Prof. A. Massini	
Exam – June 10, 2016	
Part A	
	- Student's Name
	- <i>Matricola</i> number
	Question 1 (8 points)
	Question 2 (6 points)
	Question 3 (6 points)
	Question 4 (4 points)
	Exercise 1 (8 points)

Total (32 points)

Intensive computation

Question 1 (8 points) Sparse matrices

a)) Briefly describe the Coordinate, Skyline and Ellpack-Itpack compressed schemes for the representation of sparse matrices.	
b) Explain how to realize the insertion of a new element for each of the previous schemes.		
_		
_		
_		

Question (6 points) GPU Describe the different levels of memory on the GPU device. Question 3 (6 points) Describe the Cholesky factorization method.

Questio	n 4 (4 points)
Briefly d	lescribe the matrix form of the iterative Jacobi's method.
,	

Exercise 1 (8 points)

Solve the system

$$\begin{cases} 4x_1 - x_2 - x_3 = 3 \\ -2x_1 + 6x_2 + x_3 = 9 \\ -x_1 + x_2 + 7x_3 = -6 \end{cases}$$

with Jacobi's Method in the **matrix form** using $\mathbf{x}^{(0)} = (0, 0, 0)$ as starting solution.

Complete the table below, doing three iterations.

k	X1 ^(k)	X2 ^(k)	X3 ^(k)
0	0	0	0
1			
2			
3			

Exam – June 10, 2016			
Part B		- Studen	t's Name
		- Matricol	a number
	_		
		Question 1 (3 points)	
		Exercise 1 (3 points)	
		Question 2 (6 points)	
		Exercise 2 (6 points)	

Question 3 (6 points)
Exercise 3 (8 points)

Total (32 points)

Intensive computation

Prof. A. Massini

Question 1 (3 points) Errors Briefly explain the meaning of *computational error* and *propagated data error*. Exercise 1 (3 points) Errors Show the contribution of *computational error* and *propagated data error* when computing $\cos(5\pi/8)$.

Question 2 (6 points) Eigenvalues and eigenvectors

a) b) c)			
_			

Exercise 2 (6 points) Methods for Differential equations

Consider the initial value problem $y' = x + 2y$ $y(0) = 0$		
Use Euler's Method for four iterations (e.g compute the approximation y_4) with a step size of $h = 0.25$ to find		
approximate values of the solution at $x = 1$. The exact solution is: $y = \frac{1}{4}e^{2x} - \frac{1}{2}x - \frac{1}{4}$		
Repeat with a step size of $h = 0.1$		
compare approximate solutions obtained for $h = 0.25$ and $h = 0.1$ with the exact value of the solution, giving the ercentage error in both cases.		

Question 3 (6 points) Methods for Differential equations Explain the Verlet method and the Velocity Verlet method for solving second order differential equations.

Exercise 3 (8 points) Simulated Annealing

Consider the Knapsack problem (0-1 version):

Given a set of objects, each with a weight and a value, determine which object to put in a bag so that the total weight is less than or equal to a given limit and the total value is as large as possible.

More formally:

Let there be n objects, x_1 to x_0 where each x_1 has a value v_1 and weight w_1 (all values and weights are greater than zero). The maximum weight that we can carry in the bag is w_2 .

Maximize:

$$\sum_{i=1}^{n} v_i x_i \qquad x_i = \begin{cases} 1 & \text{if the item is in the bag} \\ 0 & \text{otherwise} \end{cases}$$

subject to the constraint

$$\sum_{i=1}^{n} w_i x_i \le W \qquad x_i \in 0,1$$

Model the Knapsack problem according to the simulated annealing approach.		