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Molecular Dynamics:
A Introduction *

Lloyd D. Fosdick

January 19, 1995

1 Introduction

Molecular dynamics is concerned with simulating the motion of molecules
to gain a deeper understanding of chemical reactions, fluid flow, phase tran-
sitions, droplet formation, and other physical phenomena that derive from
molecular interactions. These studies include not only the motion of many
molecules as in a fluid, but also the motion of a single large molecule con-
sisting of hundreds or thousands of atoms, as in a protein. Much of this
work uses simple classical Newtonian mechanics. This tutorial is concerned
only with these classical systems and uses mathematical concepts that should
be familiar to most upper division undergraduates in a physical science or
engineering curriculum.

Computers are a critically important tool for these studies because there
simply is no other way to trace the motion of a large number of interacting
particles. The earliest of these computations were done in the 1950s by Berni
Alder and Tom Wainwright at Lawrence Livermore National Laboratory.
They studied the distribution of molecules in a liquid, using a model in which

*This work has been supported by the National Science Foundation under an Ed-
ucational Infrastructure grant, CDA-9017953. It has been produced by the HPSC
Group, Department of Computer Science, University of Colorado, Boulder, CO 80309.
Please direct comments or queries to Elizabeth Jessup at this address or e-mail
jessup@cs.colorado.edu.
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2 Molecular Dynamics

the molecules are represented as hard spheres which interact like billiard balls
[Alder & Wainright 59, Alder & Wainright 60]. Using the fastest computer
at that time, an IBM 704, they were able to simulate the motions of 32 and
108 molecules in computations requiring 10 to 30 hours. Now it is possible to
perform hard sphere computations on systems of over a million particles. A
hard sphere model, with millions of molecules, has been used at NASA Ames
Research Center by Leonardo Dagum to simulate hypersonic flow conditions
encountered by flight vehicles at high altitudes [Dagum 88]. Computations
using a more realistic molecular model known as Lennard-Jones have been
performed at IBM Kingston by Lawrence Hannon, George Lie, and Enrico
Climenti to study the flow of fluids [Hannon et al. 86]. In these computations
the fluid was represented by ~ 10* interacting molecules. Even though this
is miniscule compared with the number of molecules in a gram of water, the
behavior of the flow was like that in a real fluid.

Another class of molecular dynamics computations is concerned with the
internal motion of molecules especially proteins and nucleic acids, vital com-
ponents of biological systems. The goal is to gain a better understanding of
the function of these molecules in biochemical reactions. Interestingly, it has
been found that quantum effects do not have much influence on the overall
dynamics of proteins except at low temperatures. Thus classical mechanics
is sufficient to model the motions, but still the computational power required
for following the motion of a large molecule is enormous. For example, sim-
ulating the motion of a 1,500-atom molecule, a small protein, for a time
interval of 107! seconds is a six hour computation on a Cray X-MP.

Martin Karplus and Andrew McCammon, in an interesting article “The
Molecular Dynamics of Proteins” [Karplus & McCammon 86], describe a dis-
covery concerning the molecule myoglobin that could only have been made
through molecular dynamics. The interest in myoglobin comes about be-
cause it stores oxygen in biological systems. Whales, for example, are able
to stay under water for long periods of time because of a large amount of
myoglobin in their bodies. It was known that the oxygen molecule binds
to a particular site in the myoglobin molecule but it was not understood
how the binding could take place. X-ray crystallography work shows that
large protein molecules tend to be folded up into compact three-dimensional
structures, and in the case of myoglobin the oxygen sites were known to lie
in the interior of such a structure. There did not seem to be any way that an
oxygen atom could penetrate the structure to reach the binding site. Molec-
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Molecular Dynamics 3

ular dynamics provided the answer to this puzzle. The picture of a molecule
provided by X-ray crystallography shows the average positions of the atoms
in the molecule. In fact these atoms are in continuous motion, vibrating
about positions of equilibrium. Molecular dynamics simulation of the inter-
nal motion of the molecule showed that a path to the site, wide enough for
an oxygen atom, could open up for a short period of time.

Scientific visualization is particularly important for understanding the
results of a molecular dynamics simulation. The millions of numbers repre-
senting a history of the positions and velocities of the particles is not a very
revealing picture of the motion. How is one to recognize the formation of a
vortex in this mass of data, or the nature of the bending and stretching of a
large molecule? How is one to gain new insights? Pictures and animations
enable the scientist to literally see the formation of vortices, to view protein
bending, and thus to gain new insights into the details of these phenomena.

Computations that involve following the motion of a large number of in-
teracting particles, whether the particles are atoms in a molecule, or molecules
of a fluid or solid, or even particles in the discrete model of a vibrating string
or membrane are similar in the following respect. They involve a long series
of time steps, at each of which Newton’s laws are used to determine the new
positions and velocities from the old positions and velocities and the forces.
The computations are quite simple but there are many of them. To achieve
accuracy, the time steps must be quite small, and therefore many are re-
quired to simulate a significantly long real time interval. In computational
chemistry the time step is typically about a femtosecond (107'® seconds),
and the total computation may represent ~ 1071° seconds which could cost
about 100 hours of computer time. The amount of computation at each step
can be quite extensive. In a system consisting of n particles the force com-
putations at each step may involve O(n?) operations. Thus it is easy to see
that these computations can consume a large number of machine cycles. In
addition, animation of the motion of the system can make large demands on
memory.

The objective of this tutorial is to help you gain some understanding
of the nature of these computations. We use the term particle to refer to
the interacting objects: atoms or molecules. We concentrate on three differ-
ent models: Hooke’s law, Lennard-Jones, and hard sphere. In the Hooke’s
law model the force acts as if the particles were connected to their neigh-
bors by springs. Lennard-Jones is a model with forces that are strongly
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4 Molecular Dynamics

repulsive at very short interparticle distances, attractive at larger distances,
and extremely weak attractive at very large distances. In the hard sphere
model, already mentioned, the particles interact as if they were billiard balls
— they bounce off each other when they are a certain distance apart, oth-
erwise they do not interact. Normally the Lennard-Jones model is used for
3-dimensional systems, but it is instructive to use it also for 1-dimensional
and 2-dimensional systems.

After describing these models we discuss the equations of motion for each
model, and then we consider numerical methods for solving these equations.
Solving the equations of motion for the Hooke’s Law model and the Lennard
Jones model is intrinsically different from solving them for the hard sphere
model. Solving the equations of motion for the hard sphere model requires
solving some simple problems in geometry; in particular, we must determine
when and where two spheres moving at constant velocity will collide. In one
dimension this is extremely simple, but in two and three dimensions you need
to draw on a knowledge of vector analysis. With Hooke’s Law and Lennard
Jones models we must solve a system of differential equations. For this we
use two numerical methods: Euler’s method and Verlet’s method. We use
Euler’s method because it is the simplest of any method we could reasonably
use and thus it provides the easiest introduction to some of the basic ideas of
numerically solving the equations of motion. Verlet’s method is only slightly
more complex but more accurate. It is the simplest of the numerical methods
used in serious molecular dynamics computations.

Finally, we consider the exact solution of the equations of motion for the
Hooke’s Law model. This is the only model of the three considered here
that admits an exact solution. Exact solutions are important for us because
they provide a means for testing the accuracy of our numerical methods. An
understanding of this part of the tutorial requires some elementary knowledge
of matrix eigenvalues and eigenvectors.

2 Models

Models of particle systems are characterized by the nature of the interactions
between the particles. Generally it is assumed that the forces between the
particles are conservative, two-body forces; that is, energy is conserved and
the total force acting on a particle due to the other particles is the sum of
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Molecular Dynamics 5

the forces between pairs of particles. Thus the force acting on particle 2 is
given by an expression of the form

=Y fi (1)

i

where f; is the total force on particle ¢ due to the other particles, f;; is the
force on particle ¢ due to particle j, and n is the number of particles in the
system. Force is a vector quantity, so the sum in equation (1) is a vector
sum. The order of the indices is important: the first index identifies the
particle acted on, the second index identifies the particle causing the action.
Newton’s third law tells us that

fii+ f5:=0. (2)

There is an important relation between potential energy and force in a
conservative system. If r is the position of a particle, f(r) the force acting
on it, and ¢(r) its potential energy, then

f(r) = =V¢(r). (3)

Thus we can describe a model in terms of the force or the potential energy.
For example, if

x
é(r) = ||r||?, wherer= |y |, (4)
z
then the three components of the force are
d¢
= P 9 5
o= -2 (5
d¢
= - = —2
fy ay Y,
d¢
= 2 9,
! 0z z

Since potential energy is a scalar quantity it is often more convenient to
describe the model in terms of its potential energy function, ¢.
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6 Molecular Dynamics

At a point of minimum potential energy the partial derivatives of the
potential energy are zero, and thus it is a point at which all of the forces are
zero. Accordingly we call this point an equilibrium point.

We now consider three models, referred to as the Hooke’s law model, HL
for short, the Lennard-Jones model, LJ for short, and the hard sphere model,
HS for short. Of these three, the LJ model comes closest to representing real
molecular systems. On the other hand, the LJ model presents the most
difficult computational challenge. The HL model is an approximation to the
LJ model when the particles have low kinetic energy, thus remaining close to
their equilibrium positions; similarly, the HS model is an approximation to
the LJ model when the particles have high kinetic energy, or when attractive
forces are very weak.

2.1 Hooke’s Law model

In the HL model the potential energy of a particle is proportional to the
square of its displacement from its equilibrium position. Figure 1 shows the
potential energy function for a particle in a 1-dimensional system; and figure 2
shows the force on the particle that, according to equation (3), must be
proportional to the displacement of the particle from its equilibrium position,
and directed towards it. The equations for the potential energy, and force
are:

Ha) = e+ @

f(z) = —k(z —z),

where k is a constant, sometimes referred to as the force constant; ¢ ™" is a
constant, the minimum potential energy; and #°? is the equilibrium position
of the particle. Notice that

fla) = - 22 @

as required by equation (3). Thus the force is proportional to the displace-
ment of the particle from its equilibrium position and it is directed towards
the equilibrium position. The most familiar example of a system subject to
a HL force is a small mass suspended by a spring: it moves up and down
under the influence of a HL force imposed by the spring, figure 3.

CUBoulder : HPSC Course Notes



Molecular Dynamics

P ()

Figure 1: Potential energy of a particle in the HL model varies as the square

of its displacement from equilibrium.
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8 Molecular Dynamics

Figure 2: Force on a particle in the HL model is proportional to its displace-
ment from equilibrium and in the direction of the equilibrium point.
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Molecular Dynamics 9

A1

Figure 3: The motion of a small mass suspended from a spring typifies the
motion of a particle subject to an HL force.

In two dimensions this model is described by

Har) = 5@ — 2 4 (g~ y ) + 47 (5

which we may write more compactly as

k )
Br) = Sl — 0| + gmn. (9)

We now consider the more interesting case of HL models for systems of
more than one particle, starting with the 2-particle case. It helps to think
of a physical system of two masses connected by a spring as illustrated in
figure 4. The force of the spring acts along a line joining the particles that
we take to be the z axis. We assume that when the particles are separated
by a distance d the spring is neither stretched or compressed, so the system
is in equilibrium. When the distance between the particles is less than d the
spring is compressed and the force acts to drive the particles apart; when the
spring is stretched the force acts to bring the particles closer together. The
potential energy function is

Hena) = S (an =2 4 4 + 7 (10)
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10 Molecular Dynamics

e -~
-~ e —

Figure 4: The motion of two small masses connected by a spring illustrates
the nature of the motion of a 2-particle system in the HL model.

O—O0—C—0

X—

Figure 5: A 1-dimensional, 4-particle HL model. Motion is restricted to the
x dimension and is oscillatory.

The forces can be obtained by taking the appropriate derivatives of the po-
tential energy giving

fi(z1,22) = —k(z1— 22 + d), (11)
fo(@1,22) = k(z1 — zy + d).

A 1-dimensional, 4-particle system is shown in figure 5. An illustration
of the motion of this system is shown in figure 6 The potential energy of this
system is

k .
(1, g, T3, 24) = 5(($1—$2-|-d)2—|-($2—$3+d)2—|—($3—$4—|—d)2)‘|‘¢’mm- (12)

This system is in equilibrium when the particles are ordered from left to
right, each a distance d from its neighbors. The forces are

f1($1,$2) = —k(wl — 2+ d)a (13)
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osc4a(k/m=1,h=0.001)
14 T T T

P————

10+

Figure 6: Illustration of the motion of a 4-particle system. The curves show
the position of the 4 particles as functions of time. These results were for a
system with k/m = 1, k is the force constant, and m is the mass of a particle.
The equilibrium positions of the particles are 0, 4, 8, 12. The parameter h
is the time step used in integrating the equations of motion.

fo(z1, e, 23) = —k(229 — 21 — 23),
fa(za, x5, 2a) = —k(223 — 2y — 4),
f4($3, €B4) = —k($4 — 3 — d)

(14)

Extension of these equations to n-particle systems should be obvious.
The equations are simplified if we fix the equilibrium position of the first
particle to be at the origin and we define new variables ¢; as follows:

L; = (7, — 1)d—|— q;. (15)

Thus ¢; denotes the displacement from the equilibrium position of the 3t?
particle. In the new variables the potential energy is

#(q1,92,93,94) = ;((fh — @2)” + (g2 — g3) + (g3 — qa)*) + ¢™", (16)

and the forces are

file,02) = —k(g — @), (17)
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12 Molecular Dynamics

Figure 7: Potential energy of a particle in the LJ model.

fz(Q1,Q2,Q3) = —k(ZQ2 —q1 — Q3),
f3(¢]2,Q3,Q4) = —k(2q3 — ¢ — Q4),
falgs,qa) = —Fk(ga — g3).

2.2 Lennard-Jones model

We consider a three-dimensional system. The potential energy function for
a pair of particles, 1 and 2, in the LJ model is given by

P(r1,m2) = ( . - 2 ) . (18)

[r1e — 72|12 [[ry — ol

The units have been chosen to locate the minimum of the potential energy
at ||ry — ra]| = 1, and the value of the minimum equal to —1. This potential
function is illustrated in figure 7. Considering the slope of this function we
see that the force is strongly repulsive at small distances, and is attractive
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Figure 8: Minimum energy configuration for 4 particles in a 3-dimensional
LJ model: particles are located at the corners of a regular tetrahedron.

at large distances, becoming extremely weak at very large distances. The
crossover between the repulsive region and the attractive region occurs where
||r1 —72|| = 1, the point of minimum potential energy. Note that at this point
the force of the interaction is zero since the derivative of ¢ is zero.

The forces on particle 1 can be determined from the basic formula, equa-
tion (3):

1 1
" (||7'1 =t = 7‘2||8) (21— 22), (19)
1 1
= 12 _ -
hs (||7“1 — 7ol |l — r2||8) (1 — 2),
1 1
z — 12 _ )
" (e~ ) (=

In a many-particle LJ system the force on each particle is determined by
summing over the pairwise interactions, using the above formulas. Since the
force between widely separated pairs is very weak it is sometimes neglected:
a cutoff distance is chosen, and the force between particles separated by more
than the cutoff is ignored.

The equilibrium configuration is not easily determined. If there are only
four particles, then the particles are at the corners of a regular tetrahedron,
as shown in figure 8. But what about larger systems?

Particle coordinates for equilibrium configurations of 5 and 6 particles
are shown in table 1!. Pictures of these configurations are shown in figures 9
and 10.

!These results were obtained by Elizabeth Eskow using minimization software devel-
oped by Robert Schnabel.
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14 Molecular Dynamics

5 Particles 6 Particles
X y z X y z

0.751308 0.888623 1.293299 5.951021 6.316232 5.356796
0.906831 1.164906 0.343358 6.260952 5.532089 4.827508
1.619112 0.680194 0.846874 6.271016 5.496511 5.822353
0.418779 1.771369 0.967718 5.294356 5.769662 4.845783
1.398694 1.623815 1.085234 5.614350 4.949941 5.311340

5.304420 5.734084 5.840627

Table 1: x-, y-, z-coordinates of particles in a 5-particle LJ model, and a
6-particle LJ model.

Figure 9: Minimum energy configuration for 5 particles.
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Figure 10: Minimum energy configuration for 6 particles.

2.3 Hard sphere model

This model is best visualized as a collection of hard, perfectly elastic, balls
— like ball bearings, or billiard balls. The interactions between particles
are like collisions between these balls. Two-dimensional and one-dimensional
versions of this model, as well as the three-dimensional model, are studied:
in two dimensions it is called the hard disk model, and in one dimension it is

called the hard rod model.

The potential energy for a pair of particles is

0, |[ri—mf >0

00, |ri—mal <o (20)

$(r1,72) = {

Thus there is no force acting on the particles except at the instant when
they are a distance o apart. At that point an instantaneous force is applied,
causing a change in velocities. We discuss this further in the next section
when we consider the equations of motion. For the present it is sufficient to
think of the collision as if it were between two billiard balls of radius o.
The HS model can be viewed as an approximation to the LJ model with
high-velocity particles. When particles in the LJ model are moving at high
velocities the effect of the attractive force is quite small. The particles move
at high speed in straight lines (approximately) until they get close enough
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16 Molecular Dynamics

Atom | Length (cm.) | Time (sec.)
He 2.87 x 1078 | 3.38 x 10714
Ne 3.10 x 1078 | 6.80 x 10714
Ar 3.83 x 1078 | 1.54 x 10713
Kr 4.11 x 1078 | 1.95 x 10713
Xe 4.43 x 1078 | 2.42 x 10713

Table 2: Length and time scale factors for the LJ model.

for the repulsive force to come into play, at which time they collide as in the
hard sphere model. The repulsive force rises so steeply in the LJ model it
has almost the same effect as a collision between hard spheres of diameter
slightly less than 1.

2.4 Units and the connection with real systems

The models all have potentials that depend only on distance; i.e. they are
spherically symmetric. Therefore they serve best as models for systems com-
posed of atoms of helium (He), neon (Ne), argon (Ar), Krypton (Kr), or
Xenon (Xe). Our computations with the LJ model apply to any of these sys-
tems by appropriate choice of a scale factor for length and time. In table 2
we show the scale factors for length and time for these elements. The inter-
pretation of the numbers in this table can be illustrated for the case of argon:
the length entry means that a distance of 1 unit, ||r|| = 1, in the formula for
the LJ potential equation (18) represents 3.83 x 10™® cm.; similarly, the time
entry means that a time unit of 1 in the equations of motion (next section)
represents 1.54 x 107!3 seconds, assuming the mass we use in the equations
of motion is 1.

3 Equations of motion
Newton’s second law gives us the equation for the motion of a particle:

ma = , (21)
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where m is the particle’s mass, a is its acceleration, and f is the force acting
on it. From this equation and a knowledge of the initial position and the
initial velocity of the particle we can, in principle, determine its position and
velocity at future times. In a system of interacting particles their motion is
determined by solving many of these equations, one for each particle. The
equations are interdependent because the force on a particle is a function
of the position of some or all of the other particles. The solution of these
equations is our major concern in the next section. In this section we look
at the form of these equations for the different models in order to gain an
understanding of the nature of the problems we are trying to solve.

3.1 One-dimensional systems.

The equations of motion for a 1-dimensional system of two interacting par-
ticles are:

miLy = f17 (22)
Moy = f2,

where the acceleration is represented by &; that is,

. A’z

T; = .
dt?

(23)

We assume that all particles have the same mass: m = m; = ma.
If we write the equations of motion in matrix form we have

mlzl]:lﬁl (24)

These equations can be written more compactly as
mi = f, (25)

with the understanding that & and f are the vectors in equation (24). We
could express the equations of motion for a system of n particles by exactly
the same simple equation, with # denoting a vector of n accelerations, and
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18 Molecular Dynamics

Figure 11: A 4-particle HL model with unequal masses and unequal force
constants.

f(z) denoting a vector of n forces. For example, the explicit matrix equation
of a four-particle system, figure 5, is

z1 fi
m| S| = | (26)

T3 fs
T4 fa

The equations of motion for four particles in the HL model are

mgi = —k(q1 — ¢), (27)
mg, = —k(2¢2 —q1 — g3),

mgs = —k(2¢s — g2 — qa),

mds = —k(qs— gs),

where the ¢;s were defined in the last section, equation (15).

We assumed that the particles are identical so that a common force con-
stant, and common masses are used throughout. You might check your
understanding of these equations by deriving the equations of motion for a
non-homogeneous HL model consisting of four particles with unequal masses,
and unequal force constants, as illustrated in figure 11.

The equations of motion for two particles with LJ forces, acting in just
one dimension, are

ma; = 12(( L 1 )7), (28)

r1 — $2)13 ($1 — L2

1 1
= 12 — .
e ((wz —z1)t (22— w1)7)
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In a 4-particle system they are

4 1 )
me; = 12 29
: Z(— T o)) (29)
4 1
ma, = 12
’ ; ( (z2 — ;)" (w2 - wj)7) ’
J#£2
4 1
e o= 12
E(M )

.t
w

j#
4

1 1
ma, = 122( — ),
i=1

(za —z;)®  (Ta—25)"

j#4
In the 2-particle example the particles are in equilibrium when they are unit
distance apart, but the 4-particle case is a little different. When the particles
are unit distance apart, then the force on each is almost, but not exactly, zero:
although the force from particles unit distance away is zero, particles 2 and 3

units away exert a small attractive force. In fact the forces for unit separation
are:

fi = +0.0978,
f, = +0.0923,
f = —0.0923,
fa = —0.0978.

Therefore if we placed the particles at locations 0, 1, 2, 3 along the x axis we
would expect the first two to start moving to the right, and the second two
to start moving to the left.

The equations of motion for the HS model must be expressed a little
differently. Consider two particles moving along the x axis. Their positions
are given by

2 = 2 45O — ), (30)
2y, = o)+ 2Ot — ), (31)

where :cEO) denotes position at time ¢(®), and the velocities, #;, are the veloc-
ities at ¢(®), If the particles are moving towards each other, then they will
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20 Molecular Dynamics

collide at some time, say t(1). At this instant they change their velocities and
the new positions are given by

21 = 294+ @O — ), (32)
2y = i+ @, — W), (33)

Of course if the particles are moving away from each other, then there is no
collision. Thus solving the equations of motion in this case amounts to deter-
mining the time of the next collision; moving the particles to their positions
at that time; and then determining the new velocities of the colliding parti-
cles. This process is repeated over and over. Thus we compute the motion
from collision to collision.

A 1-dimensional HS model like this is not very interesting because the
particles gradually move farther and farther apart, going off to 400 or —o0.
But we can make it interesting if we put “walls” on left and right constraining
the particles to remain in some interval. When a particle hits the wall then
we can assume it bounces back, i.e. reverses its velocity. Or we can assume
that the particles are confined to a circle, as if we joined left and right ends
of an interval of the x axis — this kind of assumption is referred to as a
“periodic boundary condition.”

3.2 Two-dimensional systems

We now assume

r:lw]. (34)

Y

The position of the ** particle is denoted r;. With this understanding we
can write the equations of motion for an n-particle system exactly as before,
equation (25), but with r in place of @:

mr = f. (35)

Consider a 2-particle system with

ro= l“], (36)
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rMR —7r

T
71 2

Figure 12: A 2-particle, 2-dimensional system.

Ty
= | . (37)

T2
Y2

These coordinates are illustrated in figure 12. Thus we can write the equa-
tions of motion as follows:

:il fl,:v
371 fly

m| o = ’ 38
T2 f2,:)3 ( )
Yo Joy

where f;, and f;, are the z- and y-components of the force on particle <.
The forces are directed along the line through the centers of the two
particles, as illustrated in figure 13.
Now we can write the equations of motion for 2-particle HL and LJ models

using equation (38) and the forces given in the last section. The equations
of motion for a 2-particle HL model are

iBul L1 — L2

71 d Y1 — Yo

D = k(1 — — : 39
N e T e >

Ya Y2 — Y1
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Figure 13: Force vectors in a 2-particle, 2-dimensional system.

and for a 2-particle LJ model they are

w..l T — Ty
Y 1 1 Y1 — Y2

m . =12 — . 40
L2 (||7'1 —ra|l** |l — 7‘2||8) Ty —z1 |’ (40)
Y2 Y2 — 1

The equations for an n-particle system have the same form, the only
difference being that when n > 2, a pairwise sum over interactions must be
made to determine f;,,f; ,; e.g., for the LJ model

fie = 12 ( —
% [ B VA
FEL)

Je-a @y

fiy = 12 ( - )(yi—y')-
v % Ry i — j
FEL)

Thus in an n-particle system the equations of motion are:

Ty f
7 f
m| =71, (42)
7.;77, fn
where 7; and f; are two-element column vectors:
T, — o T — ’ 43
HEE (43)
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The equations of motion for a 2-dimensional HS system are the obvious
extension of the 1-dimensional equations. We can write the equation for the
it particle in vector form as follows;

ri = v 7,0 — ) (44)

The work of the computation is determining when the next collision will oc-
cur. Here there is an essential difference from the 1-dimensional computation.
In 1-dimension only the particles on the left and right of a given particle are
collision candidates; furthermore, these particles remain candidates for the
entire calculation — in one dimension neighbors remain neighbors. Not so in
two dimensions. Now the number of possibilities we must examine is much
larger. Naively, we might consider every pair of particles but we can do bet-
ter than this. One can, for example, divide space into bins of a certain size.
If the bin size is chosen appropriately then for a given particle its collision
candidates are the other particles in the same bin or in neighboring bins.

Another scheme uses a timetable of predicted collision times. Suppose
that at some point we determine for every particle the time and partner for
its next collision, assuming no other collisions take place. Thus we produce
a timetable for collisions. The entry with the earliest collision time in the
timetable is the next collision. Once we process that collision, we need to
update the timetable. This updating process takes some work, but it may
lead to less work overall than the naive approach. The updating process
involves looking for a new collision partner for each of the two particles that
just collided. When those collision partners have been found some other
entries in the timetable may need to be updated, any that had one member
of the colliding pair as a collision partner must be updated.

There is no need to consider 3-dimensional systems separately. The for-
mulas and issues are the same as for the 2-dimensional systems just discussed.
The only difference being that a z component must be added to the vectors.

4 Numerical solution of the equations of mo-
tion.

In general the equations of motion do not admit an analytic solution so
they must be solved numerically. The numerical method is normally a time
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stepping algorithm; that is, the solution is generated incrementally in time
starting from a set of initial conditions. This solution is simply a list of
numbers, usually the particle positions and velocities at the time steps. The
positions and velocities at any one time represent the state of the system at
that time.

The process of generating the numerical solution is easy to describe in
broad outline, though the details can be rather difficult. The broad outline is
this. Starting from an initial state at a given time, the state at a slightly later
time is computed, then the next state, and so on. The time interval between
states is either constant or variable; in order to control the error, it must
be kept small enough so that values of important variables undergo little
change, but if the interval is too small then the computation becomes too
slow. More complex algorithms usually accumulate less error per step and so
bigger steps are possible, but they also take more time per step. Obviously
these tradeoffs are an important consideration in designing a program for
solving a molecular dynamics problem. Normally the state is not recorded at
every time step, they are too close together. Instead, a different time interval
that is a multiple of the time step is used for recording results. Important
physical parameters such as energy, momentum, mean separation of particles,
and so forth may be recorded during the computation or generated later from
the state information.

Accuracy of the numerical solution is an important consideration. As a
practical matter this usually must be estimated by indirect methods. Run-
ning the computation for different values of the time step is one indirect tech-
nique, and running with different numerical precision is another. Changing
from single to double precision is relatively easy, and there are software tools
for still higher precision [Bailey 91]. Special cases in which an exact solution
is possible to test an algorithm are also used. The HL model is one of these
special cases. It is possible to express the solution of the equations of motion
for this system in terms of the eigenvalues and eigenvectors of a certain ma-
trix. Although the eigenvalues and eigenvectors may have to be computed
numerically, the error from computation is negligible compared with the er-
ror from a time stepping algorithm. Therefore the HL model admits, for all
practical purposes, an exact solution against which numerical solutions can
be compared.

The efficiency of these computations on vector and parallel computers
depends on the models and the algorithms. The HL model, for example, can
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be run very efliciently on a vector computer but the HS model cannot. In
most particle systems the neighbors of a particle change with time, thus the
set of interacting pairs change and because of this an efficient decomposition
of the computation for a parallel computer can be difficult to find.

For HL and LJ systems we use algorithms for solving second order differ-
ential equations. We consider two of these algorithms: Euler’s method and
Verlet’s method. The HS system is essentially different since no differential
equation needs to be solved. The work of the computation consists mainly
in determining when the next collision occurs. For this we use only the naive
algorithm mentioned: consideration of the more efficient algorithms would
carry us beyond the scope of this tutorial.

4.1 Ewuler’s method

A discussion of the basic ideas of Euler’s method can be found in the tuto-
rial [Fosdick 91] and any elementary numerical analysis book, for example
[Conte & de Boor 80, Burden & Faires 85]. We describe it briefly in terms
of the equations we are interested in solving. We begin with

mi = f(z), (45)
with initial conditions
2(0) = 2(®,  2(0) = (. (46)

The first step is to write the second order differential equation, equation (45),
as a pair of coupled first order differential equations:

mu = f(w)v (47)

r = u,

where u is just a new name for . The next step is to use Euler’s method on
these equations to get the following formulas for generating the solution at
times h, 2h, 3h, ...

e(t+h) ~ e(t)+ hu(t), (48)
u(t) + 2 f(a(t)). (49)

A
_|_

=
2
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The code segment for this computation is:

DO T = 1,NSTEP
X(T+1) = X(T) + H*U(T)
U(T+1) = U(T) + (H/M)*F(X(T))
END DO

The extension of these formulas to multiparticle, multidimensional prob-
lems is straightforward. The code segment for a 3-dimensional computation
on an n-particle system, assuming all particles have the same mass, is:

DO T = 1,NSTEP
CALL FORCE(X,Y,Z,FX,FY,FZ)
DO I = 1,NPART

X(I) = X(I) + H*xU(I)

Y(I) = Y(I) + H*xV(I)

Z(I) = Z(I) + H*xW(I)

U(I) = U(I) + (H/M)=*FX(I)

V(I) = v(I) + (H/M)*FY(I)

W(I) = W(I) + (H/M)*FZ(I)
END DO

(Write positions and velocities)

END DO

The procedure FORCE evaluates the the forces on the particles from their
current positions that are stored in the arrays X, Y, Z and returns the x-,
y-, and z-components of the forces in the arrays FX, FY, FZ. The remark
after the inner loop indicates a block of code that would write position and
velocity information. Generally this information is not written at every time
step because H is so small; rather it is written at a larger interval that is an
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ERROR: k/m = 1; h = 0.0100
A T

Error (Shifted)

0 5 10 15 20

Figure 14: Error in numerical solution by Euler’s method of 1-dimensional,
4-particle HL model: A = 0.01, k/m = 1. The curves have been shifted
vertically: the point of zero error for a particular curve is its position at t=0.

integer multiple of H. Therefore, this block of code would include a test to
determine if writing should take place at the current time.

If f(z) is well-behaved it can be shown that the error in the computed
solution is O(h). As an illustration of the error in solving the equations of
motion with Euler’s method we show the error as a function of time for a
1-dimensional, 4-particle HL system in figure 14. This result was obtained
with a stepsize of A = 0.01. If we reduce the stepsize by a factor of ten,
that is A = 0.001, then we get the results shown in figure 15. Comparison of
the error for the two different values of A shows that the peaks in the error
have been reduced by about a factor of 10 as we would expect because h is
reduced by reduced by this factor and the error should be O(h).

While Euler’s method has the virtue of simplicity it is far less accurate
than other methods we might use. Verlet’s method is still a relatively simple
method but gives much better accuracy.

4.2 Verlet’s method

The name we give to this method is commonly used in the molecular dynam-
ics literature, but it is known in mathematics as Stormer’s method. Actually
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ERROR: k/m = 1; h = 0.0010
]

0.8 T

Error (Shifted)

-0.2 L L L L 1 L L L L 1 n n n n 1

Time

Figure 15: Error in numerical solution by FEuler’s method of 1-dimensional,
4-particle HL model: A = 0.001, k/m = 1. The curves have been shifted
vertically: the point of zero error for a particular curve is its position at t=0.

there is a class of Stormer methods, of which this is the simplest. Henrici
shows that the error in this method is O(h?) [Henrici 62].

The basic idea is to approximate the second derivative with a finite dif-
ference,

. z(t+h)—2z(t)+z(t—h)

A~ T2 . (50)
The error in this approximation of the second derivative is O(h?), as shown
in [Fosdick 91]. If we use this approximation in equation (45) we obtain

2t + h) ~ 2a(t) — 2(t — k) + B2 f(=(t)). (51)

This, then, is the basis of the algorithm. We can generate the solution with
the following code segment:

DO T = 1,NSTEP
X(T+1) = 2#X(T) - X(T-1) + H**2xF(X(T))
END DO
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There are important differences between this code segment and the cor-
responding code for Euler’s method. Notice that two previous values of X are
required at each time step, unlike Euler’s method which required just one.
Notice also that the force term has a factor H¥*2, not H as in Euler’s method.
And, finally, notice that the velocity does not appear.

Something special must be done to start the iteration because the initial
values for the problem are usually position and velocity, not two position

values. A Taylor series expansion can be used to compute z(h) given z(0)
and z(0):

(k) ~ 2(0) + hi(0) + © f(a(0). (52)

The fact that the force term is O(h?) implies that we are adding a very
small number to a much larger number at every step, resulting in a loss in
accuracy. This can be mitigated by using a different form of the algorithm,
called the summed form:

DO T = 1,NSTEP
DX(T) = DX(T-1) + H*F(X(T))
X(T+1) = X(T) + H*DX(T)
END DO

It is easy to verify that this is mathematically equivalent to the original algo-
rithm: DX(T) is simply the name of (X(T+1) - X(T))/H).In other words, if
all computations were exact (no roundoff error) then this code would produce
the same result as the original. But real computations are not exact and the
summed form gives a more accurate result.

The velocity can be computed from the position using a central difference
approximation:

a(t) ~ o(t + h)z—hw(t — h) (53)

Alternatively, it can be computed within the algorithm as follows:
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ERROR: k/m = 1; h = 0.0100
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Figure 16: Error in numerical solution by Verlet’s method of 1-dimensional,
4-particle HL model: A = 0.01, k/m = 1. The curves have been shifted
vertically: the point of zero error for a particular curve is its position at t=0.

DO T = 1,NSTEP
X(T+1) = X(T) + H*(U(T) + H*F(X(T))/2)
U(T+1) = U(T) + H*x(F(X(T+1))+F(X(T)))/2
END DO

An efficient implementation of this only requires one computation of the
force at each time step, and saving it for use in the next time step. This
form has the numerical accuracy of the summed form, but it requires more
computations per time step. If velocities are not needed then the summed
form should be used. If double precision arithmetic is used then the original
unsummed form of the algorithm may give acceptable accuracy.

An idea of the difference in accuracy between Euler’s method and Verlet’s
method is illustrated in figures 16 and 17, which correspond to figures 14
and 15: the same computation except Verlet’s method was used. Comparison
of the peaks in these error curves with the corresponding curves for Euler’s
method shows that Verlet’s method is far more accurate than Euler’s method:
for h = 0.01 the error in Verlet’s method is smaller than the error in Euler’s
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ERROR: k/m = 1; h = 0.0010
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Figure 17: Error in numerical solution by Verlet’s method of 1-dimensional,
4-particle HL model: A = 0.001, k/m = 1. The curves have been shifted
vertically: the point of zero error for a particular curve is its position at t=0.

method by a factor of 1072. Comparison of the error in Verlet’s method for
h = 0.01 with that for A = 0.001 shows that the error is reduced by about a
factor of 100, confirming the O(h?) behavior of the error.

Extension of this algorithm to three dimensional, multiparticle systems
should be evident from the discussion of Euler’s method.

4.3 Hard sphere collisions

Determining the motion of a system of particles that are modeled as hard
spheres does not require solving a differential equation, so the methods de-
scribed above do not apply. Since hard sphere particles travel in straight lines
with constant speed between collisions we only need to know when collisions
occur and the velocities after collision in order to follow the motions of the
particles. It sounds simple, but determining the sequence of collisions is a
computationally intensive task. Bear in mind that we must determine which
pair of particles will collide next after each collision, a task that must take
into consideration all pairs of particles. We consider the easy case of a one
dimensional system first.
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(b)
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1 2
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Figure 18: Collision of hard sphere particles in one dimension: (a) one time
unit before collision; (b) instant of collision; (¢) one time unit after collision.
In this illustration particle 1 is travelling at four times the speed of particle
2 before the collision. At collision the particles exchange velocities so after
the collision particle 2 is travelling at four times the speed of particle 1.

4.3.1 One-dimensional system

In one dimension the particles collide head-on as illustrated in figure 18. The
conservation laws require that the total momentum and total energy do not
change. Therefore we have:

Ulold + Uzold = Ulmew + Uznew (conservation of momentum), (54)
2 2 2 2 .
ul,old + u2,old - ul,new + u2,new (COTLSCT"UGtZOTL Of energy))

where u denotes velocity, and it is assumed that both particles have the same
mass. These equations can be solved easily for %1 ney and usz pey:

Ul new = U2,0ldy  U2new = Ul,0ld (55)

Thus the particles simply exchange velocities when they collide.
Assume we have a system of hard-sphere particles ordered along the x-axis
so that
T < Ty < .vo < Ty (56)
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Figure 19: A 6-particle, one-dimensional system of hard spheres.

as illustrated in figure 19 for n = 6. To determine the time of the next
collision me must consider all pairs, executing a segment of code that looks

like this:

COLLTIME = INFINITY
PO T =1,N-1
IF ((U(I+1) - U(I) .LT. 0)
COLLTIMENEW = (X(I+1) - X(I))/(U(I) - U(I+1))
IF (COLLTIMENEW .LT. COLLTIME)

COLLPART = I
COLLTIME = COLLTIMENEW
END IF
END IF
END DO

After execution of this segment we know that the time of the next collision
is COLLTIME and that the collision partners are particles I and I+1, provided
that COLLTIME # INFINITY. The code segment we execute at a collision
updates the positions of all particles, and the velocities of the colliding pair.

It looks like this:

CUBoulder : HPSC Course Notes



34 Molecular Dynamics

PO I =1,N
= X(I) + U(I)*COLLTIME

END DO

TMP = U(COLLPART)

U(COLLPART) = U(COLLPART + 1)

U(COLLPART + 1) = TMP

4.3.2 2,3-dimensional systems

In 2- and 3-dimensional systems collisions are not necessarily head on, they
may be oblique, as illustrated in figure 20.

In an oblique collision the interaction or impact is along the line drawn
between the centers of the particles at the instant of collision: there is no
force exerted on the particles in the plane tangent to the two particles at
the point of impact — our HS model assumes that the particles are perfectly
smooth. An analysis like that used for the one dimensional case shows that in
an oblique collision the particles exchange the components of their velocities
along the line between the centers of the particles, no other velocity compo-
nents are changed. Thus the effect of an oblique collision is as illustrated in
figure 21.

The critical part of the computation for updating velocities is the deter-
mination of which particles will collide next. In its simplest form the steps in
this computation are as follows. We let r; and 7; denote the position vector
and velocity vector of the i** particle, and we let o denote the diameter of a
particle. It is convenient to define new position and velocity vectors

Tij =Ti—Tjy Tij=Ti—1T; (57)

that represent the position and velocity of the ** particle relative to the jt*
particle. If we want to be explicit about the relative position at time ¢ then
we write 7; ;j(t). The test to determine if two particles collide can be broken
into two parts: determine if they are approaching each other; if they are
approaching each other then determine their distance of closest approach.
The particles are approaching each other if the component of their relative
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2

Figure 20: Collision of hard spheres in two dimensions: positions at one time
unit before collision (dotted circles); at collision (dashed circle); and one time
unit after collision (solid circles) are shown. Particles 1 and 2 are travelling
at the same speed, s, before the collision. Particle 2 is travelling along a
line that is 45° from the x-axis. At collision they exchange x-components
of velocity; their y-components of velocity are unchanged. Therefore, after
collision particle 1 is travelling in the x-direction at speed s/+/2, while particle
2 is travelling upward and to the right, at an angle of arctan(1/4/2) to the

x-axis, with a speed equal to s4/3/2 .
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Figure 21: Detail of velocity components at instant before collision (a), and
instant after collision (b). At collision the force is exerted only along the
line joining the centers of the particles; no force is exerted in the plane
perpendicular to this line because the particles are assumed to be smooth.
Thus velocity components along this line are exchanged at the instant of
collision, but velocity components in the plane perpendicular to this line are
unchanged.
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Figure 22: Illustration of necessary condition for a collision.

velocity in the direction of r; ; is negative; i.e.
Tig Tig <0, (58)

where the product on the left is a scalar (dot) product: this notation is also
used below to denote scalar product. The idea is illustrated in figure 22.
They actually collide if the following condition is true:

. 2
2 _ (TTJ?;‘ ?’.17.7) (59)
,J

Some simple geometrical considerations, illustrated in figure 23 show that

65,5

2= |ri;

<o, |bi;

b; ; is the distance of closest approach if each particle had diameter zero.
If the particles do collide, then the time of the collision is given by the
formula

+ (o — ||bs;

po 1 ((Ti—-rj)'(*i—-fj)
[7: — 74| [7: — 74|

)

This equation can be understood by observing that the second factor on the
right, namely

_ (M + (02 — ||bis
2%

|74,

)%), (61)
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R Collision point

Figure 23: Illustration of collision parameters. Here r;, is the position of
the center of particle 1 relative to the center of particle 2; and 7, is the
velocity of particle 1 relative to the velocity of particle 2. Thus you can
think of particle 2 as fixed at the origin, and particle 1 at r; , moving with
velocity 712. For a collision to occur particle 1 must be moving towards the
origin, and must come within a distance o (the particle’s diameter) of the
origin. Particle 1 is moving towards the origin if the dot product 71 5:712 <0
as in this picture. In this picture ||b; 5| is the distance of closest approach
by particle 1 to the origin: b, , is a vector perpendicular to 7; . The point
at which the collision occurs is the point where the trajectory of particle 1
crosses the circle of radius o around the origin, and the time of collision is
the time it takes to move from r; » to this point travelling at velocity 74 .
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"+ Line between centers
at collision

Figure 24: Change in velocity at collision of hard spheres. Parameters
o, T1,2, T1,2,01,2 are as defined in figure 22; 7"1,2 is the relative velocity af-
ter collision and A7, is the change in relative velocity due to the collision.
Note that Ary, is perpendicular to the line between centers at the time of
collision.

is the distance to be traversed in the direction of 7;; before collision: refer
to figure 23 and do some elementary geometry. It is evident from these
formulas that determining the time of the next collision is a good deal more
complicated than in the 1-dimensional case.

When the particles do collide then the new velocities are easily computed.
There is no change in velocity in the plane tangent to the spheres at the
collision point; the velocity changes only in the direction of the line between
the centers of the particle, as illustrated in figure 24.

The change in velocity takes place, as noted earlier, in the direction of
the vector (r; — r;) at the time of collision. In particular,

Tinew = Tiold + OFiold (62)

Tinew = Tjold — A7'1',old

where
(Pi01d — Pjoid) * (Pisotd — T01d)(Tiold — Ty0ld)

Af’i,old = — (63)

|7i,01d — 75,01al|®
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You should be able to verify that this formula gives the same result for the
1-dimensional case as obtained earlier, equation (55).

At this point you have all of the necessary formulas for constructing
a program to solve the equations of motion by Euler’s method or Verlet’s

method for any of the models — HL, LJ, or HS.

5 Exact solution of the equations of motion

for HL. model.

We noted earlier that the Hooke’s Law model is special because, unlike the
other models, it admits an exact solution. Here we outline the main ideas
leading to the exact solution. In order to understand the material in this
section, you need to know about eigenvalues and eigenvectors of matrices at
an elementary level; for example, see [Fosdick 91, section 5.4].

Consider first the simple case of a single particle moving under the influ-
ence of an HL force, illustrated earlier in figure 3. The equation of motion
for this particle is

mg(t) = —kq(t), (64)

where m is the mass of the particle, k is the force constant, and ¢(t) is the
displacement of the particle from its equilibrium position at time ¢.
It is easy to verify that

q(t) = Q cos(wt + ) (65)

satisfies equation (64). If we substitute this expression for ¢(¢) into equa-
tion (64) we obtain

— mQuw’ cos(wt + 8) = —kQ cos(wt + ). (66)

The left side agrees with the right side provided that

w = % (67)
Therefore
q(t) = Q cos < k/mt+ 5> (68)
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is a solution.

What about the parameters Q) and é appearing in this solution? We show
here that they are determined by the initial conditions for the motion. Notice
that when ¢ = 0 we have

q(0) = Qcos(8), ¢(0) = —wQsin(é). (69)
Therefore, if we impose the initial conditions
q(0) =1, ¢(0)=0, (70)
we easily find that
Q=1 &§=0. (71)

Thus for the initial conditions given in equation (70) the solution to the

equations of motion is
q(t) = cos <\/k/m t> (72)
Thus the solution is a periodic function of time, with frequency (27)~'4/k/m.

Now we turn to the more complicated case of a chain of four particles con-
sidered earlier and illustrated in figure 5. Following the one particle example
above, we first “guess” a solution and then show that this guess satisfies the
equations of motion provided certain parameters related to the frequency of
the motion are satisfied. We will find that there are three distinct solutions,
known as “modes”. These modes correspond to the general solution, equa-
tion (68), for the one-particle case. The initial conditions determine a linear
combination of the modes that is the particular solution, corresponding to
equation (72).

The equations of motion for four particles in the HL model were given in
equation (27). It is convenient to express them in matrix form:

m§=—kMgq (73)

where ¢ is a vector and M is a matrix:

@ 1 -1 0 0

e -1 2 -1 o0

=lel M= 0o a1 2 41| (74)
a4 0 0 —1 1
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Of course ¢ is a function of time but for simplicity we often write ¢ rather
than ¢(t).

We proceed by analogy with the one-particle case just considered, guess-
ing that the solution to these four equations has the form:

Q1
g=Qcos(wt+8), Q= gz . (75)
Q4

This looks like the solution for the one particle case except ¢ and @ are
now vectors, ¢; representing the displacement of the i** particle from its
equilibrium position:

¢ = @Q; cos(wt + 6). (76)

We can verify that this guess is indeed a solution by the same process as
before, that is by substituting it into the equations of motion, equation (73).
Substitution and a little algebraic manipulation produces the result

me

k

You may recognize this as the usual form of a matrix eigenvalue equation

MQ = Q. (77)

where @ is an eigenvector and mw?/k is an eigenvalue of the matrix M; see
[Fosdick 91, equation 14]. Thus our guessed solution satisfies the equations
of motion provided that mw?/k and Q are an eigenvalue-eigenvector pair of
the matrix M.

Since M is a 4 X 4 matrix it has four eigenvalues; these are

Mo=0, M =2-vV2, =2 X3 =242 (78)
and the corresponding eigenvectors are

1 1 V2 -1
V2 -1 -1 -1
71[)1— —\/i—l-l 71[)2— -1 71[)3— 1

-1 1 —V2+1

An explanation of where these results came from would take us too far afield,

Yo = . (79)

= = = =

but you can easily verify them using equation (77), or you could use MAT-
LAB to compute the eigenvalues and eigenvectors numerically. Remember
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that an eigenvector can be normalized in various ways. Here we normalized
them so that ||1||c = 1; on the other hand MATLAB normalizes them so
that |9, = 1.

Each eigenvalue-eigenvector pair represents a particular motion of the
four-particle system called a “mode”. Consider the mode represented by
A3, %3. The motion for this mode is given by

V2 -1
q= ;i cos <\/(2 + ﬂ)k/mt + 5> ) (80)
—V2+1

Notice that each particle oscillates with a frequency

%\/(2 4 V2)k/m.

Thus the frequency of the oscillation is proportional to the square root of
the eigenvalue of the mode, and the relative amplitudes of the motion are
determined by the eigenvector of the mode. figure 25 illustrates this mode.
Since it has the largest eigenvalue, and therefore the highest frequency, we
call it the “high-frequency mode”.

The mode associated with A; is called the “low frequency mode” since \;
is the smallest eigenvalue excepting zero (see below). The motion associated
with this mode is illustrated in figure 26.

The eigenvalue Ag = 0 represents the state of no relative motion; i.e.
no motion of the particles relative to each other. Notice that zero for the
eigenvalue implies w = 0, which implies that the solution is independent

of time. This situation would occur if we started all the particles in their
equilibrium positions with no initial velocity: they would remain motionless.
Here we are concerned only with states of relative motion; so we focus on the
modes represented by the nonzero eigenvalues.

The importance of the modes comes from the fact that any motion of the
four-particle system can be expressed as a linear combination of the modes.
We illustrate this for a particular case. Consider the motion determined by
initial conditions

1
(= o], =0 (1)
1
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k/m =1
—

0 5 10 15 20

Figure 25: Illustration of the high-frequency mode of a four-particle system
with k/m = 1, § = 0. Equilibrium positions of the four particles are assumed
to be 0, 4, 8, 12.

k/m =1
—

0 5 10 15 20

Figure 26: Illustration of the low-frequency mode of a four-particle system
with k/m = 1, § = 0. Equilibrium positions of the four particles are assumed
to be 0, 4, 8, 12.
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We express the general solution as a linear combination of the modes:

£) = gcﬂbi cos <\/(k/m))\i £t @.) , (82)

where ¢, cs,c3 are arbitrary constants. We must determine cq,c3,c3 and
81,82,63 so that ¢(¢) defined by equation (82) satisfies the initial conditions
specified in equation (81).

To satisfy the condition on ¢(0), set ¢ equal to zero on the right side
of equation (82) and substitute the result for ¢(0) into the initial condition
equation. This gives:

3
D cicos(8;)y; =
=1

(83)

= o o =

Next differentiate both sides of equation (82) with respect to ¢t to obtain the
following expression for ¢(t)

Ecﬂm/k/m)\ sin <\/ (k/m)X; t—|—5> (84)

Then set ¢t equal to zero in this equation and substitute the result into the
initial condition equation for ¢(0), giving the result

Eczw —\; sin(6;)¢; =

The four equations in equation (83) together with the four equations in equa-
tion (85) give us a system of eight linear equations in six unknowns d;, d,,
., dg where

(85)

(o= e TN cn N e}

d; = c;icos(6;), dipz =¢sin(é) (1=1,2,3). (86)

It might seem that we cannot solve these equations because the number
of equations exceeds, by 2, the number of unknowns. However two of the
equations are redundant. Note that the sum of the components of each
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eigenvector is zero, and that the same is true for the sum of the components
of ¢(0) and ¢(0). Therefore there are at most six independent equations, not
eight. These equations can be solved, for example with MATLAB, to obtain
the result

dy = —8.535533906e — 01, dy = 0, d3 = —3.535533906e — 01,
d4 — d5 — de — 0 (87)

From this is follows that

c; = —8.535533906e — 01, c; =0, cs = —3.535533906e — 01,
61 — (52 — (53 — 0 (88)

To confirm your understanding of this you might verify that these coefficients
and phase angles produce a solution to the equations of motion that satisfies
the initial conditions.

Similarly it is possible to obtain a solution to the equations of motion for
any valid set of initial conditions (i.e. the sums of the components of ¢(0)
and of ¢(0) are both zero.)

The procedure for solving the problem with a chain of n atoms is the
same; the matrix M has order n and has the form

1 -1 0 0 ... 0
-1 2 -1 0 ... 0
0 -1 2 -1 ... 0

M= (89)
0 0 ... -1 2 —1
0 o0 ... -1 1]

The eigenvalues of M are given by

Ay = 2 <1 - cos(zﬂ)> (90)

and the eigenvectors are given by

v = acos (75 - 3)) (o)
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where 1/)§~p ) is the 3t component of the pt* eigenvector. The index p takes
values 0,1,...,7n — 1; and the index j takes values 1,2,...,n. The coeflicient
A, the normalization factor, is arbitrary. In the 4-particle example we chose
it so that the element of maximum magnitude in %) has magnitude 1; i.e.,

1@ = 1. (92)

It is worth noting that for every n there is one eigenvalue equal to zero. The
trivial mode corresponding to this eigenvalue would be ignored, just as we
did in the case for the 4-particle chain.

In order to check your understanding of the above discussion you might
try to solve the following problems.

1. What is the high frequency mode for a 5-particle system?

2. What is the upper bound on the frequency for any one-dimensional
chain, assuming k/m = 17

3. What is the exact solution of the equations of motion for a 5-particle
system with the following initial conditions?

1.0
0.5
a0)=| —05 |, §(0)=o. (93)
—-0.5
—-0.5

Assume k/m = 1.
4. What is the exact solution of the equations of motion for a 5-particle
system with the following initial conditions?

Assume k/m = 1.

5. Assume a two-dimensional HL model with 8 particles in each dimen-
sion. What is the matrix form of the equations of motion?

6. Assume a three-dimensional HL model with 8 particles in each dimen-
sion. What is the matrix form of the equations of motion?
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