
Part IV
Appendices



A

The treatment of sparse matrices

This appendix is intended to readers interested in the numerical implemen-
tation of the methods discussed in the book. It aims to review how matrices
originating from the discretization of a differential problem by the finite ele-
ment method (or finite volumes/differences) can be handled by a computer
program. Indeed, in real life computations the discretization of PDEs by any
of the cited methods leads to the solution of large systems of linear equations
whose matrix is sparse. And the efficient storage of sparse matrices requires
to adopt special techniques.
We will also recall some practical strategies for dealing with Dirichlet-type

conditions in finite element codes.
As far as numerical techniques for solving linear systems are concerned,

the reader may refer to the vast literature on the matter, for instance [GV96,
QSS00, Saa03, Sha08].
A matrix is sparse if it “contains a large number of zeros”. Better said, if the
number of non-null entries (also called non-zeros) is O(n). This means that
the average number of non-zero entries in each row is bounded independently
from n. Indeed, what is important is that the location of the zero elements
is known a-priori, so we can avoid reserving storage for them. A non-sparse
matrix is also said full : obviously here the number of non-zero elements is
O(n2).

A.1 Storing techniques for sparse matrices

The distribution of non-zero elements of a sparse matrix may be described
by the sparsity pattern, defined as the set {(i, j) : Aij �= 0}. Alternatively,
one may consider the matrix graph, where nodes i and j are connected by
an edge if and only if Aij �= 0.
A representation of the pattern can be obtained through the MATLAB

command spy (see Fig. A.1 for an example). The sparsity of a finite element
matrix is a direct consequence of the small-support property of the finite

Formaggia L., Saleri F.,Veneziani A.: Solving Numerical PDEs: Problems,Applications,
Exercises. DOI 10.1007/978-88-470-2412-0_A, © Springer-Verlag Italia 2012



396 A The treatment of sparse matrices

element basis functions. Thus, the sparsity pattern depends on the topology
of the adopted computational grid, on the kind of finite element chosen and
on the indexing of the nodes. It is completely known before the actual con-
struction of the matrix. Therefore, the matrix can be stored efficiently by
excluding the terms that are a-priori zero.
The use of adequate storage techniques for sparse matrices is fundamen-

tal, especially when dealing with large-scale problems typical of industrial
applications. Let us make an example. Suppose we want to solve the Navier-
Stokes equations on a two-dimensional grid formed by 10.000 vertexes with
finite elements P2-P1(and this is a rather small problem!). By using the re-
sults of Exercise 2.2.4 and the relations of (2.10) we deduce that the number
of degrees of freedom is around 105 for the pressure and 4 × 105 for each
component of the velocity. The associated matrix will then be 90000×90000.
If we had to store all 8.1×109 coefficients, using the usual double precision (8
bytes to represent each floating point number), around 60 Gigabytes would
be necessary! This is too much even for a very large computer. Modern op-
erative systems are able to employ areas larger than the available RAM by
using the technique of virtual memory (also known as “paging”), which saves
part of the data on a mass storage device (typically the hard disc). However,
this does not solve our problem because paging is extremely inefficient.
In case of a three-dimensional problem the situation becomes even worse,
since the number of degrees of freedom grows very rapidly as the grid gets
finer, and nowadays it is customary to deal with millions of degrees of free-
dom.
Therefore to store sparse matrices efficiently we need data formats that

are more compact than the classical table (array). The adoption of sparse
formats, though, may affect the speed of certain operations. Indeed with
these formats we cannot access or search for a particular element (or group
of elements) directly, as happens with array, where the choice of two indexes i
and j allows to determine directly where in the memory the wanted coefficient
Aij is located1.
On the other hand, even if the operation of accessing an entry of a matrix

in sparse format (like a matrix-vector multiplication) turns out to be less
efficient, by adopting a sparse format we will nevertheless access only non-
zero elements, thus eschewing futile operations. That is why, in general, the
sparse format is preferable in terms of computing time as well, as long as the
matrix is sufficiently sparse (and this is usually the case for finite element,
finite volume and finite difference descretizations).

1 The efficiency in accessing and browsing an array actually depends on the way the
matrix is organized in the computer memory and on the operating system’s ability to use
the processor’s cache memory proficiently. To go into details is beyond the scope of the
present book, but the interested reader may refer to [HVZ01], for example.



A.1 Storing techniques for sparse matrices 397

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

x 10
4

nz = 410752

Fig. A.1 Sparsity pattern for the matrix of a finite-element discretization of a vectorial
problem in three dimensions. The number of elements is around 9 × 108, of which only
about 4.2× 104 non-zero. The pattern was obtained with MATLAB’s spy command

We can distinguish different kinds of operations on a matrix, the most
important ones being:

1. accessing a generic element : this is sometimes called “random access”;
2. accessing the elements of a whole row : important when multiplying a ma-
trix by a vector;

3. accessing the elements of a whole column, or equivalently, of a row in the
transpose matrix. This is relevant for operations such as symmetrizing the
matrix after imposing Dirichlet conditions, as we will see in Section A.2;

4. adding a new element to the matrix pattern: this is no major issue if one
builds the pattern at the beginning, and does not change it during the
computations. It becomes critical if the pattern is not known beforehand
or it can change throughout the computations. This happens for instance
with grid adaptation techniques.

It is important to characterize formats for sparse matrices by the compu-
tational cost of these operations and by how the latter depends on the matrix
size. That different formats exist for sparse matrices is due, historical reasons
aside, precisely to the fact that there is no format that is simultaneously op-
timal for all above operations, and be at the same time efficient in terms of
storage capacity.
In the sequel we will review the most common formats, including those

used by MATLAB, FreeFem and some important linear algebra libraries,



398 A The treatment of sparse matrices

like Sparsekit [Saa90], PetSC [BBG+01], UMFPACK [DD97, Dav04] or
AztecOO [HBH+05, Her04]. For completeness, we also mention a document
describing the Harwell-Boeing format [DGL92]. This is not so much a
format for storage on a computer, but rather one meant for writing and
reading sparse matrices on files. The reader interested in software and tools for
operating on large matrices and related examples and bibliography may refer
to the Matrix Market web site (http://math.nist.gov/MatrixMarket).
We have to remark that square matrices generated by finite-element codes

have certain fixed features “by construction”:

1. even if the matrix is not symmetric, its sparsity pattern is. This is because
an element Aij is in the pattern if the intersection of the support of the
basis functions associated to nodes i and j has a non-zero measure. And
this is obviously a symmetric property;

2. diagonal elements are in most of the cases non-zero, so we can assume
they belong to the pattern.

In fact, in a finite element matrix (i, j) belongs to the pattern if nodes i and j
share a common element. Note that by using this definition it is possible that
we allocate storage for elements which may eventually be zero: we exclude
only elements which are a-priori zero. We also have to point out that not
always the matrices of concern are square: think of the matrices D and DT

of Chapter 7. Some of the formats we will describe are suitable only for the
square case, and cannot be employed in general.
As reference example we will consider the matrix that might have arisen

using linear finite elements on the grid of Fig. A.2, left. The pattern of this
matrix is shown on the right. In particular, the matrix A in “full” format

321

4 5 6

7 98

10 11 12

0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 58

Fig. A.2 Example of grid with linear finite elements and pattern of the associated matrix.
Note that the pattern depends on the numeration chosen for the notes



A.1 Storing techniques for sparse matrices 399

(array) could be

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

101. 102. 0. 103. 0. 0. 0. 0. 0 0. 0. 0.
104. 105. 106. 107. 108. 0. 0. 0. 0. 0. 0. 0.
0. 109. 110. 0. 111. 112. 0. 0. 0. 0. 0. 0.

113. 114. 0. 115. 116. 0. 117. 0. 0. 0. 0. 0.
0. 118. 119. 120. 121. 122. 123. 124. 0. 0. 0. 0.
0. 0. 125. 0. 126. 127. 0. 128. 129. 0. 0. 0.
0. 0. 0. 130. 131. 0. 132. 133. 0. 134. 0. 0.
0. 0. 0. 0. 135. 136. 137. 138. 139. 140. 141. 0.
0. 0. 0. 0. 0. 142. 0 143. 144. 0 145. 146.
0. 0. 0. 0. 0. 0. 147. 148. 0. 149. 150. 0.
0. 0. 0. 0. 0. 0. 0. 151. 152. 153. 154. 155.
0. 0. 0. 0. 0. 0. 0. 0. 156. 0 157. 158.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

where the values of the matrix elements are not relevant for this discussion,
and indeed they have been just made up to allow to identify them easily.
In the sequel n will always be the matrix’ size, nz the number of non-zero

entries. Moreover, we will adopt the convention of indexing entries of matrices
and vectors (arrays) starting2 from 1. To estimate how much memory the
matrix occupies we have assumed an integer occupies 4 bytes, and a real
number (floating point representation) 8 bytes (double precision)3. Hence
storing the matrix of Fig. A.1, which has n = 12 and nz = 58, would require
12 × 12 × 8 = 1152 bytes if stored as an array. At last, Aij will denote the
entry of the matrix A on row i and column j.

A.1.1 The COO format

The format by coordinates, (COOrdinate format) is conceptually the sim-
plest, even though it is poorly efficient in terms of both memory space and
access to a generic element.
This format uses three arrays which we denote I, J and A. The first two

describe the pattern: precisely, in the generic kth place of I and J we store
the row and column indexes of the coefficient whose value is stored at the
same position in A. Hence I, J and A all have as many elements as the number
of non-zero elements nz.

2 Some programming languages (e.g., C and C++) number arrays from 0, so to use this
convention it suffices to subtract 1 from our indexes.
3 On a 64 bit architecture also the integers may use up 8 bytes.



400 A The treatment of sparse matrices

In this way the space occupied is (4 + 4 + 8)× nz bytes. For the matrix A
in (A.1), a possible coding in COO format reads

I = [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11,
11, 12, 12, 12 ]

J = [1, 2, 4, 1, 2, 3, 4, 5, 2, 3, 5, 6, 1, 2, 4, 5, 7, 2, 3, 4, 5, 6, 7, 8, 3, 5, 6, 8, 9, 4,
5, 7, 8, 10, 5, 6, 7, 8, 9, 10, 11, 6, 8, 9, 11, 12, 7, 8, 10, 11, 8, 9, 10, 11, 12,
9, 11, 12]

A = [101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113.,
114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126.,
127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138., 139.,
140., 141., 142., 143., 144., 145., 146., 147., 148., 149., 150., 151., 152.,

153., 154., 155., 156., 157., 158.] ,

(A.2)

requiring 928 bytes. Clearly, the three arrays can contain the same elements in
different order. This format does not guarantee rapid access to an element, nor
to rows or columns. Finding the generic element of the matrix from the row
and column indexes normally requires a number of operations proportional
to nz. In fact, it is necessary to go through all elements of I and J until
one hits those indexes, using expensive comparison operations. There is a
way, though at a higher storing price, to use specific techniques to store the
indexes in special search data structure, and reduce the cost to O(log2(nz)).
The operation of multiplying a matrix and a vector can be done directly,

by running through the elements of the three arrays. We show a possible code
for the product y = Ax using the MATLAB syntax4

y=zeros(nz,1);
for k=1:nz
i=I(k); j=J(k);
y(i)=y(i) + A(k)*x(j);
end

The additional cost of this operation, compared to the analogue for a full
matrix, depends essentially on indirect addressing : accessing y(i) requires
first of all to access I(k). Furthermore, the access and update of the arrays
x and y does not proceed by consecutive elements, a fact that would greatly
reduce the possibility of optimizing the use of the processor’s cache. Recall,
however, that now we operate only on non-zero elements, and that, in general,
nz << n2.
An advantage of this format is that it is easy to add a new element to the

matrix. In fact, it is enough to add a new entry to the arrays I, J and A. That

4 We use MATLAB syntax for simplicity, yet normally these operations are coded in a
compiled language, like C of FORTRAN, for efficiency reasons.



A.1 Storing techniques for sparse matrices 401

is why COO is often used when the pattern is not known a priori. Obviously,
to do so, it is necessary to handle memory allocation in a suitable dynamical
way.
A generalization of the COO format uses an associative array or a hash ta-

ble to construct the map (i, j) → Aij . In the C++ language, for instance, one
may adopt the map container of the standard library for this purpose [SS03].
In some linear algebra packages, like Eigen (xxx.eigen.org) or Aztecoo for
instance, it is possible to build a sparse matrix dynamically, and in this case
a “COO-type” format is used internally. When one knows that the pattern
will not change anymore, the matrix can be “finalized” with a conversion to
a more efficient, yet more static, format.

A.1.2 The skyline format

The format called skyline was among the first used to store matrices aris-
ing from the method of finite elements. The idea, schematically depicted in
Fig. A.3, left, is to store the blue area formed, on each row, by the elements
between the first and last non-zero coefficient. It is clear that this forces to
store some null entries, in general. This extra cost will be small if the matrix
has non-zero entries clustered around the diagonal. Indeed, algorithm have
been developed, the most known one being probably the Cuthill-McKee al-
gorithm, to cluster non zero elements by permuting the rows and columns of
the matrix, see [Saa03] for details,
We will explain how this format applies to symmetric matrices, and then

generalize it.

Fig. A.3 Skyline of a matrix (right). On the left, the decomposition in lower triangular,
diagonal and upper triangular parts



402 A The treatment of sparse matrices

Skyline for symmetric matrices. If a matrix is symmetric we can store
only its lower triangular part (diagonal included). Or we can store the diag-
onal on an auxiliary array and treat the off-diagonal entries separately. The
latter choice has the advantage of allowing the direct access to the diagonal
elements. If we opt for this solution, the skyline format is given by three
arrays, D, I and AL. In D we store diagonal entries, in AL all skyline elements
in succession and row-wise (except the diagonal), i.e. the light-coloured area.
This can clearly include null coefficients. The kth component of the array
I tells (technically, “points to”) where the (k + 1)th row of AL begins: all
elements of AL from position I(k) to I(k+1)-1 are the off-diagonal elements
belonging to row k + 1, in increasing column order. In this way the first row
is not stored, since it only has the diagonal element, I(k) points to the first
non-zero element on the (k+1)th row, I(k+1)-1 points to the element Ak+1,k,
and the difference I(k+1)- I(k) tells how many off-diagonal elements on row
k + 1 belong to the skyline. A quick computation allows to verify that the
first non-zero element on row k > 1 is the one on column k-I(k) - I(k-1).
Supposing, for example, we wish to store the symmetric matrix constructed

from the lower triangular part in A as of (A.1), corresponding to the Matlab
instructions tril(A)+tril(A,-1)’. Then

D = [101., 105., 110., 115., 121., 127., 132., 138., 144., 149., 154., 158.]

I = [1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

AL = [104., 109., 113., 114., 0., 118., 119., 120., 125., 0., 126., 130., 131., 0.,
135., 136., 137., 142., 0., 143., 147., 148., 0., 151., 152., 153., 156., 0., 157.] .

Note that in the nth place of the array I we have left a pointer at the
beginning of an hypothetical second row. In this way I(n) −1 is the total
number of elements in the skyline. Moreover, we can compute the number of
skyline elements using I(n) − I(n-1), for the last row as well. The product
y = Ax is computed as follows (MATLAB syntax),

y=D.*x;
for k=2:n
nex = I(k)-I(k-1);
ik = I(k-1):I(k)-1;
jcol= k-nex:k-1;
y(k) = y(k)+dot(AL(ik),x(jcol));
y(jcol)= y(jcol)+AL(ik)*x(k);
end

Observe the need to operate symmetrically on rows and columns to exploit
the fact that only the lower triangular part was stored in AL.
As said, the memory needed to store the matrix in this format, depends on

how effectively the skyline reproduces the actual pattern. In the case under
scrutiny the array AL contains 29 real numbers, to which we add the fixed



A.1 Storing techniques for sparse matrices 403

length n of the arrays D and I, in our case 12. The first has real numbers, the
second integers, so storing our matrix requires 376 bytes. A direct compari-
son with the COO format is not possible as in the previous section’s example
the matrix was non-symmetric. One can exploit the possible symmetry also
with COO by storing only the lower triangular part (the multiplication al-
gorithm between matrix and vector changes accordingly). In this case, with
COO we would store 35 coefficients and use 560 bytes. So skyline apparently
looks more convenient: but if the coefficients are not well clustered around
the diagonal the memory space used by skyline would increase quickly as n
increases.

Skyline for general matrices. As with non-symmetric matrices in the
general case, a reasonable way to proceed is to split A into the diagonal D, the
strictly lower triangular part E and strictly upper triangular part F . Using
the Matlab syntax, these matrices would be defined as D=diag(diag(A));
E=tril(A,-1); F=triu(A,1). As the pattern of A is symmetric, the skyline
of E coincides with that of FT , hence we will store E and FT (and D) with the
previous technique. In this way there is no need to duplicate the array I, this
being the same for both triangular parts. Therefore we can use two arrays of
length n, still denoted D and I, and two real-valued arrays of length equal to
the skyline dimension, called E and FT (containing E and FT respectively).
In the example, this would necessitate of 608 bytes.

D = [101., 105., 110., 115., 121., 127., 132., 138., 144., 149., 154., 158.] ,

I = [1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30] ,

E = [104., 109., 113., 114., 0., 118., 119., 120., 125., 0., 126., 130., 131., 0.,
135., 136., 137., 142., 0., 143., 147., 148., 0., 151., 152., 153., 156., 0., 157.] ,

FT = [102., 106., 0., 107., 103., 116., 111., 108., 122., 0., 112., 0., 123., 117.,
133., 128., 124., 139., 0., 129., 0., 140., 134., 150., 145., 141., 155., 0., 146.] .

The product matrix-vector y = Ax now reads

y=D.*x;
for k=2:n
nex = I(k)-I(k-1);
ik = I(k-1):I(k)-1;
jcol = k-nex:k-1;
y(k) = y(k)+dot(E(ik),x(jcol));
y(jcol)= y(jcol)+FT(ik)*x(k);
end

We should observe that in this format the access to diagonal entries is
direct, and the cost of extracting a row is independent of the matrix’ size.



404 A The treatment of sparse matrices

Indeed, the fact that the data relative to a row are stored consecutively in the
memory allows the system to optimize the processor’s cache memory when
multiplying a matrix by a vector. In the example above icol and ik contain
all indexes corresponding to the columns of row k, so the scalar product
dot(E(ik),x(jcol)) and the multiplication vector-constant FT(ik)*x(k)
can be optimized5.
The extraction of column is, vice versa, an expensive operation that re-

quires many comparisons, and whose cost grows linearly in n.
Being able to access diagonal entries directly has certain advantages. For

instance we will see that methods to impose essential boundary condition
based on penalization (Section A.2.2) only need the access to diagonal ele-
ments.

A.1.3 The CSR format

The problem with the skyline format is that the memory used depends on the
numeration of elements and is in general impossible to avoid the unnecessary
storage of zero elements. Renumeration algorithm may be very inefficients
for large scale problems.
For these reasons other formats have been developed that render memory

space independent of the numeration of degrees of freedom. The format CSR
(Compressed Sparse Row) is one of them, and can be seen as a compressed
version of COO that renders it more efficient, but also as an improved skyline,
that stores non-zero elements only. The format uses three arrays:

1. The real-valued array A of length nz, containing the non-zero entries of
the matrix, ordered row-wise: in the example it coincides with the array
A written in (A.2).

2. The integer-valued array J of length nz, whose entry J(k) indicates the
column of the element A(k). In our case it coincides with the J in (A.2).

3. The array I of length n containing “pointers” to the rows. Essentially,
I(k) gives the position where the kth row in A and J begins, as shown in
Fig. A.4.

In many practical applications, the array I is of length n + 1 so that the
number of non-zero entries on row k is always I(k+1)-1-I(k). To make
this hold the last element I(n+1) will contain nz + 1 and in this way we
also have that nz=I(n+1)-I(1). The format CSR stores the matrix using
4× (nz + n+ 1) + 8× nz bytes. For the example we have

I = [1, 4, 9, 13, 18, 25, 30, 35, 42, 47, 51, 56, 59] (A.3)

while J and A are the same as in (A.2). Notice again that this particular fact
is not general. With COO the order of the indexes in I, J can be arbitrary.

5 These operations are contained in the library BLAS (Basic Linear Algebra Subroutines),
which furnishes highly optimized functions for some elementary matrix operations.



A.1 Storing techniques for sparse matrices 405

Fig. A.4 The format CSR. The picture refers to the numerical example discussed in the
text. In CSR the elements of I point to J and A, respectively telling where the column
indexes and the values of a given row begin

The memory space required for the example is of 748 bytes. However, the
gain in storage requirement with this format becomes more evident with
large sparse matrices.
This format suits square and rectangular matrices alike, and allows a quick

extraction the i-th row: it is sufficient to consider the elements of A lying
between I(i) and I(i+1)-1. Less immediate is column extraction, which
requires localizing on each row the values of J corresponding to the wanted
column. If we adopt no particular ordering, the operation has a cost propor-
tionate to nz. If, instead, column indexes of each row in J are ordered, e.g.
in increasing order as in our example, with a binary-search algorithm the
extraction cost for a column lowers; more precisely, it becomes proportional
to n log2(m), where m is the mean number of elements on each row. Anal-
ogously, the access to a generic element has normally a cost proportional to
m, yet if we order columns it reduces to log2m.
A further variant is to store in the first element of the part of J correspond-

ing to a given row the index of the diagonal element. In this way A(I(k))
provides the coefficient Akk directly.
The matrix-vector product y = Ax is given by

y=zeros(n,1);
% y=A(I(1:n)).*x if the diagonal is stored first
for k=1:n
ik=I(k):I(k+1)-1;
% ik=I(k)+1:I(k+1)-1; if the diagonal is stored
% first
jcol =J(ik); y(k)=y(k)+dot(A(ik),x(jcol));
end

A.1.4 The CSC format

Evidently, there is a corresponding format CSC (Compressed Sparse Column)
that stores matrices by ordering them column-wise, so it is easy to extract a
column as opposed to rows. Here the roles of vectors I and J is exchanged



406 A The treatment of sparse matrices

compared with the CSR format. It is the format preferred, for instance, by
the UMFPACK library.
When performing matrix-times-vector operations with a sparse matrix or-

dered by columns it is preferable to compute the result as a linear combination
of the columns of the matrix. Indeed, if ci indicates the i-th column of matrix
A we have that Ax =

∑
i xici. Therefore, the matrix-vector product y = Ax

on a CSC matrix may be computed as

y=zeros(n,1);
for k=1:n
xcoeff=x(k);
jk=I(k):I(k+1)-1;
ik=J(jk);
y(ik)=y(ik) + xcoeff * A(jk)’;

end

A.1.5 The MSR format

The format MSR (Modified Sparse Row) is a special version of CSR for square
matrices whose diagonal elements are always contained in the pattern (as
it happens in general for matrices generated by finite elements). Diagonal
entries can be stored in one single array, since their indexes are implicitly
known from their position in the array. As for the symmetric skyline, only
off-diagonal elements are stored in a special fashion, i.e. through a format
akin to CSR.
In practice one uses two arrays, which we call V (Values) and B (Bind). In

the first n entries of V we store the diagonal. The place n+1 in V is left with no
significant value (the reason will become clear later). From place n+2 onwards
off-diagonal elements are stored, row-wise. Hence V has length nz + 1. The
array B has the same length as V: from n+2 to nz+1 are the column indexes
of the elements stored in the corresponding places in V; the first n+ 1 point
to where rows begin in subsequent positions. Therefore B(k), 1 ≤ k ≤ n,
contains the position within the same array B, and correspondingly in V,
where the kth row begins to be stored (Fig. A.5, top). More exactly, column
indexes of non-zero coefficients of row k will be stored between B(B(k)) and
B(B(k+1))-1, while the corresponding values ranges between V(B(k)) and
V(B(k+1))-1. The element B(n+1) plays the same role of I(n+1) in the
format CSR: it points to a hypothetical row n+1. In this way nz=B(n+1)-1.
The reason for sacrificing the element V(n+1) is now clear: one wants to set
up an exact correspondence between the elements of V and B, starting from
element n+ 2 till the last. The space needed is 12× (nz + 1) bytes.



A.1 Storing techniques for sparse matrices 407

Concerning the example, the coding MSR reads as follows (the unused
element in V is marked with ∗)

B = [14, 16, 20, 23, 27, 33, 37, 41, 47, 51, 54, 58, 60,
2, 4, 1, 3, 4, 5, 2, 5, 6, 1, 2, 5, 7, 2, 3, 4, 6, 7, 8, 3, 5, 8, 9, 4, 5, 8, 10,

5, 6, 7, 9, 10, 11, 6, 8, 11, 12, 7, 8, 11, 8, 9, 10, 12, 9, 11 ] ,

V = [101., 105., 110., 115., 121., 127., 132., 138., 144., 149., 154., 158., ∗,
102., 103., 104., 106., 107., 108., 109., 111., 112., 113., 114., 116., 117.,
118., 119., 120., 122., 123., 124., 125., 126., 128., 129., 130., 131., 133.,
134., 135., 136., 137., 139., 140., 141., 142., 143., 145., 146., 147., 148.,
150., 151., 152., 153., 155., 156., 157.]

which occupies 708 bytes.
The format MSR turns out to be very efficient in memory terms. It is one

of the most “compact” formats for sparse matrices, reason for which it is used
in several linear algebra libraries dealing with large problems. As already
mentioned, the drawback is that it only applies to square matrices.
The product matrix-vector is coded as

y=V(1:n).*x;
for k=1:n
ik=B(k):B(k+1)-1;
jcol =B(ik);
y(k)=y(k)+dot(A(ik),x(jcol));
end

As for computational efficiency, its features are similar to those of CSR:
whereas accessing rows is easy, extracting a column is more expensive an
operation, for it requires finding the column index in the array B. Here, too,
the cost of an extraction can be reduced to being proportional to n log2m
by ordering the columns corresponding to each row and adopting a binary
search algorithm (m is still the mean number of columns per row).
We present in the sequel a non-standard variant (that actually works for

CSR as well), based on adding a third array that allows to access columns
in a time lapse that is independent of the sparse matrix size and without a
search on indexes (and hence without conditional branches).

A non-standard modification of MSR. The modification presented here
has been adopted by the serial version of the finite-element library lifev
([lif10]), and exploits the fact that matrices coming from the finite-element
method have a symmetric pattern. This means that if we run through off-
diagonal elements on row k and detect that the coefficient Akl is the pattern
(i.e. is non zero), the pattern will also contain Alk, in row l. If the posi-
tion of Alk in B (and V) is stored in a “twin” array of the part of B from
n + 2 to nz + 1, then we have a structure yielding the elements of a given
column. Let us call this array CB (Column Bind): to extract the column in-



408 A The treatment of sparse matrices

Diagonal

Unused entry

B

V

B

V

CB

Fig. A.5 Above, the format MSR. The first components of B point (solid arrows) to
column indexes contained in the second part of B, which in turn correspond to the array
V (dashed arrows). Below: the modified MSR format: the array CB comes (dash-dotted
arrows) from the first n elements of B. The elements of CB point to the elements of V
belonging to a given column. For example, solid arrows denote in V the elements relative
to the third column. The respective row indexes of these elements are located in the area
corresponding to the second section of B (curved arrow). The elements of the third column
are therefore the targets of the arrows, apart the one on the diagonal (which is highlighted
in the first section of V)

dexed k it is enough to read the elements of CB between B(k)-(n+1) and
B(k+1)-1-(n+1) (subtracting n + 1 shifts indexes, from those to which B
points in V to those in CB). These elements point to the positions of B and
V where one can find the corresponding row indexes and the matrix values,
respectively.
Basically, the first positions of B point to CB, which in turn points to the off-

diagonal entries in B and V (Fig. A.5 bottom). This double-pointing system,
though burdensome, allows to access the column of a sparse matrix at a
cost that is independent of nz and without demanding conditional branches,
provided it is programmed properly.



A.2 Imposing essential boundary conditions 409

The structure CB in our case is

CB = [16, 23, 14, 20, 24, 27, 17, 28, 33, 15, 18, 29, 37, 19, 21, 25, 34, 38, 41,
22, 30, 42, 47, 26, 31, 43, 51, 32, 35, 40, 48, 52, 54, 36, 44, 55, 58, 39,
45, 56, 46, 49, 53, 59, 50, 57 ] .

The array B tells us that to extract the elements of the third column, say,
we should find the pointers to the column elements in the positions between
B(3)-(n+1)=20-13=7 and B(4)-1-(n+1)=22-13=9 in CB (n + 1 = 13 is the
shift). At these places we read 17, 28, 33 corresponding to the positions in
V of 106.,119.,125., that are precisely the off-diagonal elements of column
number three.
Compared to MSR, the modified format requires storing nz−n additional

integers (the number of non-zero off-diagonal entries), so the memory is now
12× (nz + 1) + 4× (nz − n) bytes.
Again, the advantage of this sparse storage becomes important for larger

sparse matrices, as the reader may verify easily.

A.2 Imposing essential boundary conditions

The demand for efficient storage of sparse matrices must come to terms with
the need of accessing and manipulating the matrix itself. These operations
are especially important to impose Dirichlet-type (essential) boundary condi-
tions. In a finite-element code, in fact, the stiffness matrix is often generated
ignoring essential boundary conditions, which are then introduced by mod-
ifying the algebraic system suitably. This happens because the assembling
operation is characterized by several cycles in which it would not be efficient
to introduce tests on the nature of a degree of freedom (whether boundary
or not) and on the type of associated boundary condition.
Henceforth we shall denote by Ã and b̃ the matrix and the source term

before the essential boundary conditions are imposed.

A.2.1 Elimination of essential degrees of freedom

The way to impose Dirichlet conditions that is “closest to the theory” con-
sists in eliminating freedom degrees corresponding to the nodes where the
conditions should apply, since there the solution is known.
If kD is the generic index of a Dirichlet node and gkD the (known) value

of uh at the node, eliminating the degree of freedom means that:

1. The columns of index kD of Ã are erased, correcting the right-hand side.
Better said, the rows of index knD �= kD are “shortened” by eliminating
all non-zero coefficients AknDkD , used to update the right-hand side to
b̃knD = b̃knD − AknDkDgkD . Therefore the columns corresponding to the
Dirichlet nodes are truly eliminated from Ã.



410 A The treatment of sparse matrices

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 17025
0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 6299

Fig. A.6 Elimination of Dirichlet freedom degrees on a 3D cube (from a real case). The
matrix before the boundary conditions (left), and afterwards (right)

2. The rows of index kD in the matrix and right-hand side are erased from
the system, eventually producing a square matrix A and a source b with
size equal to the problem’s effective number of freedom degrees.

Operation 1 coincides actually with lifting the boundary datum, cf. the dis-
cussion of Chapter 3.
The only advantage of this procedure is that we eventually have to solve a

system with just the “true” unknowns of our problem. However is has many
practical downsides. First, the complexity of the implementation, since in
general the numbering of the Dirichlet nodes is arbitrary. Furthermore, it
alters the pattern, which could be inconvenient in case we wanted to share it
between several matrices to save memory space. This happens if the problem
has several unknowns, each with its own boundary condition. Eventually,
considering that normally one requires to have the solution at all nodes with
the original numbering for post-processing, one must store the array that
allows to recover it.

A.2.2 Penalization technique

If one rates techniques on how involved their programming is, at the opposite
end of the scale to the above is the so-called node-based penalization. The
basic idea is to add a term hv to the diagonal elements in Ã matching the
rows of index kD relative to Dirichlet degrees, and correspondingly add the
term hvgkD to the source element kD.
In this way the equation relative to row kD becomes

N∑
j=1

ãkDjuj + hvukD = b̃kD + hvgkD .



A.2 Imposing essential boundary conditions 411

If the coefficient hv is sufficiently large (hv stands for high value), the effect of
the perturbation is to make the equation an approximation of hvukD = hvgkD ,
whose solution is, naturally, ukD = gkD . Indeed, if aKd

denotes the maximum
absolute value of matrix elements in row kD and aKd

/hv < eps, eps being
the machine epsilon number6, the computer will in fact “see” hvukD = hvgkD .
In this way we impose the wanted condition without changing the problem’s
dimension nor the matrix pattern.
This approach (adopted by the software FreeFem++) has simplicity as

its asset: the only requirement is the access to diagonal elements. Its weak
point rests on the fact that to have an accurate approximation of the bound-
ary datum the value hv must be much large enough (FreeFem sets to 1030

by default). This, generally speaking, will degrade the matrix condition num-
ber, since it introduces eigenvalues of order hv. However, the new introduced
eigenvalues are all clustered around this value, so the situation is better than
what one may think at first sight.
Other (more complex) penalization techniques operates on the variational

problem. Notably, we mention the Nitsche’s method, which provides a penalty
formulation which is consistent and maintains optimal convergence rate also
for high order elements. More details on the Nitsche’s method may be found
in [Ste95].

A.2.3 “Diagonalization” technique

A third option, which neither alters the pattern nor necessarily introduces
ill-conditioning for the system, is to consider the Dirichlet condition as an
equation of the form αukD = αgkD to replace row kD of the original system.
Here, α �= 0 is a suitable coefficient, often taken equal to 1 or to the average
of the absolute values of the elements of row kD (to avoid degrading the
condition number). This substitution is performed by setting to zero the row’s
off-diagonal elements except for the diagonal one, which is set to α, without
modifying the sparsity pattern. Accordingly, the corresponding element in
the right hand side is set to αgkD .
The operation requires access to the sole rows, so it is efficient in for-

mats like COO, CSR or MSR (Fig. A.7 left). This approach, that we termed
diagonalization (not to be confused with the usual meaning in linear algebra),
is without doubt a good compromise between easy programming and control
of the conditioning of the problem.
Its major fault is to destroy the symmetry of the matrix (if the original

matrix was). If one wishes to keep that symmetry (for instance, in order to use
a Cholesky decomposition), then it is necessary to modify the columns as well,
and consequently the source term. A possible strategy to address this issue is
explained in the next section. When using a Krylov-based iterative method

6 eps is the largest floating point number so that 1 + eps = 1 in floating point arithmetic.



412 A The treatment of sparse matrices

0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 58
0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 58

0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 58
0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 58

Fig. A.7 Treatment of essential conditions (e.g. on row 4 of the example matrix) using di-
agonalization: basic version (above) and symmetric one (below). For the symmetric version
the column vector (bar the diagonal element) is used to update the source

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 17025
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 6685

Fig. A.8 The effects of symmetric diagonalization on a 3D grid (from a real case): on the
left, before the boundary conditions are imposed; on the right, afterwards

of solution, it is worth noticing that this loss of symmetry does not affect the
performances of the solver, as it has been proved in [EG04], Chapter 8.



A.2 Imposing essential boundary conditions 413

Symmetric diagonalization. Once we have “diagonalized” in the sense
of the previous Section, we can think of modifying the column kD in a way
similar to what seen in Section A.2.1 (Fig. A.7 right): in practice we set to zero
the elements ãknDkD for all knD �= kD, and update the corresponding source
term by adding to it −AknDkDgkD . The main difference with Section A.2.1
consists in annihilating off-diagonal coefficients in the columns corresponding
to Dirichlet nodes, instead of erasing the whole columns of the system.
The technique just described (and adopted by LifeV) attains a most fa-

vorable balancing between easy programming and mathematical stability of
the algebraic system. The con is that it needs an efficient access to columns.
Therefore it can be convenient to use formats that warrant efficient access to
columns as well, like the modified MSR.

A.2.4 Essential conditions in a vectorial problem

In presence of vectorial problems it can happen to impose essential conditions
not on a single component in the vector of unknowns, but rather on a linear
combination. Consider for example a Navier-Stokes problem, and suppose
we want to impose a velocity condition like uT n = g on the boundary ΓD,
where n is the normal vector. The operation involves a linear combination of
the components of u: in 2D, uxnx + uyny = g. If the normal is parallel to a
coordinate axis we fall back into the case of a single component prescribing
the condition. An example is n = [1, 0]T , forcing an essential condition on
the first component: ux = g. In general, though, n is arbitrary.
Let us then see how we can set up the problem by focusing on one boundary

node. If the condition applies to more nodes (as normally happens), the
procedure described below should be carried out at each node.
Suppose U ∈ RNh contains all the problem’s unknowns (hence, in particu-

lar, all the components of the vector), including those relative to the degrees
of freedom at which we will impose the boundary condition. We shall only
consider conditions that can be written in the form

NT U = g, (A.4)

where N ∈ RNh . Returning to the example, if we imposed uT
i n = g then

N would have all components null except those corresponding, in U, to the
position of the velocity components ui,x and ui,y at node i, where they would
equal nx and ny, respectively.
For simplicity (and without loss of generality) we shall assume N to be a

unit vector, NT N = 1. We will make use of

Z = NNT ∈ RNh×Nh ,



414 A The treatment of sparse matrices

of components Zij = NiNj ; this matrix enjoys the following properties7:

1. it is symmetric;
2. it has rank one, ie the set of v ∈ RNh such that Zv �= 0 is a vector
space of dimension one. In fact, Zv is the orthogonal projection of v along
N because, by definition, Zv = (NT v)N. Therefore Zv = 0 for all v
orthogonal to N, hence such that NT v = 0.

Now take the matrix Ã and the right-hand side b̃ of our problem before
the boundary condition (A.4) is imposed. To do so we can use Lagrange
multipliers. The method consists in adding a further unknown λ and solve{

ÃU + λN = b̃,
NT U = g.

(A.5)

This problem has an extra unknown, but a series of algebraic manipulations
will eliminate λ and reduce it to a system in U only, of the form AU = b
where

A = Ã− ZÃ + ZÃZ, b = b̃− Zb̃ + gZÃN. (A.6)

In addition, one can prove the system can be further simplified to become[
Ã− ZÃ + αZ

]
U = b̃− Zb̃ + gαN, (A.7)

where the parameter α can be chosen so to not ill-condition the system (al-
though, in practice, one chooses α = 1 often).
Looking at how matrix and source in (A.7) are built, the operation Ã −

ZÃ is nothing more that a generalized version of the annihilation seen in
Section A.2.3. The addition of αZ generalizes the introduction of the diagonal
term α, which in the case of a (non-trivial) linear combination of unknowns
entails a change in the original pattern.
Likewise, the operations on the source term correspond to replacing the

original component of the right-hand side along N with gαN. Actually, one
can check easily that if the components of N are zero except for Ni = 1, the
procedure corresponds exactly to set to zero the whole ith row except the
diagonal term, and modify the source as we saw in Section A.2.3.
This routine has two shortcomings. The first is unavoidable and is due

to the distinct patterns of A and Ã. Usually, the boundary condition (A.4)
constrains some components of the solution that are instead uncoupled in the
“unconstrained” system. We have seen that the majority of formats for sparse
grids are not efficient when the pattern is altered (save for COO, which is
however less efficient than other formats). One possibility to steer clear of
the issue is to take this kind of boundary conditions into account already in
the preliminary phase, when the pattern is identified.

7 In concrete cases neither the matrix Z, nor N, need be constructed explicitly, but they are
useful algebraic tools that allow to describe the procedure in a concise and accurate way.



A.2 Imposing essential boundary conditions 415

The second fault is related to the fact that A, as of (A.6), just like the
matrix of (A.7), is not symmetric in general, even if Ã is. The operations
considered so far, in fact, correspond to acting only on rows. So, if we want to
keep the matrix symmetric it could be necessary to generalize the “symmetric
diagonalization”, a topic we will not discuss for lack of space.
One final, practical remark is that if one adopts iterative methods to solve

the linear system it is unnecessary to construct A explicitly: one can use,
instead, the definition in terms of Ã and N directly. What one needs is to
implement efficiently the products NT v and Zv, for any given v.



B

Who’s who

Many inequalities, properties and spaces disseminating the text come with
name tags referring to mathematicians from several different backgrounds.
It can be interesting to put these figures in a historical perspective to get a
glimpse, if only superficial, on the advancements made by the mathematical
sciences during the last centuries. That is why we have collected at the end
of the book the biographical data of some of the most cited people.

Stefan Banach, 1892–1945. Born in Krakow, Banach stud-
ied engineering. He obtained an assistant position at the
University of Lvov in 1920, after defending the dissertation
“On Operations on Abstract Sets and their Application
to Integral Equations”, which is considered the starting
point of functional analysis. In 1924 he became Professor
of Mathematics in virtue of his contributions to measure
theory. In the subsequent decade Banach made tremen-

dous advances in the theories of integration, measure and vector spaces. He
introduced and characterized the notion of complete normed linear space,
nowadays known as Banach space in his honor. He died on August 31st 1945
in Lvov, Ukraine.

Augustin Louis Cauchy, 1789–1857. Born a few days af-
ter the outbreak of the French Revolution, Cauchy was
encouraged to pursue mathematical studies by Lagrange,
who was a friend of the family. After becoming a civil
engineer he participated in the project of the fleet with
which Napoleon wanted to invade England, and held po-
sitions in several institutions like the Collège de France
and the École Polytechnique. From 1813 he engaged full-

time in mathematical research, becoming one of the pioneers of mathematical
analysis. Among his enormous contributions to the subject, gathered in 789

Formaggia L., Saleri F.,Veneziani A.: Solving Numerical PDEs: Problems,Applications,
Exercises. DOI 10.1007/978-88-470-2412-0_B, © Springer-Verlag Italia 2012



418 B Who’s who

articles, we just mention those relative to the definitions of limit and integral,
the theory of complex variables and the convergence of infinite series.

Richard Courant, 1888–1972. Born in Lublin, Germany, of
a Jewish family, Courant obtained the doctorate in 1910
at Göttingen, immediately becoming Hilbert’s assistant.
WWI caused a break in Courant’s scientific activities.
In 1922 he published a first book on functional analysis
based on the lectures of Hurwitz, who had died in 1919.
In 1924 Courant published with Hilbert an important text
on mathematical physics. In 1925 he started working on a

second book, while the Mathematical Institute he had founded in Göttingen
a few years earlier was taking the first steps. Hitler’s rise to power changed
Courant’s plans, and forced him to abandon Germany for the U.S. where,
starting from 1935, he held a permanent position in New York, and where he
later founded an Institute of Mathematics on the model of Göttingen’s one.
The method of finite elements is one of Courant’s main contributions, and
was already present in embryo in the 1922 volume and in a note dating 1924.
The name ‘finite elements’ is not due to Courant, but appeared first in 1960.

John Crank, 1916--. Born in Hindley, UK, Crank studied
at the University of Manchester from 1934 to 1938. Af-
ter graduation, he worked as a mathematical physicist at
the Courtaulds Fundamental Research Laboratory from
1945 to 1957, and then as Professor of Mathematics at
Brunel University from 1958 to 1981. His main contri-
bution is to be found in the numerical solution of heat
conduction problems; these studies, in collaboration with

Phyllis Nicolson, eventually led to the method known as the Crank-Nicolson
method.

Johann Peter Gustav Lejeune Dirichlet, 1805–1859. Born
in Düren (now Germany, at the time under the Napoleonic
empire), Dirichlet completed his undergraduate education
in Paris, showing an early inclination towards mathemat-
ics. His first published article, related to the celebrated
theorem of Fermat, gave him immediate fame. In 1825 he
decided to return to Germany, where he received a doc-
torate ad honorem from the University of Cologne and the
Habitation to teach at the University of Breslau. However,

he did not settle down and instead embarked on a long tour that brought him
to Berlin first, and then Italy where he spent some time. His contributions
to mathematics are impressive. In particular, we mention analytical number
theory and the theory of Fourier series, which took off with Dirichlet’s work.



B Who’s who 419

One article on the Laplace problem relative to the stability of the solar system
led him to the problem that nowadays bears his name.

Leonhard Euler, 1707–1783. Born in Basel, Switzerland,
Euler began studying theology in 1723. Despite being al-
ways a fervent Lutheran, he was lukewarm towards the
clerical life and was quickly prompted to study math-
ematics upon suggestion of the mathematician Johann
Bernoulli, who was friend of Leonhard’s father. This deci-
sion led to the making of one of the most prolific mathe-
maticians of all time. It is a hard task to keep record of

all his contributions; we owe him, for example, the notation f(x) for func-
tions (1734) or the use of the letter e for natural logarithms. His work spans
from modern analytic geometry (Euler was the first to consider the sine and
the cosine as functions, and not just chords as Ptolemy did) to differential
calculus, from continuum mechanics to gravitational problems. In particular,
he is considered the founder of analytic mechanics following the 1765 treatise
Theory of the Motions of Rigid Bodies. His academic career started in 1727 at
St.Petersburg’s Academy of Sciences, where he became Professor of Physics
in 1730 and where he stayed until his death. Euler’s scientific output is so
colossal that the Academy continued to publish his work for fifty years after
he had died.

Alessandro Faedo, 1913–2000. Born in Chiampo (Vi-
cenza) in 1913, Faedo graduated in mathematics in
Pisa, where he obtained the Chair of Mathematical
Analysis at the Scuola Normale Superiore. Faedo is
known especially for the detailed study of Galerkin’s
method, also known as method of Faedo-Galerkin. A

great intuition of his was to understand, already in the ’50s, the profound
impact that computers would have in research and real life. For this reason
he projected and promoted the creation of the Centro Studi Calcolatrici Elet-
troniche, built the first all-Italian computer, and later went on to found the
CNUCE with IBM, to answer the growing demands of the newborn Com-
puter Science, as it was known at the time. He was among the promoters of
the first university degree in computer science in Italy, at the University of
Pisa.



420 B Who’s who

Maurice Fréchet, 1878–1973. Born in 1878 in Maligny,
France, Fréchet was a student of Hadamard and wrote
in 1906 an important dissertation in which he introduced
the notion of metric space (although the name is due to
Hausdorff) and formulated the abstract theory of compact-
ness. He was appointed Professor of Mechanics at Poitiers
(1910-1919), then became Professor of Analysis at Stras-
bourg (1920-1927), after which he moved to the University

of Paris. Fréchet made crucial advancements in the fields of statistics, prob-
ability and analysis, even though his main contributions are to be found in
topology and the theory of abstract spaces.

Kurt Otto Friedrichs, 1901–1982. Friedrichs was born in
1901 in Kiel, Germany. He became Courant’s assistant in
Göttingen, then Professor at Braunschweig in 1932. His
main field of interest was that of PDEs in mathemat-
ical physics and fluid dynamics especially. He used the
method of finite differences to prove the existence of so-
lutions. When forced to flee Germany in 1937, he emi-
grated to the U.S., meeting up with Courant who had

escaped there earlier.

BorisGrigorievichGalerkin, 1871–1945. Galerkin was born
in Polotsok, Belarus, from a very poor family. Amid great
difficulties he was able to pursue higher studies. He at-
tended St.Petersburg’s Polytechnic, working first as a pri-
vate tutor then as a draftsman. After graduating in 1899,
he worked as engineer for several firms where he oversaw
the construction of many industrial complexes across Eu-
rope. In 1914 he switched to academia. A year later he

published the first paper on what is now universally recognized as Galerkin’s
method. In 1920 he became Head of the Department of Structural Mechanics
at St.Petersburg’s Polytechnic, and in the meantime Professor of Elasticity
for the Institute of (Tele)communication Engineering and Structural Mechan-
ics at the University of St.Petersburg. Galerkin had a primary role together
with Steklov and Bernstein, among others, in the relaunch, in 1921, of the
Mathematical Society of St.Petersburg, whose activities had been interrupted
during the October Revolution. He is very famous still today for his studies
of thin plates, the subject of a 1937 monograph. From 1940 till his death
Galerkin was Head of the Institute of Mechanics at the Soviet Academy of
Sciences.



B Who’s who 421

George Green, 1793–1841. Born in Sneinton, UK, Green
is responsible for the mathematical systematization of the
theory of solid elastic bodies. His main achievement is the
treatise On the Application of Mathematical Analysis to
the Theories of Electricity and Magnetism (1828), contain-

ing the so-called Green’s theorem (a special case of Gauss’ theorem in the
plane), discovered simultaneously with Ostrogradsk̆ıi in Russia. Green was
the first to recognize the importance of the potential function in an article
dating 1828. He introduced the function that bears his name as a way to
solve boundary-value problems. He also worked on the propagation of light-
and sound waves.

Thomas Hakon Grönwall, 1877–1932. Born in Dylta, Swe-
den, after becoming a civil engineer Grönwall worked in
Germany from 1902 to 1903, then emigrated to the U.S.
where he worked for several firms. From 1913 he started
doing mathematics at Princeton University, and obtained
striking results at the crossroads of pure and applied math-
ematics. From 1925 he was member of the Physics De-
partment at Columbia University in New York. His con-

tributions are in classical analysis (Fourier series, Gibbs phenomena, Laplace
and Legendre series), integro-differential equations, analytical number theory,
mathematical physics, atomic physics and chemistry. His name is especially
remembered in relationship to the well-known inequality (Grönwall’s lemma)
that he formulated in 1919.

David Hilbert, 1862–1943. Born in Königsberg, Prussia,
Hilbert was a doctoral student of Minkowski at the Univer-
sity of his birth place. There he became Professor in 1893,
only to obtain the Chair of Mathematics at Göttingen in
1895. He is considered one of the paramount figures of the
whole history of mathematics. In his opus Foundations of
Geometry (1899) he was the first to lay out a rigorous
collection of geometrical axioms, proving that his system-

atization was self-consistent. His main achievements concern number theory,
mathematical logic, differential equations and the three-body problem. His
intervention at the Paris International Congress of 1900 is very famous: there
he stated 23 problems that the mathematicians of the XXI century should
consider. Those questions have been known, ever since, as Hilbert’s problems
and some still remain unsolved today.



422 B Who’s who

Peter D. Lax, 1926–. Peter David Lax is one of the
greatest living mathematicians, both in pure and ap-
plied mathematics. He gave important contributions to
integrable systems, fluid dynamics and shock waves,
conservation laws of hyperbolic type, scientific calcu-
lus and numerical analysis. He spent much of his pro-
fessional life at the Mathematics Department of the
Courant Institute of Mathematical Sciences at New
York University. He is member of the U.S. National
Academy of Sciences. He won the National Medal of

Science in 1986, the Wolf Prize in 1987 and the prestigious Abel Prize in
2005.

Arthur N. Milgram, 1912–1961. Arthur N. Milgram
received his PhD from the University of Pennsylvania,
where he worked under the supervision of John Kline
on the “Decomposition and dimension of Closed Sets
in Rn”. Beyond the Lax-Milgram Lemma (published
in the Annals of Mathematical Studies published by
Princeton University Press in 1954 - see the picture
to side) gave contributions in combinatorics, differen-
tial geometry, topology and Galois theory. He worked
at Syracuse University in the 1940s and 1950s, then

moved to the University of Minnesota at Minneapolis, where co-founded the
group working on partial differential equations.

Henri Lèon Lebesgue. Born on June 28th, 1875 in Beauvais,
and passed away on July 28th, 1941 in Paris, Lebesgue for-
mulated measure theory in 1901, and later generalized the
theory of Riemann integrals. Apart from this, his main
contributions concern the fields of topology, Fourier anal-
ysis and the solution of other several problems relevant in
the applications.

Hans Lewy, 1904–1988. Born in Breslau, Germany, Lewy
received the doctorate in Göttingen under Richard Courant
in 1926, where he worked for the ensuing six years. During
that time he obtained together with Courant and Friedric
many of mathematically-relevant results on the numerical
stability of certain classes of differential equations. Subse-
quently he published a series of fundamental papers on the
calculus of variations and PDEs, thus completely solving

the initial value problem for non-linear hyperbolic equations in two indepen-
dent variables. Forced to flee Germany in 1930, he emigrated to the U.S.
where he worked at Brown University, and then at Berkeley until 1972.



B Who’s who 423

Claude-Louis Navier, 1785–1836. Born in Dijon, Navier
lost his father at an early age, and was raised by his ma-
ternal uncle Emiland Gauthey, one of the foremost French
civil engineers. The young Claude-Louis was thus pushed
to enroll in the École Polytechnique, where he followed
the lectures of Fourier, whom he later befriended. In 1804
Navier entered the École des Ponts et Chaussées, where
he graduated with honors in two years. A few years later

he succeeded to his uncle, who had meanwhile passed away, in the Corps
des Ponts et Chaussés. In 1819 he began teaching applied mechanics at the
École des Ponts et Chaussées. Subsequently he became Professor at the École
Polytechnique, the position Cauchy had held. Proof of his fame as an expert
in building roads and bridges is, for example, his pioneering theory of suspen-
sion bridges, which had been constructed–until then–on the basis of empirical
knowledge. His name is, however, related to the equations governing viscous
fluids, which he presented in 1822. Among the many awards he was conferred,
the most prestigious was becoming, in 1824, a member of the Academy of Sci-
ences of Paris In 1831 he also became Knight of the French Legion of Honor.

Phyllis Nicolson, 1917–1968. Born in Macclesfield, UK,
Nicolson received a Ph.D. at Manchester University. She
became lecturer at Cambridge’s Girton College in 1946,
and after her husband’s death in a train crash, she was
appointed to fill his lectureship in Physics at Leeds Univer-
sity. She is known for her collaboration with John Crank
on the solution of the heat equation.

Henri Poincaré, 1854–1912. Born in Nancy, after a child-
hood characterized by muscle problems and diphtheria,
Henri entered the Lycée of Nancy in 1862, where he studied
for 11 years and soon become among the best pupils in ev-
ery subject taught there. In 1873 he began the École Poly-
technique. After graduating in 1875 he continued studying
at the Ècole des Mines, after which he spent some time as
mineral engineer in Vesoul. He started the doctoral school

in Mathematics under the supervision of Charles Hermite. Immediately after
defending his thesis he started teaching mathematical analysis at the Univer-
sity of Caen. Two years later he was offered a position at the Science Faculty
of Paris (1881). In 1886 he obtained the Chair of Mathematical Physics and
Probability at the Sorbonne. Subsequently he was also appointed Chair at
the École Polytechnique, where the lectured a different course every year, in-
cluding optics, fluid dynamics, astronomy, probability. He stayed at the École
Polytechnique until he died, aged 58.



424 B Who’s who

George Gabriel Stokes, 1819–1903. Born in Skreen, Ire-
land, Stokes was educated in Dublin, then in Bristol where
he studied mathematics. Then he entered Cambridge’s
Pembroke College, and his teacher William Hopkins di-
rected him to the study of hydrodynamics. During 1842–
1845 Stokes published articles on the internal friction of
fluids. At that time it was difficult, in England, to find

out about the research of overseas mathematicians. Despite Stokes had re-
alized that some of his ideas were contained in the work of other people
(esp. Navier), he nonetheless thought the originality of his approach deserved
publication. In 1849 he was offered the Lucasian Chair in Mathematics at
Cambridge University. In 1851 he became Fellow of the Royal Society, and
Secretary in 1853. During those years Stokes worked on many subjects, in-
cluding hydrodynamics (motion of a pendulum in a fluid), fluorescence, and
the theory of Fraunhhofer lines in the solar spectrum. From 1857 he devoted
himself to experimentally–more than theoretically–flavored investigations.

Sergei Lvovich Sobolev, 1908–1989. Born in St.Petersburg,
Sobolev is one of the leading figures of modern mathemat-
ical analysis. His studies on the spaces that have inherited
his name, introduced in 1930, gave immediate birth to a
novel branch of functional analysis. We owe him the no-
tion of generalized functions (distributions), the present-
day variational formulation of elliptic problems, the study
of numerical quadratures (integration) in several dimen-
sions, and also a host of norm inequalities in function

spaces which turned out to be crucial for subsequent developments. At the
young age of 31 he became an effective member of the USSR Academy of Sci-
ences. He worked on the solution of hard problems in mathematical physics
important in the applications, as well. His most celebrated publication is
Applications of functional analysis in mathematical physics from 1962.



References

[AC97] Avgoustiniatos E. and Colton C. (1997) Effect of external oxygen
mass transfer resistances on viability of immunoisolated tissue.
Ann. NY Acad. Sci. 831: 145–167.

[AF03] Adams R. A. and Fournier J. J. F. (2003) Sobolev Spaces. Pure
and Applied Mathematics (Amsterdam) 140. Elsevier/Academic
Press, Amsterdam, second edition.

[All25] Allievi L. (1925) Theory of water-hammer, vol. 1. Typography
R. Garroni, Rome.

[BBG+01] Balay S., Buschelman K., Gropp W., Kaushik D., Knepley M.,
McInnes L.C., Smith B., and Zhang H. (2001) PETSc Web page.
http://www.mcs.anl.gov/petsc.

[BD70] Boyce W. and DiPrima R. (1970) Introduction to Ordinary Dif-
ferential Equations. John Wiley, New York.

[Bea88] Bear J. (1988) Dynamics of Fluid in Porous Media. Courier Dover
Publication.

[BGL05] Benzi M., Golub G., and Liesen J. (2005) Numerical solution of
saddle point systems. Acta Numerica 14: 1–137.

[BP84] Brezzi F. and Pitkaranta J. (1984) On the stabilization of finite
element approximations of the stokes problem. Efficient solutions
of elliptic systems, Notes on Numerical Fluid Mechanics 10: 11–
19.

[Bre11] Brezis H. (2011) Functional Analysis, Sobolev Spaces and Partial
Differential Equations. Universitext. Springer, New York.

[BS02] Brenner S. C. and Scott L.R. (2002) The Mathematical Theory
of Finite Element Methods. Texts in Applied Mathematics 15.
Springer-Verlag, New York, second edition.

[CC88] Cahouet J. and Chabard J. (1988) Some fast 3D finite element
solvers for the generalized Stokes problem. International Journal
for Numerical Methods in Fluids 8(8): 869–895.



426 References

[CHQZ88] Canuto C., Hussaini M., Quarteroni A., and Zang T. (1988) Spec-
tral Methods in Fluid Dynamics. Springer Series in Computational
Physics. Springer-Verlag, New York.

[Cia78] Ciarlet P. (1978) The Finite Element Method for Elliptic Prob-
lems. Studies in Mathematics and its Applications 4. North-
Holland Publishing Co., Amsterdam.

[Dav04] Davis T.A. (June 2004) Algorithm 832: Umfpack v4.3 – an
unsymmetric-pattern multifrontal method. ACM Trans. Math.
Softw. 30: 196–199.

[Dav08] Davis T.A. (2008) User’s guide for suitesparseQR, a multifrontal
multithreaded sparse QR factorization package. ACM Trans.
Math. Software.

[DD97] Davis T. and Duff I. (1997) An unsymmetric-pattern multifrontal
method for sparse LU factorization. SIAM J. Matrix Analysis and
Applications 19(1): 140–158.

[DFM02] Deville M., Fischer P., and Mund E. (2002) High-order methods
for incompressible fluid flow. Cambridge Monographs on Applied
and Computational Mathematics 9. Cambridge University Press.

[DGL92] Duff I., Grimes R., and Lewis J. (October 1992) Users guide
for the Harwell-Boeing sparse matrix collection. Technical Report
TR/PA/92/86, CERFACS.

[EG04] Ern A. and Guermond J.-L. (2004) Theory and Practice of Finite
Elements. Applied Mathematical Sciences 159. Springer-Verlag,
New York.

[ESW05] Elman H. C., Sylvester D. J., and Wathen A. J. (2005) Finite
Elements and Fast Iterative Solvers with Applications in Incom-
pressible Fluid Dynamics. Numerical Mathematics and Scientific
Computation 8. Oxford University Press, Oxford.

[Eva10] Evans L. (2010) Partial Differential Equations. Graduate Studies
in Mathematics 19. American Mathematical Society, Providence,
RI, second edition.

[Far93] Farlow S. (1993) Partial Differential Equations for Scientists and
Engineers. Courier Dover.

[FG00] Frey P. and George P.-L. (2000) Mesh Generation. Application to
finite elements. Hermes Science Publishing, Oxford.

[FP99] Ferziger J. and Perić M. (1999) Computational Methods for Fluid
Dynamics. Springer-Verlag, Berlin, revised edition.

[FQV09] Formaggia L., Quarteroni A., and Veneziani A. (eds) (2009) Car-
diovascular Mathematics. Modeling and simulation of the circula-
tory system. Modeling, Simulation and Applications 1. Springer,
Milan.

[GR86] Girault V. and Raviart P. (1986) Finite element methods for
Navier-Stokes equations: Theory and algorithms. Springer Series
in Computational Mathematics 5. Springer-Verlag, Berlin New
York.



References 427

[GV96] Golub G. and Van Loan C. (1996) Matrix computations. Johns
Hopkins Studies in the Mathematical Sciences 3. Johns Hopkins
University Press.

[HBH+05] Heroux M.A., Bartlett R.A., Howle V.E., Hoekstra R. J., Hu
J. J., Kolda T.G., Lehoucq R.B., Long K.R., Pawlowski R. P.,
Phipps E.T., Salinger A.G., Thornquist H.K., Tuminaro R. S.,
Willenbring J.M., Williams A., and Stanley K. S. (2005) An
overview of the Trilinos project. ACM Trans. Math. Softw. 31(3):
397–423.

[HCB05] Hughes T., Cottrell J., and Bazilevs Y. (2005) Isogeometric anal-
ysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. Computer Methods in Applied Mechanics and Engi-
neering 194(39–41): 4135–4195.

[Her04] Heroux M. (July 2004) AztecOO user guide. Sandia Laboratory
Report N. SAND2004-3796. http://software.sandia.gov/trilinos/.

[Hig02] Higham N. (2002) Accuracy and Stability of Numerical Algo-
rithms. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, second edition.

[HVZ01] Hamacher V., Vranesic Z., and Zaky S. (2001) Computer Organi-
zation. McGraw-Hill, Inc. New York.

[Joh87] Johnson C. (1987) Numerical Solution of Partial Differential
Equations by the Finite Element Method. Cambridge University
Press, Cambridge.

[Kel11] Keller J. P. (2011) The spread of rabies in raccoons: numerical
simulations of a spatial diffusion model. Honor thesis, Department
of Mathematics and Computer Science, Emory University, Atlanta
(USA).

[KGV11] Keller J., Giorda L.G., and Veneziani A. (2011) Numerical simu-
lation of space continuous SEI models for raccoon rabies diffusion
in a realistic landscape. In preparation.

[Lad63] Ladyzhenskaya O.A. (1963) The Mathematical Theory of Viscous
Incompressible Flow. Gordon and Breach Science Publishers, New
York.

[Leo09] Leoni G. (2009) A first course in Sobolev spaces. Graduate Studies
in Mathematics 105. American Mathematical Society.

[LeV90] LeVeque R. (1990) Numerical Methods for Conservation Laws.
Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel.

[LeV02] LeVeque R. (2002) Finite Volume Methods for Hyperbolic Prob-
lems. Cambridge Texts in Applied Mathematics. Cambridge Uni-
versity Press, Cambridge.

[lif10] (2010) Lifev user on-line manual. http://www.lifev.org.
[LM54] Lax P. and Milgram A. (1954) Parabolic Equations. Annals of

Mathematics Studies 33.



428 References

[Pro97] Prohl A. (1997) Projection and Quasi-Compressibility Methods for
Solving the Incompressible Navier-Stokes Equations. Advances in
Numerical Mathematics. B.G. Teubner, Stuttgart.

[PV09] Pietro D. D. and Veneziani A. (2009) Expression templates im-
plementation of continuous and discontinuous Galerkin methods.
Computing and visualization in science 12(8): 421–436.

[QSS00] Quarteroni A., Sacco R., and Saleri F. (2000) Numerical Mathe-
matics. Texts in Applied Mathematics 37. Springer-Verlag, New
York.

[Qua93] Quartapelle L. (1993) Numerical solution of the incompressible
Navier-Stokes equations. International Series of Numerical Math-
ematics 113. Birkhäuser Verlag, Basel.

[Qua09] Quarteroni A. (2009) Numerical Models for Differential Problems.
Springer, Milan.

[QV94] Quarteroni A. and Valli A. (1994) Numerical Approximation of
Partial Differential Equations. Springer Series in Computational
Mathematics 23. Springer-Verlag, Berlin.

[QV99] Quarteroni A. and Valli A. (1999) Domain Decomposition Meth-
ods for Partial Differential Equations. Numerical Mathematics
and Scientific Computation. The Clarendon Press Oxford Uni-
versity Press, New York. Oxford Science Publications.

[RR04] Renardy M. and Rogers R. (2004) An Introduction to Partial Dif-
ferential Equations. Texts in Applied Mathematics 13. Springer-
Verlag, New York, second edition.

[Saa90] Saad Y. (1990) SPARSKIT: A basic tool kit for sparse ma-
trix computations. Technical Report RIACS-90-20, Research In-
stitute for Advanced Computer Science, NASA Ames Research
Center, Moffett Field, CA. http://www-users.cs.umn.edu/˜saad/
software/SPARSKIT/sparskit.html.

[Saa92] Saad Y. (1992) Numerical Methods for Large Eigenvalue Prob-
lems. Algorithms and Architectures for Advanced Scientific Com-
puting. Manchester University Press, Manchester.

[Saa03] Saad Y. (2003) Iterative Methods for Sparse Linear Systems. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA,
second edition.

[Sal08] Salsa S. (2008) Partial Differential Equations in Action. Universi-
text. Springer, Milan.

[Sch] Schöberl J.Netgen website http://www.hpfem.jku.at/netgen/.
[Sel84] Selberherr S. (1984) Analysis and Simulation of Semiconductor

Devices. Springer-Verlag, Wien New York.
[Sha08] Shapira Y. (2008)Matrix-based multigrid. Numerical Methods and

Algorithms 2. Springer, New York, second edition. Theory and
applications.

[Slo73] Slotboom J. (1973) Computer-aided two dimensional analysis of
bipolar transistor. IEEE Trans. Electron Devices ED-20: 669–673.



References 429

[SS03] Schildt H. and Schildt H. (2003) C/C++ Programmer’s reference.
McGraw-Hill/Osborne.

[STD+96] Schaefer M., Turek S., Durst F., Krause E., and Rannacher R.
(1996) Benchmark computations of laminar flow around a cylin-
der. Notes on numerical fluid mechanics 52: 547–566.

[Ste95] Stemberg R. (1995) On some techniques for approximating bound-
ary conditions in the finite element method. Journal of Compu-
tational and Applied Mathematics 63: 139–148.

[Sto48] Stommel H. (1948) The westward intensification of wind-driven
ocean currents. Trans. Amer. Geophys. Union 29(202).

[Str03] Strang G. (2003) Introduction to Linear Algebra. Wellesley Cam-
bridge Press.

[Str04] Strikwerda J. (2004) Finite Difference Schemes and Partial Dif-
ferential Equations. Society for Industrial and Applied Mathemat-
ics (SIAM), Philadelphia, PA, second edition.

[SV09] Salsa S. and Verzini G. (2009) Equazioni a derivate parziali.
Springer, Milan.

[Tem84] Temam R. (1984) Navier-Stokes Equations. Studies in Mathemat-
ics and its Applications 2. North-Holland Publishing Co., Ams-
terdam, third edition.

[Tem95] Temam R. (1995) Navier-Stokes Equations and Nonlinear Func-
tional Analysis. CBMS-NSF Regional Conference Series in Ap-
plied Mathematics 66. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, second edition.

[Tur99] Turek S. (1999) Efficient Solvers for Incompressible Flow Prob-
lems. Lecture Notes in Computational Science and Engineering 6.
Springer-Verlag, Berlin.

[TW05] Toselli A. and Widlund O. (2005) Domain Decomposition Meth-
ods – Algorithms and Theory. Springer Series in Computational
Mathematics 34. Springer-Verlag, Berlin.

[Van82] Van Dyke M. (1982) An Album of Fluid Motion. Parabolic Press,
Stanford, CA.

[Wom55] Womersley J. (1955) Method for the calculation of velocity, rate
of flow and viscous drag in arteries when the pressure gradient is
known. The journal of physiology 127(3): 553.

[ZZ92] Zienkiewicz O. and Zhu J. (1992) The superconvergent patch re-
covery and a posteriori error estimates. Part 1: The recovery tech-
nique. International Journal for Numerical Methods in Engineer-
ing 33(7): 1331–1364.



Subject Index

Advection, 67
Affine variety, 66
Argyris triangle, 247

Banach, 417
– space, 4
Barycentric coordinates, 27, 32
Basis function, see Shape function
BDF time discretization, 240
Bilinear form, 65
– coercivity, 69
– continuity, 69
Boundary
– inflow, 278
Boundary conditions
– homogeneous Dirichlet, 65
– Neumann, 72
– non-reflective, 312
– non homogeneous Dirichlet, 66
– numerical, 312
– Robin, 72
– weak, 302, 305
Boundary layer, 165
Boundary problem, 68
Brownian motion, 217

Cauchy, 417
– sequence, 4
CFL
– condition, 280, 288
– number, 280
Characteristic
– line, 311
– variables, 311
Characteristic polynomial, 13
Coefficient
– amplification, 279

Coercivity, 65
– weak, 205
Collocation, 46
– spectral, 98, 127
Conforming space, 29
Conjugate vectors, 14
Connectivity matrix, 26, 31
Conservation form, 278
Convective
– thermal exchange, 248
– transfer coefficient, 75, 86
Courant, 418
Crank, 418
Crosswind, 181

Degree of freedom, 29
– local, 30
Derivative
– pseudo-spectral, 46
– weak, 6
Diameter, 24
Difference quotient, 46
– decentred, 96
Dirac delta, 5, 217
Dirichlet, 418
Distance, 4
Distribution, 5
Domain, 65
– of dependence, 316
Drift-diffusion, 178

Eigenvalue, 13
Eigenvector
– left, 13
– right, 13
Element, 17
Embedding, 8



432 Subject Index

Equation
– wave, 277
Error
– dispersion, 279
– dissipation, 279
– round-off, 56
– truncation, 57
Essential supremum, 6
Euler, 419
Euler formula, 26
Exponential fitting, 164

Faedo, 419
Filtration, 121
Finite differences, 46
– compact, 58
Finite elements, 22, 30
– Pr, 32
– Qr, 34, 35
– affine, 35
– discontinuous, 301
– Hermite, 30
– interpolation, 44
– isoparametric, 35
– Lagrangian, 30, 32
– parametric, 35
– Raviart-Thomas, 30
– reference, 22, 31
– subparametric, 35
– superparametric, 35
Flux
– numerical, 317
Fourier fundamental solution, 217
Fréchet, 420
– derivative, 344
Friedrichs, 420
Function
– characteristic, 268
– Gaussian, 217
– generalized, 6
– Heaviside, 268
– support of a, 5
Functional, 5

Galerkin, 420
Gateaux derivative, 344
Ghost nodes, 313
Grönwall, 421
Green, 421
Grid, 24
– affine, 25
– conforming, 25
– edges, 25
– faces, 25

– non-equidistant, 95
– regular, 26, 45
– regularity constant, 26
– sides, 25
– spacing, 19
– vertexes, 25

Hölder
– inequality, 6
Helmholtz
– decomposition, 382
– equation, 116
Hilbert, 421
– space, 4
Hk, 7
Hydraulic conductivity, 121

Inequality
– Cauchy-Schwarz, 6
– Hölder, 6
– Young, 7
Inf-sup condition, 333
– algebraic, 348
Interpolation
– global error, 44
– local error, 44
– piecewise, 17
– piecewise polynomial, 18
Isometry, 5

Jacobian matrix, 343
Jump, 303

Kronecker symbol, 19

Ladyzhenskaja Theorem, 382
Lagrange multiplier, 333
Lagrange polynomials, 19
Law
– Darcy, 122
– Fick, 196
Lax, 422
– Lax−Milgram lemma, 65
LBB condition, see inf-sup
Lebesgue, 422
– spaces, 6
Lemma
– Céa, 89
– Grönwall, 12, 295
– Gronwall, 206, 251
– Lax−Milgram, 65
– Strang, 181, 192
Lewy, 422
Lid-driven cavity problem, 347



Subject Index 433

Lifting, 9, 66, 207
Linear systems
– Cholesky factorization, 154
– Conjugate gradient, 154
Lp, 6

Map
– affine, 23
– bilinear, 35
– trilinear, 35
Mass matrix, 148
– lumped, 148, 154, 192, 195, 284
– pressure, 349, 372
Matrix
– block-diagonal, 306
– diagonalizable, 14
– full, 395
– iteration, 280
– kernel, 13

trivial, 13
– local mass, 305
– mass, 211
– norm, 13
– null-space, 13
– positive definite, 14
– range, 13
– rank, 13
– similar, 14
– sparse, 395
– sparse format

COO, 399
CSC, 405
CSR, 404
modified MSR, 407
MSR, 406
skyline, 401
symmetric skyline, 402

– sparsity pattern, 395
– stiffness, 73, 211
Mesh, see Grid
Method
– artificial viscosity, 157
– Chorin-Temam, 384

incremental form, 387
– Chorin Temam, 382
– Faedo-Galerkin, 209
– forward Euler, 211
– Galerkin, 67
– generalized Galerkin, 181, 192
– Netwon, 254
– of indeterminate coefficients, 46, 52
– pressure matrix, 370, 371, 375
– Scharfetter-Gummel, 162, 164
– streamline diffusion, 195, 199

– SUPG, 181
– upwind, 157, 164
– Uzawa, 374, 375
Milgram, 422
Model
– Stommel, 111
Monotonicity
– upwind method, 291
Multi-index, 7

Navier, 423
Neumann expansion, 15
Newton method, 343
Nicolson, 423
Node, 30, 32
Nodes
– discretization, 46
– Gauss-Chebyshev-Lobatto, 47, 98
Norm, 4
– discrete sup, 46
– Euclidean, 24
Number
– CFL, 280
– condition, 15
Numbering
– global, 18
– local, 18

Operator, 5
– adjoint, 149
– ADR

skew-symmetric part, 150
symmetric part, 150

– biharmonic, 244
– bounded, 5
– continuous, 5
– interpolation, 44
– linear, 5
– self-adjoint, 351
– skew-symmetric part, 149
– symmetric part, 149
– trace, 8
Overshooting, 288

Péclet number, 159
– reactive, 192
Parabolic Problems
– smoothing, 217
Poincaré, 423
Poincaré-Wittinger inequality, 11
Poincaré inequality, 11
Poiseuille solution, 377
Porous mean, 121
Preconditioner, 128



434 Subject Index

Pressure matrix, 348
– preconditioners, 372
Problem
– Darcy, 122
– Lid-driven cavity, 376
– scaling, 114
Problems
– advection, 277
– advection dominated, 147
– elliptic, 65
– reaction dominated, 147
pseudo-spectral matrix, 47

Reaction, 67
– dominated problem, 77
Reynolds number, 358

Scheme, see also Method
– Lax-Friedrich, 292
– Lax-Wendroff, 287
– shock capturing, 291
– strongly stable, 279
– upwind, 289
Schur complement, 308, 348
Seminorm, 8
Sequence
– Cauchy, 4
Shape function, 30
– local, 30
– local support, 31
Simplex, 23
– positively oriented, 28
Skyline, 402
Slotboom variable, 178
Sobolev, 424
Sobolev immersion theorem, 20
Space
– Banach, 4
– complete, 4
– Hilbert, 4
Space-time slab, 265
Spaces
– approximating, 29
– dual, 5
– Sobolev, 7

Sparsity pattern, 395
Sphericity, 26
Spurious pressure, 348
Stability Analysis
– Von Neumann, 278
Stabilization methods, 147
Static elimination, 308
Stencil, 58, 60, 96
Stokes, 424
Strang
– Lemma, 147
Stream function, 112
Streamline Upwind Method, 362

Telescopic sum, 10, 369
Test function, 68
Theorem
– Riesz’ representation, 5
– Sobolev, 229
– Sobolev embedding, 171, 198
Trace
– inequality, 8, 208
– operator, 8
Triangulation, 24
Trilinear form, 341
– skew-symmetric, 341, 346

Undershooting, 288
Unit
– cube, 23
– square, 23

Vertex, 17
Vertexes, 25
Viscosity, 67

Water hammer, 325
Weak formulation, 65
Weighted scalar product, 118
Womersley solution, 379

Xr
h, 19



Unitext – La Matematica per il 3+2

Series Editors:
A.Quarteroni (Editor-in-Chief)
L.Ambrosio
P. Biscari
C. Ciliberto
G. van der Geer
G. Rinaldi
W.J. Runggaldier

Editor at Springer:
F. Bonadei
francesca.bonadei@springer.com

As of 2004, the books published in the series have been given a volume
number. Titles in grey indicate editions out of print.
As of 2011, the series also publishes books in English.

A. Bernasconi, B. Codenotti
Introduzione alla complessità computazionale
1998, X+260 pp, ISBN 88-470-0020-3

A. Bernasconi, B. Codenotti, G. Resta
Metodi matematici in complessità computazionale
1999, X+364 pp, ISBN 88-470-0060-2

E. Salinelli, F. Tomarelli
Modelli dinamici discreti
2002, XII+354 pp, ISBN 88-470-0187-0

S. Bosch
Algebra
2003,VIII+380 pp, ISBN 88-470-0221-4

S. Graffi,M. Degli Esposti
Fisica matematica discreta
2003, X+248 pp, ISBN 88-470-0212-5



S.Margarita, E. Salinelli
MultiMath - Matematica Multimediale per l’Università
2004, XX+270 pp, ISBN 88-470-0228-1

A. Quarteroni, R. Sacco, F.Saleri
Matematica numerica (2a Ed.)
2000, XIV+448 pp, ISBN 88-470-0077-7
2002, 2004 ristampa riveduta e corretta
(1a edizione 1998, ISBN 88-470-0010-6)

13. A. Quarteroni, F. Saleri
Introduzione al Calcolo Scientifico (2a Ed.)
2004, X+262 pp, ISBN 88-470-0256-7
(1a edizione 2002, ISBN 88-470-0149-8)

14. S. Salsa
Equazioni a derivate parziali - Metodi,modelli e applicazioni
2004, XII+426 pp, ISBN 88-470-0259-1

15. G. Riccardi
Calcolo differenziale ed integrale
2004, XII+314 pp, ISBN 88-470-0285-0

16. M. Impedovo
Matematica generale con il calcolatore
2005, X+526 pp, ISBN 88-470-0258-3

17. L. Formaggia, F. Saleri,A.Veneziani
Applicazioni ed esercizi di modellistica numerica
per problemi differenziali
2005,VIII+396 pp, ISBN 88-470-0257-5

18. S. Salsa, G.Verzini
Equazioni a derivate parziali – Complementi ed esercizi
2005,VIII+406 pp, ISBN 88-470-0260-5
2007, ristampa con modifiche

19. C. Canuto,A. Tabacco
Analisi Matematica I (2a Ed.)
2005, XII+448 pp, ISBN 88-470-0337-7
(1a edizione, 2003, XII+376 pp, ISBN 88-470-0220-6)



20. F. Biagini,M. Campanino
Elementi di Probabilità e Statistica
2006, XII+236 pp, ISBN 88-470-0330-X

21. S. Leonesi, C. Toffalori
Numeri e Crittografia
2006,VIII+178 pp, ISBN 88-470-0331-8

22. A. Quarteroni, F. Saleri
Introduzione al Calcolo Scientifico (3a Ed.)
2006, X+306 pp, ISBN 88-470-0480-2

23. S. Leonesi, C. Toffalori
Un invito all’Algebra
2006, XVII+432 pp, ISBN 88-470-0313-X

24. W.M. Baldoni, C. Ciliberto, G.M. Piacentini Cattaneo
Aritmetica, Crittografia e Codici
2006, XVI+518 pp, ISBN 88-470-0455-1

25. A. Quarteroni
Modellistica numerica per problemi differenziali (3a Ed.)
2006, XIV+452 pp, ISBN 88-470-0493-4
(1a edizione 2000, ISBN 88-470-0108-0)
(2a edizione 2003, ISBN 88-470-0203-6)

26. M.Abate, F. Tovena
Curve e superfici
2006, XIV+394 pp, ISBN 88-470-0535-3

27. L. Giuzzi
Codici correttori
2006, XVI+402 pp, ISBN 88-470-0539-6

28. L. Robbiano
Algebra lineare
2007, XVI+210 pp, ISBN 88-470-0446-2

29. E. Rosazza Gianin, C. Sgarra
Esercizi di finanza matematica
2007, X+184 pp,ISBN 978-88-470-0610-2



30. A.Machì
Gruppi - Una introduzione a idee e metodi della Teoria dei Gruppi
2007, XII+350 pp, ISBN 978-88-470-0622-5
2010, ristampa con modifiche

31. Y. Biollay,A. Chaabouni, J. Stubbe
Matematica si parte!
A cura di A. Quarteroni
2007, XII+196 pp, ISBN 978-88-470-0675-1

32. M.Manetti
Topologia
2008, XII+298 pp, ISBN 978-88-470-0756-7

33. A. Pascucci
Calcolo stocastico per la finanza
2008, XVI+518 pp, ISBN 978-88-470-0600-3

34. A. Quarteroni, R. Sacco, F. Saleri
Matematica numerica (3a Ed.)
2008, XVI+510 pp, ISBN 978-88-470-0782-6

35. P. Cannarsa, T. D’Aprile
Introduzione alla teoria della misura e all’analisi funzionale
2008, XII+268 pp, ISBN 978-88-470-0701-7

36. A. Quarteroni, F. Saleri
Calcolo scientifico (4a Ed.)
2008, XIV+358 pp, ISBN 978-88-470-0837-3

37. C. Canuto,A. Tabacco
Analisi Matematica I (3a Ed.)
2008, XIV+452 pp, ISBN 978-88-470-0871-3

38. S. Gabelli
Teoria delle Equazioni e Teoria di Galois
2008, XVI+410 pp, ISBN 978-88-470-0618-8

39. A. Quarteroni
Modellistica numerica per problemi differenziali (4a Ed.)
2008, XVI+560 pp, ISBN 978-88-470-0841-0



40. C. Canuto,A. Tabacco
Analisi Matematica II
2008, XVI+536 pp, ISBN 978-88-470-0873-1
2010, ristampa con modifiche

41. E. Salinelli, F. Tomarelli
Modelli Dinamici Discreti (2a Ed.)
2009, XIV+382 pp, ISBN 978-88-470-1075-8

42. S. Salsa, F.M.G.Vegni,A. Zaretti, P. Zunino
Invito alle equazioni a derivate parziali
2009, XIV+440 pp, ISBN 978-88-470-1179-3

43. S. Dulli, S. Furini, E. Peron
Data mining
2009, XIV+178 pp, ISBN 978-88-470-1162-5

44. A. Pascucci,W.J. Runggaldier
Finanza Matematica
2009, X+264 pp, ISBN 978-88-470-1441-1

45. S. Salsa
Equazioni a derivate parziali – Metodi,modelli e applicazioni (2a Ed.)
2010, XVI+614 pp, ISBN 978-88-470-1645-3

46. C. D’Angelo, A. Quarteroni
Matematica Numerica – Esercizi, Laboratori e Progetti
2010,VIII+374 pp, ISBN 978-88-470-1639-2

47. V.Moretti
Teoria Spettrale eMeccanicaQuantistica –Operatori in spazi di Hilbert
2010, XVI+704 pp, ISBN 978-88-470-1610-1

48. C. Parenti, A. Parmeggiani
Algebra lineare ed equazioni differenziali ordinarie
2010,VIII+208 pp, ISBN 978-88-470-1787-0

49. B. Korte, J.Vygen
Ottimizzazione Combinatoria. Teoria e Algoritmi
2010, XVI+662 pp, ISBN 978-88-470-1522-7

50. D.Mundici
Logica: Metodo Breve
2011, XII+126 pp, ISBN 978-88-470-1883-9



51. E. Fortuna, R. Frigerio, R. Pardini
Geometria proiettiva. Problemi risolti e richiami di teoria
2011,VIII+274 pp, ISBN 978-88-470-1746-7

52. C. Presilla
Elementi di Analisi Complessa. Funzioni di una variabile
2011, XII+324 pp, ISBN 978-88-470-1829-7

53. L. Grippo,M. Sciandrone
Metodi di ottimizzazione non vincolata
2011, XIV+614 pp, ISBN 978-88-470-1793-1

54. M.Abate, F. Tovena
Geometria Differenziale
2011, XIV+466 pp, ISBN 978-88-470-1919-5

55. M.Abate, F. Tovena
Curves and Surfaces
2011, XIV+390 pp, ISBN 978-88-470-1940-9

56. A.Ambrosetti
Appunti sulle equazioni differenziali ordinarie
2011, X+114 pp, ISBN 978-88-470-2393-2

57. L. Formaggia, F. Saleri,A.Veneziani
Solving Numerical PDEs: Problems,Applications, Exercises
2011, X+434 pp, ISBN 978-88-470-2411-3

The online version of the books published in this series is available at
SpringerLink.
For further information, please visit the following link:
http://www.springer.com/series/5418


	Part IV Appendices
	A The treatment of sparse matrices
	A.1 Storing techniques for sparse matrices
	A.1.1 The COO format
	A.1.2 The skyline format
	A.1.3 The CSR format
	A.1.4 The CSC format
	A.1.5 The MSR format

	A.2 Imposing essential boundary conditions
	A.2.1 Elimination of essential degrees of freedom
	A.2.2 Penalization technique
	A.2.3 “Diagonalization” technique
	A.2.4 Essential conditions in a vectorial problem


	B Who’s who
	References
	Subject Index



