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Measuring Performance

• When we say one computer is faster than another we can 

mean different things:

• response time - also referred to as execution time - the time 

between the start and the completion of an event

• The computer user is interested in reducing the response time

• throughput - the total amount of work done in a given time

• The operator of a warehouse-scale computer may be interested in 

increasing throughput
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Measuring Performance

• In comparing design alternatives, we often want to relate 
the performance of two different computers: X and Y

• When we say X is faster than Y we mean that the 
response time or execution time is lower on X than on Y 
for the given task 

• In particular, X is n times faster than Y will mean:

Execution time 𝑌

Execution time 𝑋
= 𝑛

• Execution time is the reciprocal of performance
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Measuring Performance

• Since execution time is the reciprocal of performance, 

the following relationship holds:

𝑛 =
Execution time 𝑌

Execution time 𝑋
=
Performance 𝑋

Performance 𝑌

• The phrase the throughput of X is 1.3 times higher than 

Y signifies that the number of tasks completed per unit 

time on computer X is 1.3 times the number of tasks 

completed on Y
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Measuring Performance

• Unfortunately, time is not always the metric quoted in 

comparing the performance of computers

• But (for Hennessy and Patterson) the only consistent 

and reliable measure of performance is the execution 

time of real programs

• All proposed alternatives to time as a metric or to real 

programs as the items measured have eventually led to 

misleading claims or even mistakes in computer design
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Measuring Performance

• Even execution time can be defined in different ways 

depending on what we count

• The most straightforward definition of time is called 

wall-clock time, response time, or elapsed time

which is the latency to complete a task, including disk 

accesses, memory accesses, input/output activities, 

operating system overhead…
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Measuring Performance

• With multiprogramming, the processor works on another 

program while waiting for I/O and may not necessarily 

minimize the elapsed time of one program

• Hence, we need a term to consider this activity 

• CPU time recognizes this distinction and means the time 

the processor is computing, not including the time waiting 

for I/O or running other programs

• Clearly, the response time seen by the user is the elapsed 

time of the program, not the CPU time
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Measuring Performance

• Benchmarks can be used to measure performance

• The best choice of benchmarks is real applications

• Attempts at running programs much simpler than a real 

application have led to performance pitfalls

• Examples include:

• Kernels, which are small, key pieces of real applications

• Toy programs, which are 100-line programs (such as quicksort)

• Synthetic benchmarks, which are fake programs invented to try to 

match the profile and behavior of real applications (as Dhrystone)

• All three are discredited today (compiler writer and 

architect can conspire to make the computer appear 

faster than on real applications)
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Taking advantage of parallelism

• In the design and analysis of computers, we need 

• Principles and guidelines

• Observations about design

• Equations to evaluate alternatives

• Taking advantage of parallelism is one of the most 

important methods for improving performance

• Parallelism at the system level – scalability

• Parallelism at the level of an individual processor - parallelism 

among instructions

• Parallelism at the level of digital design - memories and ALUs
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Taking advantage of parallelism

• Fundamental observations come from properties of 

programs

• The most important program property that we regularly 

exploit is the principle of locality

• Temporal locality states that recently accessed items are likely 

to be accessed in the near future

• Spatial locality says that items whose addresses are near one 

another tend to be referenced close together in time
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Taking advantage of parallelism

• An important and pervasive principle of computer design 

is to focus on the common case: 

• In making a design trade-off, favor the frequent case over the 

infrequent case

• This principle applies when determining how to spend 

resources, since the impact of the improvement is 

higher if the occurrence is frequent

• In applying this simple principle, we have to decide what 

the frequent case is and how much performance can be 

improved by making that case faster
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Amdahl’s Law

• The performance gain obtained by improving some portion 

of a computer can be calculated using Amdahl’s law

• Amdahl’s law:

• states that the time/performance improvement is limited by the 

fraction of the time the faster mode can be used

• defines the speedup that can be gained by using a particular 

feature

𝒔𝒑𝒆𝒆𝒆𝒅𝒖𝒑 =

=
𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 𝐟𝐨𝐫 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭

𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 𝐟𝐨𝐫 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭 𝐰𝐡𝐞𝐧 𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞

=
𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭 𝐰𝐡𝐞𝐧 𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭
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Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup

from some enhancement, which depends on two factors:

1) The fraction of the computation time in the original computer 

that can be converted to take advantage of the enhancement, 

that is 

Fractionenhanced = time with enhancement / total time

Example:

• A program takes 60 seconds in total

• 20 seconds of the execution time can use an enhancement

• The fraction is: 20/60

• This value is always less than or equal to 1
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Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup 

from some enhancement, which depends on two factors:

2) The improvement gained by the enhanced execution mode, that 

is, how much faster the task would run if the enhanced mode 

were used for the entire program: 

Speedupenhanced = original mode time / enhanced mode time

Example:

• A portion of the program in the original mode is 5 seconds

• In the enhanced mode takes 2 seconds 

• The improvement is 5/2

• This value is always greater than 1
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Amdahl’s law

• The execution time using the original computer with the 

enhanced mode will be the time spent using the 

unenhanced portion of the computer plus the time spent 

using the enhancement:

• The overall speedup is the ratio of the execution times:
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enhanced
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Speedup
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Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the 

Web serving application than the original processor

• Assume that the original processor is busy with computation 

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the 

enhancement?
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Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the 

Web serving application than the original processor

• Assume that the original processor is busy with computation 

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the 

enhancement?

Fractionenhanced = 0.4 Speedupenhanced = 10

6.1
0.64 

1

10

0.4
0.4)–  (1

1

Speedup

Fraction
)Fraction–  (1

1
Speedup

enhanced

enhanced
enhanced
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Amdahl’s law

• Amdahl’s law can serve as a guide to understand:

• how much an enhancement will improve performance

• how to distribute resources to improve cost-performance

• The goal is to spend resources proportional to where time 

is spent 

• Amdahl’s law is useful

• to compare the overall system performance of two 

alternatives

• to compare two processor design alternatives
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Example

• A common transformation in graphics processors is 

square root

• Implementations of floating-point square root (FPSQR) 

vary significantly in performance among processors for 

graphics

• Suppose 

• FPSQR is responsible for 20% of the execution time of a 

critical graphics benchmark and 

• FP instructions are responsible for half of the execution time 

for the application
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Example

• We want to compare two proposals:

• To enhance the FPSQR hardware and speed up this operation 

by a factor of 10

• To try to make all FP instructions in the graphics processor run 

faster by a factor of 1.6 

• Evaluate and compare these two design alternatives
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Example

• We can compare the speedups

• 1) Speedup of 10 with FPSRT hw

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 
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Example

• We can compare the speedups

• 1) Speedup of 10 with FPSRT hw

• 2) FP operations faster of 1,6 factor

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP 
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Example

• We can the speedups

• 1) Speedup of 10 with FPSRT hw

• 2) FP operations faster of 1,6 factor

• Improving the performance of the FP operations overall is 

slightly better because of the higher frequency

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP 
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Amdahl’s law

• When we consider a parallel machine with 𝑁 nodes, the 

speedup will be:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑠𝑒𝑞
𝑡𝑝𝑎𝑟

=
𝑇

1 − 𝛼 𝑇 +
𝛼𝑇
𝑁

=
1

1 − 𝛼 +
𝛼
𝑁

• Note that we are ignoring any partitioning or 

communication or coordination costs

Advanced Architectures - 2024/2025 25 of 61



Processor Performance Equation

• All computers are constructed using a clock running at a 

constant rate

• Discrete time events are called ticks, clock ticks, clock 

periods, clocks, cycles, or clock cycles

• Computer designers refer to the time of a clock period by 

its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz)

• CPU time for a program can then be expressed two ways:

• CPU time = CPU clock cycles for a program × Clock cycle time

or

• CPU time = CPU clock cycles for a program / Clock rate
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Processor Performance Equation

• We can also count the number of instructions executed -

the instruction path length or instruction count (IC)

• If we know the number of clock cycles (CPU clock 

cycles) and the instruction count, we can calculate the 

average number of clock cycles per instruction (CPI):

CPI = CPU clock cycles for a program / IC

• From this formula we obtain

• CPU clock cycles for a program = CPI x IC
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Processor Performance Equation

• This allows us to use CPI in the execution time formula and 
obtain the performance equation:

• CPU time = IC × CPI × Clock cycle time

• In fact (using the units of measurement) we have:

• Observe that processor performance is equally
dependent upon: clock cycle (or rate), clock cycles per 
instruction, and instruction count

  time CPU
Program

Seconds

cycles Clock

Seconds

nsInstructio

cycles Clock

Program

nsInstructio
 time cycle Clock  CPI  IC
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Processor Performance Equation

• It is useful to calculate the number of total processor clock 

cycles as

• where 

• ICi is the number of times instruction i is executed in a program 

• CPIi is the average number of clocks per instruction for instr. i

i

n

i

i CPIIC cycles clock CPU 
1
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Processor Performance Equation

• This expression can be used to express CPU time as

and the overall CPI as

i

n

i

i

i

n

i

i

CPI
count nInstructio

IC

count nInstructio

CPIIC

  CPI 



 






1

1

time cycle ClockCPIIC time CPU i

n

1i
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Example

• Suppose we have made the following measurements in 

the previous example (of Amdahl’s Law):

• Frequency of FP operations = 25%

• Average CPI of FP operations = 4.0

• Average CPI of other instructions = 1.33

• Frequency of FPSQR = 2%

• CPI of FPSQR = 20

• Assume that the two design alternatives are:

• To decrease the CPI of FPSQR to 2

• To decrease the average CPI of all FP operations to 2.5

• Compare these two design alternatives using the 

processor performance equation
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Example

• Observe that only the CPI changes

• The clock rate and instruction count remain identical

• We start by finding the original CPI with no enhancement:

2.0  75%)  (1.33  25%)  (4 

count nInstructio

IC
CPI  CPI original






n

i

i
i

1
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Example

• We can compute the CPI for the enhanced FPSQR by 

subtracting the cycles saved from the original CPI:

1.64  2)-(20 2%  - 2 

) CPI- (CPI2%- CPI  CPI only FPSR newFPSR oldoriginalFPSR new
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Example

• We can compute the CPI for the enhanced FPSR by 

subtracting the cycles saved from the original CPI:

• We can compute the CPI for the enhancement of all FP 

instructions (the same way or) by summing the FP and 

non-FP CPIs:

• Since the CPI of the overall FP enhancement is slightly 

lower, its performance will be marginally better

1.625  75%)  (1.33  25%)  (2.5   CPI FP new 

1.64  2)-(20 2%  - 2 

) CPI- (CPI2%- CPI  CPI only FPSR newFPSR oldoriginalFPSR new
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Example

• The speedup for the FPSQR enhancement is

• The speedup for the overall FP enhancement is

1.23
1.625

2.0

CPI

CPI 

CPI  cycle Clock  IC

CPI  cycle Clock  IC

time CPU

time CPU
 Speedup

FPnew 

original

FPnew 

original

FPnew 

original

FPnew 









1.22
1.64

2.0

CPI

CPI 

time CPU

time CPU
 Speedup

FPSR

original

FPSR

original

FPSR 
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In summary

• It is often easier to use the processor performance 

equation than Amdahl’s law

• In fact, 

• It is often possible to measure the constituent parts of the 

processor performance equation

• It may be difficult to measure things such as the fraction of 

execution time for which a set of instructions is responsible

• In practice, this would probably be computed by summing the 

product of the instruction count and the CPI for each of the 

instructions in the set 

• Hence, the starting point is often individual instruction 

count and CPI measurements  performance equation
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Gustafson and Barsis’ law

• Two decades after the Amdahl’s law was published, 

Gustafson and Barsis noted that several programs were 

speeding up exceeding the predicted speedup limits

• They noted that:

• Problem sizes grow as computer becomes more powerful

• As the problem size grows, the work required for the parallel part 

frequently grows much faster than the serial part

• So the serial part decreases and the speedup improves
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Gustafson and Barsis’ law

• Gustafson and Barsis managed to examine the problem 

from a different point of view

• Instead of examining what  a parallel program could do 

relatively to a sequential one, we should examine how a 

sequential machine would perform if it were required 

to solve the same problem that a parallel one can 

solve
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Gustafson-Barsis’s law

Assume: 

• We have a parallel application that requires T time to 

execute on N CPUs

• The application spend 0 ≤ 𝛼 ≤ 1 percent of the total time 

running on all machines

• The remaining 1 − 𝛼 has to be done sequentially

Solving the problem on a sequential machine would require 

a total time:

𝑡𝑠𝑒𝑞 = 1 − 𝛼 𝑇 + 𝑁𝛼𝑇

as the parallel part now have be done sequentially
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Gustafson-Barsis’s law

• The speedup would be:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑠𝑒𝑞

𝑡𝑝𝑎𝑟
=

1 − 𝛼 𝑇 + 𝑁𝛼𝑇

𝑇
= 1 − 𝛼 + 𝑁𝛼

• And the corresponding efficiency

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

𝑁
=

1 − 𝛼

𝑁
+ 𝛼

• So the 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 has a lower bound of 𝛼 as 𝑁 go to 

infinity

Anyway, given the total disregard for the communication

costs, the results for 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 and 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 are 

overestimated
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Example

• Assuming a program consists of 50% non-parallelizable 

code, compute the speedup when using 2 and 4 

processors according to: Gustafson’s law and Amdahl’s law
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Example

• Assuming a program consists of 50% non-parallelizable 

code, compute the speed-up when using 2 and 4 

processors according to: Gustafson’s law and Amdahl’s law

• Gustafson’s law 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 2 ∙

1

2
= 1,5

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 4 ∙

1

2
= 2,5
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Example
• Assuming a program consists of 50% non-parallelizable code, compute 

the speed-up when using 2 and 4 processors according to: Gustafson’s
law and Amdahl’s law

• Gustafson’s law 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 2 ∙

1

2
= 1,5

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 4 ∙

1

2
= 2,5

• Amdahl’s law 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 =
1

1 − 𝛼 +
𝛼
𝑁

=
1

1 −
1
2

+
1
4

=
1

3
4

≅ 1,33

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 =
1

1 − 𝛼 +
𝛼
𝑁

=
1

1 −
1
2

+
1
8

=
1

5
8

≅ 1,6
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Example

Considerations to understand why speedup results are 

different

• Gustafson’s law assumes that the parallel part of the 

program increases with the problem size and the 

sequential part stays fixed

• Amdahl’s law sees the percentage of non-parallelizable 

code as a fixed limit for the speedup, even if we had an 

infinite amount of processors, according to Amdahl’s law, 

the speedup would never be greater than 2
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COMMUNICATION

PERFORMANCE
Parallel Computer Architecture: A Hardware/Software Approach

D.E. Culler , J. P. Singh , A. Gupta Morgan Kaufmann, 1998

Chapter 1 - Introduction

Section 1.4 – Fundamental Design Issues
Section 1.4.6 – Performance
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• In evaluating architectural trade-offs, the decision between 

feasible alternatives rests upon their performance 

• Programmers and compiler writers will avoid costly 

operations where possible

• To have a complete vision of the fundamental issues of 

parallel computer architecture, we need to understand 

performance at many levels of design

• Fundamentally, there are three performance metrics:

• Latency: time taken for an operation

• Bandwidth: rate of performing operations

• Cost: impact on execution time of program

Communication Performance
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• If the processor does one thing at a time these metrics 

are directly related:

• bandwidth (operation per second) is about   

1/latency (seconds per operation)

• cost is simply latency x number of operations

• But actually it is more complex in modern systems

• Modern computer systems do many different operations 

at once and the relationship between these performance 

metrics is much more complex

Communication Performance
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• Characteristics apply to overall operations, as well as 

individual components of a system

• Since the unique property of parallel computer 

architecture is communication, the operations that we 

are concerned with most often are data transfers

Communication Performance
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• The time for a data transfer operation is generally 

described by a linear model:

• Transfer time (n)  = T0 + n/B

• n is the amount of data (e.g. number of bytes), 

• B is the transfer rate of the component moving the data (e.g.  

bytes per second), 

• the constant term T0 is the start-up cost

• This is a very convenient model, and it is used to 

describe a diverse collection of operations: messages, 

memory accesses, bus transactions, and vector 

operations

Linear Model of Data Transfer Latency
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• It applies in many aspects of traditional computer 

architecture, as well

• In such a case, we can observe that the transfer time:

• For memory operations, it is essentially the access 

time

• For bus transactions, it reflects the bus arbitration 

and command phases

• For any sort of pipelined operation, including 

pipelined instruction processing or vector operations, 

it is the time to fill pipeline

Linear Model of Data Transfer Latency
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• But a linear model is not enough:

• It does not give any indication when the next such 

operation can be initiated

• It does not indicate whether other useful work can be 

performed during the transfer

• These other factors depend on how the transfer is 

performed:

• Hence we need to know how transfer is performed

Linear Model of Data Transfer Latency
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• The data transfer most interesting in parallel machines is 

the one that occurs across the network

• It is initiated by the processor through the 

communication assist

• The essential components of this operation can be 

described by the following simple model:

Communication Time (n) = 

= Overhead + Network Delay + Occupancy

Communication Cost Model
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• As we know, a generic parallel machine organization 

comprises a collection of essentially complete computers, 

each with one or more processors and memory, 

connected through a scalable communication network 

• The communications assist is some kind of controller or 

auxiliary processing unit which assists in generating 

outgoing messages or handling incoming messages

• There is great diversity (and debate) as to what 

functionality should be provided within the assist and how 

it interfaces to the processor, memory system, and 

network
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Communication Time (n) = 

= Overhead + Network Delay + Occupancy

• The Overhead is the time the processor spends initiating 

the transfer

• It may be a fixed cost, if the processor simply has to tell the 

communication assist to start

• It may be linear in n, if the processor has to copy the data into 

the assist

• The Overhead represents the time the processor:

• is busy with the communication event

• cannot do other useful work or initiate other communication 
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Communication Time (n) = 

= Overhead + Network Delay + Occupancy

• The remaining portions of the communication time is 

considered the network latency

• It is the part that can be hidden by other processor 

operations

• We can distinguish the two components Network Delay 

and Occupancy
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Communication Time (n) = 

= Overhead + Network Delay + Occupancy

• The Occupancy is the time it takes for the data to pass 

through the slowest component on the communication path:

• For example, each link that is traversed in the network will be 

occupied for time n/B, where B is the bandwidth of the link

• The data will occupy other resources, including buffers, switches, and 

the communication assist that is often the bottleneck that determines

the occupancy

• The occupancy limits how frequently communication operations can 

be initiated

• The next data transfer will have to wait until the critical resource is no 

longer occupied before it can use that same resource
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Communication Time (n) = 

= Overhead + Network Delay + Occupancy

• The remaining communication time is the Network Delay, 
which includes:

• The time for a bit to be routed across the actual network

• And other factors, such as the time to get through the 
communication assist

• From the processors viewpoint, the specific hardware 
components contributing to network delay are indistinguishable 

• The task of designing the network and its interfaces is very 
concerned with the specific components and their contribution 
to the aspects of performance that the processor observes
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Communication Time (n) = 

= Overhead + Network Delay + Occupancy

• This equation gives a very general model, and can be used to 

describe data transfers in many situations in computer systems

• For example, consider the time to move a block between cache and 

memory on a miss:

• The overhead is the time the cache controller spends inspecting the 

tag to determine that it is not a hit and then starting the transfer

• The occupancy is the block size divided by the bus bandwidth, unless 

there is some slower component in the system

• The delay includes the normal time to arbitrate and gain access to the 

bus plus the time spent delivering data into the memory

• Additional time spent waiting to gain access to the bus or wait for the 

memory bank cycle to complete is due to contention
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• A useful model connecting the program characteristics to 

the hardware performance is given by 

Communication Cost = 

frequency * (Comm. time - overlap)

• The frequency of communication:

• Is defined as the number of communication operations per unit of 

work in the program

• It depends on many programming factors and many hardware 

design factors
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Communication Cost = 

= frequency * (Comm. time - overlap)

Note that:

• Hardware may:

• limit the transfer size and determine the min number of messages

• replicate data or migrate it to where it is used

• A certain amount of communication is inherent to parallel 

execution, since data must be shared and processors must 

coordinate their work 

• A machine can support programs with a high communication 

frequency if the other parts of the communication cost are 

small: low overhead, low network delay, and small occupancy
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Communication Cost = 

= frequency * (Comm. time - overlap)

• The overlap is the portion of the communication operation 

which is performed concurrently with other useful work, 

including computation or other communication

• This reduction of the effective cost is possible because much of the 

communication time involves work done by components of the 

system other than the processor, such as the network interface unit, 

the bus, the network or the remote processor or memory 

• Overlapping communication with other work is a form of small scale 

parallelism
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