Intensive computation

Prof. A. Massini

Mid Term Exam – April 12, 2016

- Student's Name	-
	_
- <i>Matricola</i> number	-
	_

Question 1 (4 points)	
Exercise 1 (4 points)	
Question 2 (4 points)	
Exercise 2 (4 points)	
Question 3 (4 points)	
Exercise 3 (4 points)	
Question 4 (4 points)	
Question 5 (4 points)	
Total (32 points)	

Question 1 (4 points)

Describe the following compressed schemes for the representation of sparse matrices: Coordinate, CSR, Skyline, Diagonal, Ellpack-Itpack.

Exercise 1 (4 points)

a) Consider the sparse matrix here below

1,57088	0	0	-94,2528	0,78544	0	0	0	0	0	0	0	0	0
0	12566400	0	0	0	-6283200	0	0	0	0	0	0	0	0
0	0	0,608806	0	0	0	-0,3044	0	0	0	0	0	0	0
-94,2528	0	0	15080,45	0	0	0	-7540,22	94,2528	0	0	0	0	0
0,78544	0	0	0	3,14176	0	0	-94,2528	0,78544	0	0	0	0	0
0	-6283200	0	0	0	12566400	0	0	0	-6283200	0	0	0	0
0	0	-0,3044	0	0	0	0,608806	0	0	0	-0,3044	0	0	0
0	0	0	-7540,22	-94,2528	0	0	15080,45	0	0	0	-7540,22	94,2528	0
0	0	0	94,2528	0,78544	0	0	0	3,14176	0	0	-94,2528	0,78544	0
0	0	0	0	0	-6283200	0	0	0	12566400	0	0	0	0
0	0	0	0	0	0	-0,3044	0	0	0	0,608806	0	0	0
0	0	0	0	0	0	0	-7540,22	-94,2528	0	0	15080,45	0	94,2528
0	0	0	0	0	0	0	94,2528	0,78544	0	0	0	3,14176	0,78544
0	0	0	0	0	0	0	0	0	0	0	94,2528	0,78544	1,57088

whose pattern is shown on the right.

Coordinate

Specify which arrays you need for the following compressed representations (you need to specify also their size assuming each element is represented by 8 bytes).

5	
5-	
5-	-
5	-
5 * * *	1
	- 1
• • • • •	
10 -	+
• •	
••••	
•••••	
15	
15	15

	nz = 46
CSR	
CSK	
Skyline	

Diagonal		
Ellpack-Itpack		
permuted matrix whose pattern is shown in the	tern is shown in the figure on the left, so that we obtain a	
figure on the left. Which format takes advantage of the permutation in terms of memory storage? Quantify the save in terms of number of bytes.		
		_

Question 2 (4 points) Describe the Gaussian Elimination method.

Exercise 2 (4 points)

Solve the following system using Gaussian elimination:

$$\begin{cases} x_1 - x_2 + x_3 = 1 \\ -x_1 + x_3 = 1 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

Question 3 (4 points) Describe the iterative Jacobi's method.

Exercise 3 (4 points)

Solve the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 3\\ 2x_1 + 7x_2 + x_3 = 19\\ x_1 - 3x_2 + 12x_3 = 31 \end{cases}$$

with Jacobi's Method using $\mathbf{x}^{(0)} = (0, 0, 0)$ as starting solution.

Complete the table below, doing five iterations.

k	X ₁ ^(k)	X ₂ ^(k)	X ₃ ^(k)
0	0	0	0
1			
2			
3			
4			
5			

.

Question 4 (4 points) Matlab Describe the techniques for improving performance in Matlab.

Question 5 (4 points) GPU

Explain what CUDA threads are and how they are organized in terms of blocks and grids.
Describe how we can make an unique ID for each thread per kernel by using block ID and thread ID.