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Big Data
Too much information!



Big Data
● Explosive data growth

○ proliferation of data capture
○ interconnection = more data
○ inexpensive storage

● Not just the size of data
○ access all the data
○ increase retention
○ machine learning
○ data compression



Big Data
Where are you going?



Big Data main problem
Data analysis is slower than data creation



● Semi-structured data
○ looser
○ though there may be a schema, it is often ignored

● Why can’t we use databases to do large-
scale batch analysis? 
○ seek time is improving slowly than transfer rate

Big Data



● HPC and Grid Computing 
○ doing large-scale data processing for years:

■ APIs as Message Passing Interface (MPI)
■ distribute the work across a cluster of machines
■ access a shared filesystem (hosted by a SAN)

○ Works well for compute-intensive jobs
■ becomes a problem when nodes need to access 

larger data volumes 
■ the network bandwidth is the bottleneck 

Old approach



Bandwidth
“bandwidth is the bottleneck and 
compute nodes become idle”

● HPC and Grid can be overloaded
● Bandwidth solutions focus on obtaining 

better performance for very fast workloads



Google approach

10 years ago: the famous MapReduce paper



MapReduce 
● Batch query processor

○ ability to run an ad hoc queries against your whole dataset 
○ get the results in a reasonable time

● Unstructured or semi-structured data
○ designed to interpret the data at processing time



MapReduce 
BANDWIDTH 

○ tries to collocate the data with the compute node
○ data access is fast since it is local

■ known as data locality
■ reason for its good performance.



Apache Hadoop
● Apache works on Lucene (2005)

○ Full-featured text search engine library
○ Indexing system from scratch
○ Decide to go with MapReduce
○ Splits into a new project Hadoop (2006)

● April 2008
○ Hadoop broke a world record to become the fastest 

system to sort a terabyte of data



Apache Hadoop
● Open source platform 

○ for data storage and processing
● Scalable 
● Fault tolerant
● Distributed



HDFS
Hadoop File System 
● Build to avoid transferring data over the network
● Hadoop works on input splits

○ Split time << job execution
○ Small splits 

■ faster nodes consumes more splits and jobs than slowers ones
○ If too small overhead breaks performance
○ Fine tuning
○ Best split = HDFS size (64MB default)

● Hadoop needs topography
○ don’t distribute on different racks if not needed
○ Data locality optimization



MapReduce Hadoop jobs
● Single Job

○ Map tasks
■ build splits
■ local outputs 

○ Reduce tasks
■ HDFS output 

redundant



The hadoop framework
● Hadoop is written in Java 
● Its main framework is Java-based
● Write code in many languages (e.g. Python).
● API to check cluster status and configuration



Hadoop: hands on
To work on any example, even the simplest, you clearly need a Hadoop Cluster.

Two ways of simulating a Hadoop 
cluster on your local machine:

1. A pseudo distributed single-
node Hadoop cluster on 
Linux/Ubuntu
2. A pre-configured virtual 
machine 



Hadoop: hands on
A python example
Why python? 

● Not native
○ Which will help you to better understand the Hadoop 

system
● Easy to write code for Mappers and Reducers



Hadoop: hands on
Files example (columns)

Stadium (String) - The name of the stadium
Capacity (Int) - The capacity of the stadium
ExpandedCapacity (Int) - The expanded capacity of the stadium
Location (String) - The location of the stadium
PlayingSurface (String) - The type of grass, etc that the stadium has
IsArtificial (Boolean) - Is the playing surface artificial
Team (String) - The name of the team that plays at the stadium
Opened (Int) - The year the stadium opened
WeatherStation (String) - The name of the weather station closest to 
the stadium
RoofType (Possible Values:None,Retractable,Dome) - The type of roof in 
the stadium
Elevation - The elevation of the stadium

Our question: 
Find the number of 
stadiums with 
artificial and natural 
playing surfaces



Python Mapper 
(mapper.py) for line in sys.stdin:

    line = line.strip()
    stadium, capacity, expanded, location, 
surface, turf, team, opened, weather, 
roof, elevation = line.split(",")
    results = [turf, "1"]
    print("\t".join(results))



In the middle?
...
streaming...

TRUE 1
TRUE 1
TRUE 1
TRUE 1
FALSE 1
FALSE 1
FALSE 1

The reducer interface for streaming is 
actually different than in Java. Instead of 
receiving 
reduce(k, Iterator[V])
your script is actually sent one line per 
value, including the key.



Python Reducer  
(reducer.py)

last_turf = None
turf_count = 0

for line in sys.stdin:
    line = line.strip()
    turf, count = line.split("\t")
    count = int(count)
    if not last_turf:     # if this is the first iteration
        last_turf = turf
    if turf == last_turf:     # if they're the same, log it
        turf_count += count
    else: # state change
        result = [last_turf, turf_count]
        print("\t".join(str(v) for v in result))
        last_turf = turf
        turf_count = 1

#catch the final counts after all records have been received.
print("\t".join(str(v) for v in [last_turf, turf_count]))



Testing on Hadoop
$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-
streaming-2.0.0-mr1-cdh4.4.0.jar \
    -mapper mapper.py \
    -reducer reducer.py \
    -input nfldata/stadiums \
    -output nfldata/pythonoutput \
    -file simple/mapper.py \
    -file simple/reducer.py

# ...twiddle thumbs for a while

$ hadoop fs -text nfldata/pythonoutput/part-*
FALSE 15
TRUE 17



Test… on a laptop 
# Testing the same code as a bash pipe

$ cat ~/workspace/nfldata/unixstadiums.csv | simple/mapper.py | sort | simple/reducer.
py

# FALSE 15
# TRUE 17



Jobtracker 
Hadoop web-dashboard:
Status and statistics of job 
executed on our Hadoop cluster



A new cluster prototype
Working @CINECA
● Cloud
● Virtual nodes
● Virtual networks
● Virtual FS
● OpenStack
● Hadoop



NGS and bioinformatics
● Next Generation Sequencing = NGS

○ new platforms
○ high throughput

● Many analysis application
● New algorithms & codes and challenges
● Small costs!
● Producing Big Data



Why NGS fits Hadoop
Embarassingly parallel 
● Little or no effort to separate the problem into a number of parallel tasks
● Often no dependency (or communication) between parallel tasks

VS 
Distributed system
● Components are located on networked computers 
● Which communicate and coordinate their actions by passing messages

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Message_passing


NGS Hadoop today
● Hadoop bam (mapping utilities)

○ http://bioinformatics.oxfordjournals.org/content/28/6/876
● Solve bio 

○ http://techcrunch.com/2012/03/29/cloud-will-cure-cancer/
● Crossbow (mapping)

○ http://bowtie-bio.sourceforge.net/crossbow/index.shtml
● Cloudburst 

○ http://sourceforge.net/apps/mediawiki/cloudburst-bio/index.php?title=CloudBurst
● Eoulsan (RNAseq) 

○ http://transcriptome.ens.fr/eoulsan/
● Myrna (RNAseq gene expression) 

○ http://bowtie-bio.sourceforge.net/myrna/manual.shtml
● SeqPig (Hadoop Pig for processing sequences)

○ http://sourceforge.net/projects/seqpig/
● Next Bio + Intel!!

http://bioinformatics.oxfordjournals.org/content/28/6/876
http://bioinformatics.oxfordjournals.org/content/28/6/876
http://techcrunch.com/2012/03/29/cloud-will-cure-cancer/
http://techcrunch.com/2012/03/29/cloud-will-cure-cancer/
http://bowtie-bio.sourceforge.net/crossbow/index.shtml
http://bowtie-bio.sourceforge.net/crossbow/index.shtml
http://sourceforge.net/apps/mediawiki/cloudburst-bio/index.php?title=CloudBurst
http://sourceforge.net/apps/mediawiki/cloudburst-bio/index.php?title=CloudBurst
http://transcriptome.ens.fr/eoulsan/
http://transcriptome.ens.fr/eoulsan/
http://sourceforge.net/projects/seqpig/
http://sourceforge.net/projects/seqpig/


Coverage problem
● New sequencing platforms produce big data files with many (short) 

sequences
● The targeted sequencing gives as output many sequences inside the 

same small genomic regions
● Alignment

○  mapping sequences on a reference genome
● Coverage 

○ how deep is covered each genomic position in the experiment
○ base per base (one nucleotide at the time)
○ If coverage is too low (given a threshold) in one region we cannot 

use that region in our results



Coverage problem



SAM format
Example Header Lines
@HD VN:1.0 SO:coordinate
@SQ SN:1 LN:249250621 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:
1b22b98cdeb4a9304cb5d48026a85128
@SQ SN:2 LN:243199373 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:
a0d9851da00400dec1098a9255ac712e
@SQ SN:3 LN:198022430 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:
fdfd811849cc2fadebc929bb925902e5
@RG ID:UM0098:1 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L001 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743
@RG ID:UM0098:2 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L002 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743

Example Alignments
1:497:R:-272+13M17D24M 113 1 497 37 37M 15 100338662 0
CGGGTCTGACCTGAGGAGAACTGTGCTCCGCCTTCAG 0;==-==9;>>>>>=>>>>>>>>>>>=>>>>>>>>>> XT:A:U NM:i:0 SM:i:37 AM:i:0 X0:i:1
X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:37
19:20389:F:275+18M2D19M 99 1 17644 0 37M = 17919 314 TATGACTGCTAATAATACCTACACATGTTAGAACCAT
>>>>>>>>>>>>>>>>>>>><<>>><<>>4::>>:<9 RG:Z:UM0098:1 XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:4 X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:37
19:20389:F:275+18M2D19M 147 1 17919 0 18M2D19M = 17644 -314
GTAGTACCAACTGTAAGTCCTTATCTTCATACTTTGT ;44999;499<8<8<<<8<<><<<<><7<;<<<>><< XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:4 X1:i:0
XM:i:0 XO:i:1 XG:i:2 MD:Z:18^CA19
9:21597+10M2I25M:R:-209 83 1 21678 0 8M2I27M = 21469 -244
CACCACATCACATATACCAAGCCTGGCTGTGTCTTCT <;9<<5><<<<><<<>><<><>><9>><>>>9>>><> XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:5 X1:i:0
XM:i:0 XO:i:1 XG:i:2 MD:Z:35



NGS project
Write a python Hadoop job 
which calculates coverage from a SAM file 
for each available genomic position

Extra: count the single bases (A,C,T,G,N)



NGS project: skills
● What you need
a little python knowledge, linux experience, 
curiosity
● What you learn
python, Hadoop installation and 
comprehension, how to work on a real case 
scenario, bioinformatics problems



Thesis: working with us
Write a python Hadoop daemon to:
● distribute steps of bioinformatics pipeline 

○ of a real bioinformatic service
● while tuning available cloud resources 

○ based on OpenStack and Hadoop API



This is not the end...
...but the beginning!


