors, qi representing the displacement of the ith particle from itsequilibrium position: qi = Qi cos(!t+ �): (76)We can verify that this guess is indeed a solution by the same process asbefore, that is by substituting it into the equations of motion, equation (73).Substitution and a little algebraic manipulation produces the resultMQ = m!2k Q: (77)You may recognize this as the usual form of a matrix eigenvalue equationwhere Q is an eigenvector and m!2=k is an eigenvalue of the matrix M ; see[Fosdick 91, equation 14]. Thus our guessed solution satis�es the equationsof motion provided that m!2=k and Q are an eigenvalue-eigenvector pair ofthe matrix M .Since M is a 4� 4 matrix it has four eigenvalues; these are�0 = 0; �1 = 2�p2; �2 = 2; �3 = 2 +p2 (78)and the corresponding eigenvectors are 0 = 26664 1111 37775 ;  1 = 266664 1p2 � 1�p2 + 1�1 377775 ;  2 = 26664 1�1�11 37775 ;  3 = 266664 p2 � 1�11�p2 + 1 377775 : (79)An explanation of where these results came from would take us too far a�eld,but you can easily verify them using equation (77), or you could use MAT-LAB to compute the eigenvalues and eigenvectors numerically. RememberCUBoulder : HPSC Course Notes



Molecular Dynamics 43that an eigenvector can be normalized in various ways. Here we normalizedthem so that k k1 = 1; on the other hand MATLAB normalizes them sothat k k2 = 1.Each eigenvalue-eigenvector pair represents a particular motion of thefour-particle system called a \mode". Consider the mode represented by�3;  3. The motion for this mode is given byq = 266664 p2� 1�1+1�p2 + 1 377775 cos�q(2 +p2)k=m t+ �� : (80)Notice that each particle oscillates with a frequency12�q(2 +p2)k=m:Thus the frequency of the oscillation is proportional to the square root ofthe eigenvalue of the mode, and the relative amplitudes of the motion aredetermined by the eigenvector of the mode. �gure 25 illustrates this mode.Since it has the largest eigenvalue, and therefore the highest frequency, wecall it the \high-frequency mode".The mode associated with �1 is called the \low frequency mode" since �1is the smallest eigenvalue excepting zero (see below). The motion associatedwith this mode is illustrated in �gure 26.The eigenvalue �0 = 0 represents the state of no relative motion; i.e.no motion of the particles relative to each other. Notice that zero for theeigenvalue implies ! = 0, which implies that the solution is independentof time. This situation would occur if we started all the particles in theirequilibrium positions with no initial velocity: they would remain motionless.Here we are concerned only with states of relative motion; so we focus on themodes represented by the nonzero eigenvalues.The importance of the modes comes from the fact that any motion of thefour-particle system can be expressed as a linear combination of the modes.We illustrate this for a particular case. Consider the motion determined byinitial conditions q(0) = 26664 100�1 37775 ; _q(0) = 0: (81)CUBoulder : HPSC Course Notes



44 Molecular Dynamics
Figure 25: Illustration of the high-frequency mode of a four-particle systemwith k=m = 1; � = 0. Equilibrium positions of the four particles are assumedto be 0, 4, 8, 12.
Figure 26: Illustration of the low-frequency mode of a four-particle systemwith k=m = 1; � = 0. Equilibrium positions of the four particles are assumedto be 0, 4, 8, 12.CUBoulder : HPSC Course Notes



Molecular Dynamics 45We express the general solution as a linear combination of the modes:q(t) = 3Xi=1 ci i cos�q(k=m)�i t+ �i� ; (82)where c1; c2; c3 are arbitrary constants. We must determine c1; c2; c3 and�1; �2; �3 so that q(t) de�ned by equation (82) satis�es the initial conditionsspeci�ed in equation (81).To satisfy the condition on q(0), set t equal to zero on the right sideof equation (82) and substitute the result for q(0) into the initial conditionequation. This gives: 3Xi=1 ci cos(�i) i = 26664 100�1 37775 (83)Next di�erentiate both sides of equation (82) with respect to t to obtain thefollowing expression for _q(t)_q(t) = � i=3Xi=1 ci iqk=m�i sin�q(k=m)�i t+ �i� : (84)Then set t equal to zero in this equation and substitute the result into theinitial condition equation for _q(0), giving the result3Xi=1 cis km�i sin(�i) i = 26664 0000 37775 : (85)The four equations in equation (83) together with the four equations in equa-tion (85) give us a system of eight linear equations in six unknowns d1, d2,: : :, d6 where di = ci cos(�i); di+3 = ci sin(�i) (i = 1; 2; 3): (86)It might seem that we cannot solve these equations because the numberof equations exceeds, by 2, the number of unknowns. However two of theequations are redundant. Note that the sum of the components of eachCUBoulder : HPSC Course Notes



46 Molecular Dynamicseigenvector is zero, and that the same is true for the sum of the componentsof q(0) and _q(0). Therefore there are at most six independent equations, noteight. These equations can be solved, for example with MATLAB, to obtainthe resultd1 = �8:535533906e � 01; d2 = 0; d3 = �3:535533906e � 01;d4 = d5 = d6 = 0: (87)From this is follows thatc1 = �8:535533906e � 01; c2 = 0; c3 = �3:535533906e � 01;�1 = �2 = �3 = 0: (88)To con�rm your understanding of this you might verify that these coe�cientsand phase angles produce a solution to the equations of motion that satis�esthe initial conditions.Similarly it is possible to obtain a solution to the equations of motion forany valid set of initial conditions (i.e. the sums of the components of q(0)and of _q(0) are both zero.)The procedure for solving the problem with a chain of n atoms is thesame; the matrix M has order n and has the formM = 26666666664 1 �1 0 0 : : : 0�1 2 �1 0 : : : 00 �1 2 �1 : : : 0... ...0 0 : : : �1 2 �10 0 : : : �1 1 37777777775 (89)The eigenvalues of M are given by�p = 2�1 � cos(p�n )� (90)and the eigenvectors are given by (p)j = A cos�p�n (j � 12)� (91)CUBoulder : HPSC Course Notes



Molecular Dynamics 47where  (p)j is the jth component of the pth eigenvector. The index p takesvalues 0; 1; : : : ; n�1; and the index j takes values 1; 2; : : : ; n. The coe�cientA, the normalization factor, is arbitrary. In the 4-particle example we choseit so that the element of maximum magnitude in  (p) has magnitude 1; i.e.,k (p)k1 = 1: (92)It is worth noting that for every n there is one eigenvalue equal to zero. Thetrivial mode corresponding to this eigenvalue would be ignored, just as wedid in the case for the 4-particle chain.In order to check your understanding of the above discussion you mighttry to solve the following problems.1. What is the high frequency mode for a 5-particle system?2. What is the upper bound on the frequency for any one-dimensionalchain, assuming k=m = 1?3. What is the exact solution of the equations of motion for a 5-particlesystem with the following initial conditions?q(0) = 26666664 1:00:5�0:5�0:5�0:5 37777775 ; _q(0) = 0: (93)Assume k=m = 1.4. What is the exact solution of the equations of motion for a 5-particlesystem with the following initial conditions?q(0) = 0; _q(0) = 26666664 1000�1 37777775 : (94)Assume k=m = 1.5. Assume a two-dimensional HL model with 8 particles in each dimen-sion. What is the matrix form of the equations of motion?6. Assume a three-dimensional HL model with 8 particles in each dimen-sion. What is the matrix form of the equations of motion?CUBoulder : HPSC Course Notes
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