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1 Background from linear algebra

1.1 Basic facts about eigenvalues

Let A be an n × n real matrix. An eigenvector of A is a vector such that Ax is parallel to
x; in other words, Ax = λx for some real or complex number λ. This number λ is called the
eigenvalue of A belonging to eigenvector v. Clearly λ is an eigenvalue iff the matrix A − λI is
singular, equivalently, iff det(A − λI) = 0. This is an algebraic equation of degree n for λ, and
hence has n roots (with multiplicity).

The trace of the square matrix A = (Aij) is defined as

tr(A) =
n∑

i=1

Aii.
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The trace of A is the sum of the eigenvalues of A, each taken with the same multiplicity as it
occurs among the roots of the equation det(A− λI) = 0.

If the matrix A is symmetric, then its eigenvalues and eigenvectors are particularly well
behaved. All the eigenvalues are real. Furthermore, there is an orthogonal basis v1, . . . , vn of
the space consisting of eigenvectors of A, so that the corresponding eigenvalues λ1, . . . , λn are
precisely the roots of det(A − λI) = 0. We may assume that |v1| = · · · = |vn| = 1; then A can
be written as

A =
n∑

i+1

λiviv
T
i .

Another way of saying this is that every symmetric matrix can be written as UTDU , where U
is an orthogonal matrix and D is a diagonal matrix. The eigenvalues of A are just the diagonal
entries of D.

To state a further important property of eigenvalues of symmetric matrices, we need the
following definition. A symmetric minor of A is a submatrix B obtained by deleting some rows
and the corresponding columns.

Theorem 1.1 (Interlacing eigenvalues) Let A be an n×n symmetric matrix with eigenvalues
λ1 ≥ · · · ≥ λn. Let B be an (n− k)× (n− k) symmetric minor of A with eigenvalues µ1 ≥ · · · ≥
µn−k. Then

λi ≤ µi ≤ λi+k.

We conclude this little overview with a further basic fact about nonnegative matrices.

Theorem 1.2 (Perron-Frobenius) If an n × n matrix has nonnegative entries then it has
a nonnegative real eigenvalue λ which has maximum absolute value among all eigenvalues.
This eigenvalue λ has a nonnegative real eigenvector. If, in addition, the matrix has no block-
triangular decomposition (i.e., it does not contain a k × (n − k) block of 0-s disjoint from the
diagonal), then λ has multiplicity 1 and the corresponding eigenvector is positive.

1.2 Semidefinite matrices

A symmetric n×n matrix A is called positive semidefinite, if all of its eigenvalues are nonnegative.
This property is denoted by A º 0. The matrix is positive definite, if all of its eigenvalues are
positive.

There are many equivalent ways of defining positive semidefinite matrices, some of which are
summarized in the Proposition below.

Proposition 1.3 For a real symmetric n× n matrix A, the following are equivalent:
(i) A is positive semidefinite;
(ii) the quadratic form xT Ax is nonnegative for every x ∈ Rn;
(iii) A can be written as the Gram matrix of n vectors u1, ..., un ∈ Rm for some m; this means

that aij = uT
i uj. Equivalently, A = UTU for some matrix U ;

(iv) A is a nonnegative linear combination of matrices of the type xxT;
(v) The determinant of every symmetric minor of A is nonnegative.
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Let me add some comments. The least m for which a representation as in (iii) is possible
is equal to the rank of A. It follows e.g. from (ii) that the diagonal entries of any positive
semidefinite matrix are nonnegative, and it is not hard to work out the case of equality: all
entries in a row or column with a 0 diagonal entry are 0 as well. In particular, the trace of a
positive semidefinite matrix A is nonnegative, and tr(A) = 0 if and only if A = 0.

The sum of two positive semidefinite matrices is again positive semidefinite (this follows e.g.
from (ii) again). The simplest positive semidefinite matrices are of the form aaT for some vector
a (by (ii): we have xT(aaT)x = (aTx)2 ≥ 0 for every vector x). These matrices are precisely
the positive semidefinite matrices of rank 1. Property (iv) above shows that every positive
semidefinite matrix can be written as the sum of rank-1 positive semidefinite matrices.

The product of two positive semidefinite matrices A and B is not even symmetric in general
(and so it is not positive semidefinite); but the following can still be claimed about the product:

Proposition 1.4 If A and B are positive semidefinite matrices, then tr(AB) ≥ 0, and equality
holds iff AB = 0.

Property (v) provides a way to check whether a given matrix is positive semidefinite. This
works well for small matrices, but it becomes inefficient very soon, since there are many symmet-
ric minors to check. An efficient method to test if a symmetric matrix A is positive semidefinite
is the following algorithm. Carry out Gaussian elimination on A, pivoting always on diagonal
entries. If you ever find a negative diagonal entry, or a 0 diagonal entry whose row contains
a non-zero, stop: the matrix is not positive semidefinite. If you obtain an all-zero matrix (or
eliminate the whole matrix), stop: the matrix is positive semidefinite.

If this simple algorithm finds that A is not positive semidefinite, it also provides a certificate
in the form of a vector v with vTAv < 0. Assume that the i-th diagonal entry of the matrix A(k)

after k steps is negative. Write A(k) = ET
k . . . ET

1 AE1 . . . Ek, where Ei are elementary matrices.
Then we can take the vector v = E1 . . . Ekei. The case when there is a 0 diagonal entry whose
row contains a non-zero is similar.

It will be important to think of n×n matrices as vectors with n2 coordinates. In this space,
the usual inner product is written as A ·B. This should not be confused with the matrix product
AB. However, we can express the inner product of two n× n matrices A and B as follows:

A ·B =
n∑

i=1

n∑

j=1

AijBij = tr(ATB).

Positive semidefinite matrices have some important properties in terms of the geometry of
this space. To state these, we need two definitions. A convex cone in Rn is a set of vectors which
along with any vector, also contains any positive scalar multiple of it, and along with any two
vectors, also contains their sum. Any system of homogeneous linear inequalities

aT
1 x ≥ 0, . . . aT

mx ≥ 0

defines a convex cone; convex cones defined by such (finite) systems are called polyhedral.
For every convex cone C, we can form its polar cone C∗, defined by

C∗ = {x ∈ Rn : xTy ≥ 0 ∀y ∈ C}.

This is again a convex cone. If C is closed (in the topological sense), then we have (C∗)∗ = C.
The fact that the sum of two such matrices is again positive semidefinite (together with

the trivial fact that every positive scalar multiple of a positive semidefinite matrix is positive
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semidefinite), translates into the geometric statement that the set of all positive semidefinite
matrices forms a convex closed cone Pn in Rn×n with vertex 0. This cone Pn is important,
but its structure is quite non-trivial. In particular, it is non-polyhedral for n ≥ 2; for n = 2 it
is a nice rotational cone (Figure 1; the fourth coordinate x21, which is always equal to x12 by
symmetry, is suppressed). For n ≥ 3 the situation becomes more complicated, because Pn is
neither polyhedral nor smooth: any matrix of rank less than n− 1 is on the boundary, but the
boundary is not differentiable at that point.

x11

x12

x22

Figure 1: The semidefinite cone for n = 2.

The polar cone of P is itself; in other words,

Proposition 1.5 A matrix A is positive semidefinite iff A ·B ≥ 0 for every positive semidefinite
matrix B.

1.3 Cross product

This construction probably familiar from physics. For a, b ∈ R3, we define their cross product as
the vector

a× b = |a| · |b| · sin φ · u, (1)

where φ is the angle between a and b (0 ≤ φ ≤ π), and u is a unit vector in R3 orthogonal to the
plane of a and b, so that the triple (a, b, u) is right-handed (positively oriented). The definition
of u is ambiguous if aand b are parallel, but then sin φ = 0, so the cross product is 0 anyway.
The length of the cross product gives the area of the parallelogram spanned by a and b.

The cross product is distributive with respect to linear combination of vectors, it is anticom-
mutative: a× b = −b× a, and a× b = 0 if and only if a and b are parallel. The cross product is
not associative; instead, it satisfies the identity

(a× b)× c = (a · c)b− (b · c)a, (2)

which implies the Jacobi Identity

(a× b)× c + (b× c)× a + (c× a)× b = 0. (3)
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Another useful replacement for the associativity is the following.

(a× b) · c = a · (b× c) = det(a, b, c) (4)

(here (a, b, c) is the 3× 3 matrix with columns a, b and c.
We often use the cross product in the special case when the vectors lie in a fixed plane Π. Let

k be a unit vector normal to Π, then a× b is Ak, where A is the signed area of the parallelogram
spanned by a and b (this means that T is positive iff a positive rotation takes the direction of a
to the direction of b, when viewed from the direction of k). Thus in this case all the information
about a× b is contained in this scalar A, which in tensor algebra would be denoted by a∧ b. But
not to complicate notation, we’ll use the cross product in this case as well.

2 Eigenvalues of graphs

2.1 Matrices associated with graphs

We introduce the adjacency matrix, the Laplacian and the transition matrix of the random walk,
and their eigenvalues.

Let G be a (finite, undirected, simple) graph with node set V (G) = {1, . . . , n}. The adjacency
matrix of G is be defined as the n× n matrix AG = (Aij) in which

Aij =

{
1, if i and j are adjacent,
0, otherwise.

We can extend this definition to the case when G has multiple edges: we just let Aij be the
number of edges connecting i and j. We can also have weights on the edges, in which case we
let Aij be the weight of the edges. We could also allow loops and include this information in the
diagonal, but we don’t need this in this course.

The Laplacian of the graph is defined as the n× n matrix LG = (Lij) in which

Lij =

{
di, if i = j,

−Aij , if i 6= j.

Here di denotes the degree of node i. In the case of weighted graphs, we define di =
∑

j Aij . So
LG = DG −AG, where DG is the diagonal matrix of the degrees of G.

The transition matrix of the random walk on G is defined as the n× n matrix PG = (Pij) in
which

Pij =
1
di

Aij .

So PG = D−1
G A.

The matrices AG and LG are symmetric, so their eigenvalues are real. The matrix PG is not
symmetric, but it is conjugate to a symmetric matrix. Let

NG = D
−1/2
G AGD

−1/2
G ,

then NG is symmetric, and

PG = D
−1/2
G NGD

1/2
G .
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The matrices AG and LG and NG are symmetric, so their eigenvalues are real. The matrices
PG and NG have the same eigenvalues, and so all eigenvalues of PG are real. We denote these
eigenvalues as follows:

AG : λ1 ≥ λ2 ≥ · · · ≥ λn,

LG : µ1 ≤ µ2 ≤ · · · ≤ µn,

AG : ν1 ≥ ν2 ≥ · · · ≥ νn,

Exercise 2.1 Compute the spectrum of complete graphs, cubes, stars, paths.

We’ll often use the (generally non-square) incidence matrix of G. This notion comes in two
flavors. Let V (G) = {1, . . . , n} and E(G) = {e1, . . . , em, and let BG denote the n ×m matrix
for which

(BG)ij =

{
1 if i is and endpoint of ej ,

0 otherwise.

Often, however, the following matrix is more useful: Let us fix an orientation of each edge, to
get an oriented graph

−→
G . Then let B−→

G
denote the n×m matrix for which

(B−→
G

)ij =





1 if i is the head of ej ,

−1 if i is the tail of ej ,

0 otherwise.

Changing the orientation only means scaling some columns by −1, which often does not matter
much. For example, it is easy to check that independently of the orientation,

LG = B−→
G

BT−→
G

. (5)

It is worth while to express this equation in terms of quadratic forms:

xTLGx =
n∑

ij∈E(G)

(xi − xj)2. (6)

2.2 The largest eigenvalue

2.2.1 Adjacency matrix

The Perron–Frobenius Theorem implies immediately that if G is connected, then the largest
eigenvalue λmax of AG of AG has multiplicity 1. This eigenvalue is relatively uninteresting, it is
a kind of “average degree”. More precisely, let dmin denote the minimum degree of G, let d be
the average degree, and let dmax be the maximum degree.

Proposition 2.1 For every graph G,

max{d,
√

dmax} ≤ λmax ≤ dmax.

Proof.
¤

Exercise 2.2 Compute the largest eigenvalue of a star.
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2.2.2 Laplacian

For the Laplacian LG, this corresponds to the smallest eigenvalue, which is really uninteresting,
since it is 0:

Proposition 2.2 The Laplacian LG is singular and positive semidefinite.

Proof. The proof follows immediately from (5) or (6), which show that LG is positive semidef-
inite. Since 1 = (1, . . . , 1)T is in the null space of LG, it is singular. ¤

If G is connected, then 0, as an eigenvalue of LG, has multiplicity 1; we get this by applying
the Perron–Frobenius Theorem to cI − LG, where c is a large real number. The eigenvector
belonging to this eigenvalue is 1 = (1, . . . , 1)T (and its scalar multiples).

We note that for a general graph, the multiplicity of the 0 eigenvalue of the Laplacian is
equal to the number of connected components. Similar statement is not true for the adjacency
matrix (if the largest eigenvalues of the connected components of G are different, then the
largest eigenvalue of the whole graph has multiplicity 1). This illustrates the phenomenon that
the Laplacian is often better behaved algebraically than the adjacency matrix.

2.2.3 Transition matrix

The largest eigenvalue of PG is 1, and it has multiplicity 1 for connected graphs. It is straight-
forward to check that the right eigenvector belonging to it is 1, and the left eigenvector is given
by πi = di/(2m) (where m is the number of edges). This vector π describes the stationary
distribution of a random walk, and it is very important in the theory of random walks (see
later).

2.3 The smallest eigenvalue

Proposition 2.3 (a) A graph is bipartite if and only if its spectrum is symmetric about the
origin.

(b) A connected graph G is bipartite if and only if λmin(G) = −λmax(G).

Proof.
¤

The “only if” part of Proposition 2.3 can be generalized: The ratio between the largest and
smallest eigenvalue can be used to estimate the chromatic number (Hoffman [92]).

Theorem 2.4

χ(G) ≥ 1 +
λmin

λmax
.

Proof. Let k = χ(G), then AG can be partitioned as



0 M12 . . . M1k

M21 0 M2k

...
...

. . .
Mk1 Mk2 0,
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where Mij is an mi ×mj matrix (where mi is the number of points with color i).
Let v be an eigenvector belonging to λ1. Let us break v into pieces v1, . . . ,vk of length

m1, . . . ,mk, respectively. Set

wi =




|vi|
0
...
0


 ∈ Rmi w =




w1

...
wk


 .

Let Bi be any orthogonal matrix such that

Biwi = vi (i = 1, . . . , k),

and

B =




B1 0
B2

0
. . .

Bk


 .

Then Bw = v and

B−1ABw = B−1Av = λ1B
−1v = λ1w

so w is an eigenvector of B−1AB. Moreover, B−1AB has the form



0 B−1
1 A12B2 . . . B−1

1 A1kBk

B−1
2 A21B1 0 B−1

2 A2kBk

...
. . .

...
B−1

k Ak1B1 B−1
k Ak2B2 . . . 0


 .

Pick the entry in the upper left corner of each of the k2 submatrices B−1
i AijBj (Aii = 0), these

form a k × k submatrix D. Observe that

u =



|v1|

...
|vk|




is an eigenvector of D; for w is an eigenvector of B−1AB and has 0 entries on places corresponding
to those rows and columns of B−1AB, which are to be deleted to get D. Moreover, the eigenvalue
belonging to u is λ1.

Let α1 ≥ · · · ≥ αk be the eigenvalues of D. Since D has 0’s in its main diagonal,

α1 + · · ·+ αk = 0.

On the other hand, λ1 is an eigenvalue of D and so

λ1 ≤ α1,

while by the Interlacing Eigenvalue Theorem

λn ≤ αk, . . . , λn−k+2 ≤ α2.
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Thus

λn + · · ·+ λn−k+2 ≤ αk + · · ·+ α2 = −α1 ≤ −λ1.

¤

Remark 2.5 The proof did not use that the edges were represented by the number 1, only that
the non-edges and diagonal entries were 0. So if we want to get the strongest possible lower
bound on the chromatic number that this method provides, we can try to find a way of choosing
the entries in A corresponding to edges of G in such a way that the right hand side is minimized.
This can be done efficiently.

The smallest eigenvalue is closely related to the characterization of linegraphs. The corre-
spondence is not perfect though. To state the result, we need some definitions. Let G be a simple
graph. A pending star in G is a maximal set of edges which are incident with the same node and
whose other endpoints have degree 1. The linegraph L(G) of G is defined on V (L(G)) = E(G),
where to edges of G are adjacent in L(G) if and only if they have a node in common. A graph H
is called a modified linegraph of G if it is obtained from L(G) by deleting a set of disjoint edges
from each clique corresponding to a pending star of G.

Part (a) of the following theorem is due to Hoffman [91], part (b), to Cameron, Goethals,
Seidel and Shult [33].

Proposition 2.6 (a) Let H be the generalized linegraph of G. Then λmin(H) ≥ −2; if |E(G)| >
|V (G)|, then λmin(H) = −2.

(b) Let H be a simple graph such that λmin(H) ≥ −2. Assume that |V (H)| ≥ 37. Then G is
a modified linegraph.

Proof. We only give the proof for part (a), and only in the case when H = L(G). It is easy to
check that we have

AL(G) = BT
GBG − 2I.

Since BT
GBG is positive semidefinite, all of its eigenvalues are non-negative. Hence, the eigenval-

ues of AL(G) are ≥ −2. Moreover, if |V (G)| < |E(G)|, then

r(BT B) = r(B) ≤ |V (G)| < |E(G)|

(r(X) is the rank of the matrix X). So, BT B has at least one 0 eigenvalue, i.e. AL(G) has at
least one −2 eigenvalue. ¤

Exercise 2.3 Modify the proof above to get (a) in general.

2.4 The eigenvalue gap

The gap between the second and the first eigenvalues is an extremely important parameter in
many branches of mathematics.

If the graph is connected, then the largest eigenvalue of the adjacency matrix as well as the
smallest eigenvalue of the Laplacian have multiplicity 1. We can expect that the gap between
this and the nearest eigenvalue is related to some kind of connectivity measure of the graph.
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Indeed, fundamental results due to Alon–Milman [8], Alon [5] and Jerrum–Sinclair [97] relate the
eigenvalue gap to expansion (isoperimetric) properties of graphs. These results can be considered
as discrete analogues of Cheeger’s inequality in differential geometry.

There are many related (but not equivalent) versions of these results. We illustrate this
connection by two versions that are of special interest: a spectral characterization of expanders
and a bound on the mixing time of random walks on graphs. For this, we discuss very briefly
expanders and also random walks and their connections with eigenvalues (see [1] and [129] for
more).

The multiplicity of the second largest eigenvalue will be discussed in connection with the
Colin de Verdière number.

2.4.1 Expanders

An expander is a regular graph with small degree in which the number of neighbors of any set
containing at most half of the nodes is at least a constant factor of its size. To be precise, an
ε-expander is a graph G = (V, E) in which for every set S ⊂ V with |S| ≤ |V |/2, the number of
nodes in V \ S adjacent to some node in S is at least ε|S|.

Expanders play an important role in many applications of graph theory, in particular in
computer science. The most important expanders are d-regular expanders, where d ≥ 3 is a small
constant. Such graphs are not easy to construct. One method is to do a random construction:
for example, we can pick d random perfect matchings on 2n nodes (independently, uniformly
over all perfect matchings), and let G be the union of them. Then a moderately complicated
computation shows that G is an ε-expander with positive probability for a sufficiently small ε.
Deterministic constructions are much more difficult to obtain; the first construction was found
by Margulis [132]; see also [130]. Most of these constructions are based on deep algebraic facts.

Our goal here is to state and prove a spectral characterization of expanders, due to Alon [5],
which plays an important role in analyzing some of the above mentioned algebraic constructions.
note that since we are considering only regular graphs, the adjacency matrix, the Laplacian and
the transition matrix are easily expressed, and so we shall only consider the adjacency matrix.

Theorem 2.7 Let G be a d-regular graph.
(a) If d− λ2 ≥ 2εd, then G is an ε-expander.
(b) If G is an ε-expander, then d− λ2 ≥ ε2/5.

Proof. The proof is similar to the proof of Theorem 2.8 below. ¤

2.4.2 Edge expansion (conductance)

We study the connection of the eigenvalue gap of the transition matrix with a quantity that can
be viewed as an edge-counting version of the expansion. Let 1 = λ1 ≥ λ2 ≥ . . . ≥ λn be the
eigenvalues of PG.

The conductance of a graph G = (V, E) is defined as follows. For two sets S1, S2 ⊆ V , let
eG(S1, S2) denote the number of edges ij with i ∈ S1, j ∈ S2. For every subset S ⊆ V , let
d(S) =

∑
i∈S di, and define

Φ(G) = min
∅⊂S⊂V

2meG(S, V \ S)
d(S) · d(V \ S)

.
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For a d-regular graph, this can be written as

Φ(G) = min
∅⊂S⊂V

n

d

eG(S, V \ S)
|S| · |V \ S| .

The following basic inequality was proved by Jerrum and Sinclair [97]:

Theorem 2.8 For every graph G,

Φ(G)2

16
≤ 1− λ2 ≤ Φ(G)

We start with a lemma expressing the eigenvalue gap of PG in a manner similar to the
Rayleigh quotient.

Lemma 2.9 For every graph G we have

1− λ2 = min
∑

(i,j)∈E

(xi − xj)2,

where the minimum is taken over all vectors x ∈ RV such that
∑

i∈V

dixi = 0,
∑

i∈V

dix
2
i = 1. (7)

Proof. As remarked before, the symmetrized matrix NG = D
1/2
G PGD

−1/2
G has the same

eigenvalues as PG. For a symmetric matrix, the second largest eigenvalue can be obtained as

λ2 = max yTNGy,

where y ranges over all vectors of unit length orthogonal to the eigenvector belonging to the
largest eigenvalue. This latter eigenvector is given (up to scaling) by vi =

√
di, so the conditions

on y are
∑

i∈V

√
diyi = 0,

∑

i∈V

y2
i = 1. (8)

Let us write yi = xi

√
di, then the conditions (8) on y translate into conditions (7) on x. Fur-

thermore,
∑

(i,j)∈E

(xi − xj)2 = 2m
∑

(i,j)∈E

(
yi√
di

− yj√
dj

)2

=
∑

i

di
y2

i

di
− 2

∑

(i,j)∈E

(
yiyj√
di

√
dj

= 1− yTNGy.

The minimum of the left hand side subject to (7) is equal to the minimum of the right hand side
subject to (8), which proves the Lemma. ¤

Now we can prove the theorem.
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Proof. The upper bound is easy: let ∅ 6= S ⊂ V be a set with

2meG(S, V \ S)
d(S) · d(V \ S)

= Φ(G).

Let x be a vector on the nodes defined by

xi =





√
d(V \S)
2md(S) if i ∈ S,

−
√

d(S)
2md(V \S) if i ∈ V \ S.

It is easy to check that
∑

i∈V

dixi = 0,
∑

i∈V

dix
2
i = 1.

Thus by Lemma 2.9,

1− λ2 ≥
∑

ij∈E

(xi − xj)2 = eG(S, V \ S)

(√
d(V \ S)
2md(S)

+

√
d(S)

2md(V \ S)

)2

=
2meG(S, V \ S)
d(S)d(V \ S)

= Φ(G).

It is easy to see that the statement giving the lower bound can be written as follows: let
y ∈ RV and let ŷ = (1/2m)

∑
i diyi. Then we have

∑

(i,j)∈E

(yi − yj)2 ≥ Φ2

16

∑

i

(yi − ŷ)2. (9)

To prove this, we need a lemma that can be thought of as a linear version of (9). For every
real vector y = (y1, . . . , yn), we define its median (relative to the degree sequence di) as a the
member yM of the sequence for which

∑

k: yk≤yM

dk ≤ m,
∑

k: yk>yM

dk < m.

Lemma 2.10 Let G = (V,E) be a graph with conductance Φ(G). Let y ∈ RV , and let yM be
the median of y. Then

∑

(i,j)∈E

|yi − yj | ≥ Φ
2

∑

i

di|yi − yM |.

Proof. [of the Lemma] We may label the nodes so that y1 ≤ y2 ≤ . . . ≤ yn. We also may
assume that yM = 0 (the assertion of the Lemma is invariant under shifting the entries of y).
Substituting

yj − yi = (yi+1 − yi) + · · ·+ (yj − yj−1),

we have

∑

(i,j)∈E

|yi − yj | =
n−1∑

k=1

e(≤ k, > k)(yk+1 − yk).

12



By the definition of Φ, this implies

∑

(i,j)∈E

|yi − yj | ≥ Φ
2m

n−1∑

k=1

d(≤ k)d(> k)(yk+1 − yk)

≥ Φ
2m

∑

k<M

d(≤ k)m(yk+1 − yk) +
Φ
2m

∑

k≥M

md(> k)(yk+1 − yk)

=
Φ
2

∑

i≤M

diyi − Φ
2

∑

i>M

diyi

=
Φ
2

∑

i

di|yi|.

¤
Now we return to the proof of the lower bound in Theorem 2.8. Let x be a unit length

eigenvector belonging to λ2. We may assume that the nodes are labeled so that x1 ≥ x2 ≥
. . . ≥ xn. Let xM be the median of x. Note that the average (1/(2m))

∑
i dixi = 0. Set

zi =
(
max{0, xi − xM}

)
and ui =

(
max{0, xM − xi}

)
. Then

∑

i

diz
2
i +

∑

i

diu
2
i =

∑

i

di(xi − xM )2 =
∑

i

x2
i + 2mx2

M ≥
∑

i

dix
2
i = 1,

and so we may assume (replacing x by −x if necessary) that
∑

i

diz
2
i ≥

1
2
.

By Lemma 2.10
∑

(i,j)∈E

|z2
i − z2

j | ≥
Φ
2

∑

i

diz
2
i .

On the other hand, using the Cauchy-Schwartz inequality,
∑

(i,j)∈E

|z2
i − z2

j | =
∑

(i,j)∈E

|zi − zj | · |zi + zj |

≤

 ∑

(i,j)∈E

(zi − zj)2




1/2 
 ∑

(i,j)∈E

(zi + zj)2




1/2

.

Here the second factor can be estimated as follows:
∑

(i,j)∈E

(zi + zj)2 ≤ 2
∑

(i,j)∈E

(z2
i + z2

j ) = 2
∑

i

diz
2
i .

Combining these inequalities, we obtain

∑

(i,j)∈E

(zi − zj)2 ≥

 ∑

(i,j)∈E

|z2
i − z2

j |



2 / ∑

(i,j)∈E

(zi + zj)2

≥ Φ2

4

(∑

i

diz
2
i

)2 /
2

∑

i

diz
2
i =

Φ2

8

∑

i

diz
2
i ≥

Φ2

16
.
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Since ∑

(i,j)∈E

(xi − xj)2 ≥
∑

(i,j)∈E

(zi − zj)2,

from here we can conclude by Lemma 2.9. ¤
The quantity Φ(G) is NP-complete to compute. An important theorem of Leighton and Rao

gives an approximate min-max theorem for it, which also yields a polynomial time approximation
algorithm, all with an error factor of O(log n).

2.4.3 Random walks

A random walk on a graph G is a random sequence (v0, v1, . . . ) of nodes constructed as follows:
We pick a starting point v0 from a specified initial distribution σ, we select a neighbor v1 of it at
random (each neighbor is selected with the same probability 1/d(v0)), then we select a neighbor
v2 of this node v1 at random, etc. We denote by σk the distribution of vk.

In the language of probability theory, a random walk is a finite time-reversible Markov chain.
(There is not much difference between the theory of random walks on graphs and the theory of
finite Markov chains; every Markov chain can be viewed as random walk on a directed graph,
if we allow weighted edges, and every time-reversible Markov chain can be viewed as random
walks on an edge-weighted undirected graph.)

Let π denote the probability distribution in which the probability of a node is proportional
to its degree:

π(v) =
d(v)
2m

.

This distribution is called the stationary distribution of the random walk. It is easy to check
that if v0 is selected from π, then after any number of steps, vk will have the same distribution
π. This explains the name of π. Algebraically, this means that π is a left eigenvector of PG with
eigenvalue 1:

πT PG = πT .

Theorem 2.11 If G is a connected nonbipartite graph, then σk → π for every starting distri-
bution σ.

It is clear that the conditions are necessary.

Before proving this theorem, let us make some remarks on one of its important applications,
namely sampling. Suppose that we want to pick a random element uniformly from some finite
set. We can then construct a connected nonbipartite regular graph on this set, and start a
random walk on this graph. A node of the random walk after sufficiently many steps is therefore
essentially uniformly distributed.

(It is perhaps surprising that there is any need for a non-trivial way of generating an element
from such a simple distribution as the uniform. But think of the first application of random walk
techniques in real world, namely shuffling a deck of cards, as generating a random permutation
of 52 elements from the uniform distribution over all permutations. The problem is that the set
we want a random element from is exponentially large. In many applications, it has in addition
a complicated structure; say, we consider the set of lattice points in a convex body or the set
of linear extensions of a partial order. Very often this random walk sampling is the only known
method.)

14



With this application in mind, we see that not only the fact of convergence matters, but also
the rate of this convergence, called the mixing rate. The proof below will show how this relates
to the eigenvalue gap. In fact, we prove:

Theorem 2.12 Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of PG, and let µ = max{λ2, λn}.
Then for every starting node i and any node j, and every t ≥ 0, we have

|Pr(vt = j)− π(j)| ≤
√

π(j)
π(i)

µt.

More generally, for every set A ⊆ V ,

|Pr(vt ∈ A)− π(A)| ≤
√

π(A)
π(i)

µt.

Proof. We prove the first inequality; the second is left to the reader as an exercise. We know
that the matrix NG has the same eigenvalues as PG, and it is symmetric, so we can write it as

NG =
n∑

k=1

λkvkvT
k ,

where v1, . . . , vn are mutually orthogonal eigenvectors. It is easy to check that we can choose

v1i =
√

πi

(we don’t know anything special about the other eigenvectors). Hence we get

Pr(vt = j) = (P t)ij = eT
i D−1/2N td1/2ej =

n∑

k=1

λt
k(eT

i D−1/2vk)(eT
j D1/2vk)

=
n∑

k=1

λt
k

1√
π(i)

vki

√
π(j)vkj = π(j) +

√
π(j)
π(i)

n∑

k=2

λt
kvkivkj .

Here the first term is the limit; we need to estimate the second. We have

∣∣∣
n∑

k=2

λt
kvkivkj

∣∣∣ ≤ µt
n∑

k=2

∣∣∣vkivkj

∣∣∣ ≤ µt
n∑

k=1

∣∣∣vkivkj

∣∣∣ ≤ µt

(
n∑

k=1

v2
ki

)1/2 (
v2

kj

)1/2
= µt.

This proves the inequality. ¤
If we want to find a bound on the number of steps we need before, say,

|Pr(vk ∈ A)− π(A)| < ε

holds for every j, then it suffices to find a k for which

µk < ε
√

πi.

Writing mu = 1− γ, and using that 1− γ < e−γ , it suffices to have

e−γk < ε
√

πi,
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and expressing k,

k >
1
γ

(
ln

1
ε

+
1
2

ln
1
πi

)

So we see that (up to logarithmic factors), it is the reciprocal of the eigenvalue gap that governs
the mixing time.

In applications, the appearance of the smallest eigenvalue λn is usually not important, and
what we need to work on is bounding the eigenvalue gap 1 − λ2. The trick is the following:
If the smallest eigenvalue is too small, then we can modify the walk as follows. At each step,
we flip a coin and move with probability 1/2 and stay where we are with probability 1/2. The
stationary distribution of this modified walk is the same, and the transition matrix PG is replaced
by 1

2 (PG + I). For this modified walk, all eigenvalues are nonnegative, and the eigenvalue gap is
half of the original. So applying the theorem to this, we only use a factor of 2.

Explanation of conductance: In a stationary random walk on G, we cross every edge in every
direction with the same frequency, once in every 2m steps on the average. So Q(S, V \ S) is
the frequency with which we step out from S. If instead we consider a sequence of independent
samples from π, the frequency with which we step out from S is π(S)π(V \ S). The ratio of
these two frequencies is one of many possible ways comparing a random walk with a sequence of
independent samples.

Exercise 2.4 Let G = (V, E) be a simple graph, and define

ρ(G) = min
∅⊂S⊂V

eG(S, V \ S)
|S| · |V \ S| .

Let λ2 denote the second smallest eigenvalue of the Laplacian LG of a graph G. Then

λ2 ≤ nρ(G) ≤
√

λ2dmax.

2.5 The number of different eigenvalues

Multiplicity of eigenvalues usually corresponds to symmetries in the graph (although the cor-
respondence is not exact). We prove two results in this direction. The following theorem was
proved by Mowshowitz [141] and Sachs [159]:

Theorem 2.13 If all eigenvalues of A are different, then every automorphism of A has order 1
or 2.

Proof. Every automorphism of G can be described by a permutation matrix P such that
AP = PA. Let u be an eigenvector of A with eigenvalue λ. Then

A(Pu) = PAu = P (λu) = λ(Pu),

so Pu is also an eigenvector of A with the same eigenvalue. Since Pu has the same length as u,
it follows that Pu = ±u and hence P 2u = u. This holds for every eigenvector u of A, and since
there is a basis consisting of eigenvectors, it follows that P 2 = I. ¤

A graph G is called strongly regular, if it is regular, and there are two nonnegative integers
a and b such that for every pair i, j of nodes the number of common neighbors of i and j is

{
a, if a and b are adjacent,
b, if a and b are nonadjacent.
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Example 2.14 Compute the spectrum of the Petersen graph, Paley graphs, incidence graphs
of finite projective planes.

The following characterization of strongly regular graphs is easy to prove:

Theorem 2.15 A connected graph G is strongly regular if and only if it is regular and AG has
at most 3 different eigenvalues.

Proof. The adjacency matrix of a strongly regular graph satisfies

A2 = aA + b(J −A− I) + dI. (10)

The largest eigenvalue is d, all the others are roots of the equation

λ2 − (a− b)λ− (d− b), (11)

Thus there are at most three distinct eigenvalues.
Conversely, suppose that G is d-regular and has at most three different eigenvalues. One of

these is d, with eigenvector 1. Let λ1 and λ2 be the other two (I suppose there are two more—the
case when there is at most one other is easy). Then

B = A2 − (λ1 + λ2)A + λ1λ2I

is a matrix for which Bu = 0 for every eigenvector of A except 1 (and its scalar multiples).
Furthermore, B1 = c1, where c = (d− λ1)(d− λ2). Hence B = (c/n)J , and so

A2 = (λ1 + λ2)A− λ1λ2I + (c/n)J.

This means that (A2)ij (i 6= j) depends only on whether i and j are adjacent, proving that G is
strongly regular. ¤

We can get more out of equation (11). We can solve it:

λ1,2 =
a− b±

√
(a− b)2 + 4(d− b)

2
. (12)

Counting induced paths of length 2, we also get the equation

(d− a− 1)d = (n− d− 1)b. (13)

Let m1 and m2 be the multiplicities of the eigenvalues λ1 and λ2. Clearly

m1 + m2 = n− 1 (14)

Taking the trace of A, we get

d + m1λ1 + m2λ2 = 0,

or

2d + (n− 1)(a− b) + (m1 −m2)
√

(a− b)2 + 4(d− b) = 0. (15)

If the square root is irrational, the only solution is d = (n−1)/2, b = (n−1)/4, a = b−1. There
are many solutions where the square root is an integer.

A nice application of these formulas is the “Friendship Theorem”:
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Theorem 2.16 If G is a graph in which every two nodes have exactly one common neighbor,
then it has a node adjacent to every other node.

Proof. First we show that two non-adjacent nodes must have the same degree. Suppose that
there are two non-adjacent nodes u, v of different degree. For every neighbor w of u there is a
common neighbor w′ of w and v. For different neighbors w1 and w2 of u, the nodes w′1 and w′2
must be different, else w− 1 and w− 2 would have two common neighbors. So v has at least as
many neighbors as u. By a symmetric reasoning, we get du = dv.

If G has a node v whose degree occurs only once, then by the above, v must be connected to
every other node, and we are done. So suppose that no such node exists.

If G has two nodes u and v of different degree, then it contains two other nodes x and y
such that du = dx and dv = dy. But then both x and u are common neighbors of v and y,
contradicting the assumption.

Now if G is regular, then it is strongly regular, and a = b = 1. From (15),

d + (m1 −m2)
√

d− 1 = 0.

The square root must be integral, hence d = k2 + 1. But then k | k2 + 1, whence k = 1, d = 2,
and the graph is a triangle, which is not a counterexample. ¤

Exercise 2.5 Prove that every graph with only two different eigenvalues is complete.

Exercise 2.6 Describe all disconnected strongly regular graphs. Show that there are discon-
nected graphs with only 3 distinct eigenvalues that are not strongly regular.

2.6 Spectra of graphs and optimization

There are many useful connections between the eigenvalues of a graph and its combinatorial
properties. The first of these follows easily from interlacing eigenvalues.

Proposition 2.17 The maximum size ω(G) of a clique in G is at most λ1 + 1. This bound
remains valid even if we replace the non-diagonal 0’s in the adjacency matrix by arbitrary real
numbers.

The following bound on the chromatic number is due to Hoffman.

Proposition 2.18 The chromatic number χ(G) of G is at least 1−(λ1/λn). This bound remains
valid even if we replace the 1’s in the adjacency matrix by arbitrary real numbers.

The following bound on the maximum size of a cut is due to Delorme and Poljak [45, 44, 139,
147], and was the basis for the Goemans-Williamson algorithm discussed in the introduction.

Proposition 2.19 The maximum size γ(G) of a cut in G is at most |E|/2 − (n/4)λn. This
bound remains valid even if we replace the diagonal 0’s in the adjacency matrix by arbitrary real
numbers.

Observation: to determine the best choice of the “free” entries in 2.17, 2.18 and 2.19 takes
a semidefinite program. Consider 2.17 for example: we fix the diagonal entries at 0, the entries
corresponding to edges at 1, but are free to choose the entries corresponding to non-adjacent
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pairs of vertices (replacing the off-diagonal 1’s in the adjacency matrix). We want to minimize
the largest eigenvalue. This can be written as a semidefinite program:

minimize t

subject to tI −X º 0,

Xii = 0 (∀i ∈ V ),
Xij = 1 (∀ij ∈ E).

It turns out that the semidefinite program constructed for 2.18 is just the dual of this, and
their common optimum value is the parameter ϑ(G) introduced before. The program for 2.19
gives the approximation used by Goemans and Williamson (for the case when all weights are 1,
from which it is easily extended).
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[148] L. Porkoláb and L. Khachiyan: On the complexity of semidefinite programs, J. Global
Optim. 10 (1997), 351–365.

[149] M. Ramana: An exact duality theory for semidefinite programming and its complexity
implications, in: Semidefinite programming. Math. Programming Ser. B, 77 (1997), 129–
162.

[150] A. Recski: Matroid theory and its applications in electric network theory and in statics,
Algorithms and Combinatorics, 6. Springer-Verlag, Berlin; Akadémiai Kiadó, Budapest,
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