
Hadoop
Bioinformatics Big Data

Paolo D’Onorio De Meo p.donoriodemeo@cineca.it
Mattia D’Antonio m.dantonio@cineca.it

mailto:p.donoriodemeo@cineca.it
mailto:m.dantonio@cineca.it

Big Data
Too much information!

Big Data
● Explosive data growth

○ proliferation of data capture
○ interconnection = more data
○ inexpensive storage

● Not just the size of data
○ access all the data
○ increase retention
○ machine learning
○ data compression

Big Data
Where are you going?

Big Data main problem
Data analysis is slower than data creation

● Semi-structured data
○ looser
○ though there may be a schema, it is often ignored

● Why can’t we use databases to do large-
scale batch analysis?
○ seek time is improving slowly than transfer rate

Big Data

● HPC and Grid Computing
○ doing large-scale data processing for years:

■ APIs as Message Passing Interface (MPI)
■ distribute the work across a cluster of machines
■ access a shared filesystem (hosted by a SAN)

○ Works well for compute-intensive jobs
■ becomes a problem when nodes need to access

larger data volumes
■ the network bandwidth is the bottleneck

Old approach

Bandwidth
“bandwidth is the bottleneck and
compute nodes become idle”

● HPC and Grid can be overloaded
● Bandwidth solutions focus on obtaining

better performance for very fast workloads

Google approach

10 years ago: the famous MapReduce paper

MapReduce
● Batch query processor

○ ability to run an ad hoc queries against your whole dataset
○ get the results in a reasonable time

● Unstructured or semi-structured data
○ designed to interpret the data at processing time

MapReduce
BANDWIDTH

○ tries to collocate the data with the compute node
○ data access is fast since it is local

■ known as data locality
■ reason for its good performance.

Apache Hadoop
● Apache works on Lucene (2005)

○ Full-featured text search engine library
○ Indexing system from scratch
○ Decide to go with MapReduce
○ Splits into a new project Hadoop (2006)

● April 2008
○ Hadoop broke a world record to become the fastest

system to sort a terabyte of data

Apache Hadoop
● Open source platform

○ for data storage and processing
● Scalable
● Fault tolerant
● Distributed

HDFS
Hadoop File System
● Build to avoid transferring data over the network
● Hadoop works on input splits

○ Split time << job execution
○ Small splits

■ faster nodes consumes more splits and jobs than slowers ones
○ If too small overhead breaks performance
○ Fine tuning
○ Best split = HDFS size (64MB default)

● Hadoop needs topography
○ don’t distribute on different racks if not needed
○ Data locality optimization

MapReduce Hadoop jobs
● Single Job

○ Map tasks
■ build splits
■ local outputs

○ Reduce tasks
■ HDFS output

redundant

The hadoop framework
● Hadoop is written in Java
● Its main framework is Java-based
● Write code in many languages (e.g. Python).
● API to check cluster status and configuration

Hadoop: hands on
To work on any example, even the simplest, you clearly need a Hadoop Cluster.

Two ways of simulating a Hadoop
cluster on your local machine:

1. A pseudo distributed single-
node Hadoop cluster on
Linux/Ubuntu
2. A pre-configured virtual
machine

Hadoop: hands on
A python example
Why python?

● Not native
○ Which will help you to better understand the Hadoop

system
● Easy to write code for Mappers and Reducers

Hadoop: hands on
Files example (columns)

Stadium (String) - The name of the stadium
Capacity (Int) - The capacity of the stadium
ExpandedCapacity (Int) - The expanded capacity of the stadium
Location (String) - The location of the stadium
PlayingSurface (String) - The type of grass, etc that the stadium has
IsArtificial (Boolean) - Is the playing surface artificial
Team (String) - The name of the team that plays at the stadium
Opened (Int) - The year the stadium opened
WeatherStation (String) - The name of the weather station closest to
the stadium
RoofType (Possible Values:None,Retractable,Dome) - The type of roof in
the stadium
Elevation - The elevation of the stadium

Our question:
Find the number of
stadiums with
artificial and natural
playing surfaces

Python Mapper
(mapper.py) for line in sys.stdin:

 line = line.strip()
 stadium, capacity, expanded, location,
surface, turf, team, opened, weather,
roof, elevation = line.split(",")
 results = [turf, "1"]
 print("\t".join(results))

In the middle?
...
streaming...

TRUE 1
TRUE 1
TRUE 1
TRUE 1
FALSE 1
FALSE 1
FALSE 1

The reducer interface for streaming is
actually different than in Java. Instead of
receiving
reduce(k, Iterator[V])
your script is actually sent one line per
value, including the key.

Python Reducer
(reducer.py)

last_turf = None
turf_count = 0

for line in sys.stdin:
 line = line.strip()
 turf, count = line.split("\t")
 count = int(count)
 if not last_turf: # if this is the first iteration
 last_turf = turf
 if turf == last_turf: # if they're the same, log it
 turf_count += count
 else: # state change
 result = [last_turf, turf_count]
 print("\t".join(str(v) for v in result))
 last_turf = turf
 turf_count = 1

#catch the final counts after all records have been received.
print("\t".join(str(v) for v in [last_turf, turf_count]))

Testing on Hadoop
$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-
streaming-2.0.0-mr1-cdh4.4.0.jar \
 -mapper mapper.py \
 -reducer reducer.py \
 -input nfldata/stadiums \
 -output nfldata/pythonoutput \
 -file simple/mapper.py \
 -file simple/reducer.py

...twiddle thumbs for a while

$ hadoop fs -text nfldata/pythonoutput/part-*
FALSE 15
TRUE 17

Test… on a laptop
Testing the same code as a bash pipe

$ cat ~/workspace/nfldata/unixstadiums.csv | simple/mapper.py | sort | simple/reducer.
py

FALSE 15
TRUE 17

Jobtracker
Hadoop web-dashboard:
Status and statistics of job
executed on our Hadoop cluster

A new cluster prototype
Working @CINECA
● Cloud
● Virtual nodes
● Virtual networks
● Virtual FS
● OpenStack
● Hadoop

NGS and bioinformatics
● Next Generation Sequencing = NGS

○ new platforms
○ high throughput

● Many analysis application
● New algorithms & codes and challenges
● Small costs!
● Producing Big Data

Why NGS fits Hadoop
Embarassingly parallel
● Little or no effort to separate the problem into a number of parallel tasks
● Often no dependency (or communication) between parallel tasks

VS
Distributed system
● Components are located on networked computers
● Which communicate and coordinate their actions by passing messages

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Message_passing

NGS Hadoop today
● Hadoop bam (mapping utilities)

○ http://bioinformatics.oxfordjournals.org/content/28/6/876
● Solve bio

○ http://techcrunch.com/2012/03/29/cloud-will-cure-cancer/
● Crossbow (mapping)

○ http://bowtie-bio.sourceforge.net/crossbow/index.shtml
● Cloudburst

○ http://sourceforge.net/apps/mediawiki/cloudburst-bio/index.php?title=CloudBurst
● Eoulsan (RNAseq)

○ http://transcriptome.ens.fr/eoulsan/
● Myrna (RNAseq gene expression)

○ http://bowtie-bio.sourceforge.net/myrna/manual.shtml
● SeqPig (Hadoop Pig for processing sequences)

○ http://sourceforge.net/projects/seqpig/
● Next Bio + Intel!!

http://bioinformatics.oxfordjournals.org/content/28/6/876
http://bioinformatics.oxfordjournals.org/content/28/6/876
http://techcrunch.com/2012/03/29/cloud-will-cure-cancer/
http://techcrunch.com/2012/03/29/cloud-will-cure-cancer/
http://bowtie-bio.sourceforge.net/crossbow/index.shtml
http://bowtie-bio.sourceforge.net/crossbow/index.shtml
http://sourceforge.net/apps/mediawiki/cloudburst-bio/index.php?title=CloudBurst
http://sourceforge.net/apps/mediawiki/cloudburst-bio/index.php?title=CloudBurst
http://transcriptome.ens.fr/eoulsan/
http://transcriptome.ens.fr/eoulsan/
http://sourceforge.net/projects/seqpig/
http://sourceforge.net/projects/seqpig/

Coverage problem
● New sequencing platforms produce big data files with many (short)

sequences
● The targeted sequencing gives as output many sequences inside the

same small genomic regions
● Alignment

○ mapping sequences on a reference genome
● Coverage

○ how deep is covered each genomic position in the experiment
○ base per base (one nucleotide at the time)
○ If coverage is too low (given a threshold) in one region we cannot

use that region in our results

Coverage problem

SAM format
Example Header Lines
@HD VN:1.0 SO:coordinate
@SQ SN:1 LN:249250621 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:
1b22b98cdeb4a9304cb5d48026a85128
@SQ SN:2 LN:243199373 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:
a0d9851da00400dec1098a9255ac712e
@SQ SN:3 LN:198022430 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:
fdfd811849cc2fadebc929bb925902e5
@RG ID:UM0098:1 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L001 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743
@RG ID:UM0098:2 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L002 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743

Example Alignments
1:497:R:-272+13M17D24M 113 1 497 37 37M 15 100338662 0
CGGGTCTGACCTGAGGAGAACTGTGCTCCGCCTTCAG 0;==-==9;>>>>>=>>>>>>>>>>>=>>>>>>>>>> XT:A:U NM:i:0 SM:i:37 AM:i:0 X0:i:1
X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:37
19:20389:F:275+18M2D19M 99 1 17644 0 37M = 17919 314 TATGACTGCTAATAATACCTACACATGTTAGAACCAT
>>>>>>>>>>>>>>>>>>>><<>>><<>>4::>>:<9 RG:Z:UM0098:1 XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:4 X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:37
19:20389:F:275+18M2D19M 147 1 17919 0 18M2D19M = 17644 -314
GTAGTACCAACTGTAAGTCCTTATCTTCATACTTTGT ;44999;499<8<8<<<8<<><<<<><7<;<<<>><< XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:4 X1:i:0
XM:i:0 XO:i:1 XG:i:2 MD:Z:18^CA19
9:21597+10M2I25M:R:-209 83 1 21678 0 8M2I27M = 21469 -244
CACCACATCACATATACCAAGCCTGGCTGTGTCTTCT <;9<<5><<<<><<<>><<><>><9>><>>>9>>><> XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:5 X1:i:0
XM:i:0 XO:i:1 XG:i:2 MD:Z:35

NGS project
Write a python Hadoop job
which calculates coverage from a SAM file
for each available genomic position

Extra: count the single bases (A,C,T,G,N)

NGS project: skills
● What you need
a little python knowledge, linux experience,
curiosity
● What you learn
python, Hadoop installation and
comprehension, how to work on a real case
scenario, bioinformatics problems

Thesis: working with us
Write a python Hadoop daemon to:
● distribute steps of bioinformatics pipeline

○ of a real bioinformatic service
● while tuning available cloud resources

○ based on OpenStack and Hadoop API

This is not the end...
...but the beginning!

