
ADVANCED ARCHITECTURES

Performance
Annalisa Massini Lecture 9

2024-2025

SPEED-UP PERFORMANCE

AND EXAMPLES
Computer Architecture - A Quantitative Approach

John L. Hennessy, David A. Patterson

Chapter 1 - Fundamentals of Quantitative Design and Analysis

Section 1.8 - Measuring, Reporting, and Summarizing Performance

Multicore and GPU programming
G. Barlas

Chapter 1 - Introduction

Advanced Architectures - 2024/2025 2 of 61

Measuring Performance

• When we say one computer is faster than another we can

mean different things:

• response time - also referred to as execution time - the time

between the start and the completion of an event

• The computer user is interested in reducing the response time

• throughput - the total amount of work done in a given time

• The operator of a warehouse-scale computer may be interested in

increasing throughput

Advanced Architectures - 2024/2025 3 of 61

Measuring Performance

• In comparing design alternatives, we often want to relate
the performance of two different computers: X and Y

• When we say X is faster than Y we mean that the
response time or execution time is lower on X than on Y
for the given task

• In particular, X is n times faster than Y will mean:

Execution time 𝑌

Execution time 𝑋
= 𝑛

• Execution time is the reciprocal of performance

Advanced Architectures - 2024/2025 4 of 61

Measuring Performance

• Since execution time is the reciprocal of performance,

the following relationship holds:

𝑛 =
Execution time 𝑌

Execution time 𝑋
=
Performance 𝑋

Performance 𝑌

• The phrase the throughput of X is 1.3 times higher than

Y signifies that the number of tasks completed per unit

time on computer X is 1.3 times the number of tasks

completed on Y

Advanced Architectures - 2024/2025 5 of 61

Measuring Performance

• Unfortunately, time is not always the metric quoted in

comparing the performance of computers

• But (for Hennessy and Patterson) the only consistent

and reliable measure of performance is the execution

time of real programs

• All proposed alternatives to time as a metric or to real

programs as the items measured have eventually led to

misleading claims or even mistakes in computer design

Advanced Architectures - 2024/2025 6 of 61

Measuring Performance

• Even execution time can be defined in different ways

depending on what we count

• The most straightforward definition of time is called

wall-clock time, response time, or elapsed time

which is the latency to complete a task, including disk

accesses, memory accesses, input/output activities,

operating system overhead…

Advanced Architectures - 2024/2025 7 of 61

Measuring Performance

• With multiprogramming, the processor works on another

program while waiting for I/O and may not necessarily

minimize the elapsed time of one program

• Hence, we need a term to consider this activity

• CPU time recognizes this distinction and means the time

the processor is computing, not including the time waiting

for I/O or running other programs

• Clearly, the response time seen by the user is the elapsed

time of the program, not the CPU time

Advanced Architectures - 2024/2025 8 of 61

Measuring Performance

• Benchmarks can be used to measure performance

• The best choice of benchmarks is real applications

• Attempts at running programs much simpler than a real

application have led to performance pitfalls

• Examples include:

• Kernels, which are small, key pieces of real applications

• Toy programs, which are 100-line programs (such as quicksort)

• Synthetic benchmarks, which are fake programs invented to try to

match the profile and behavior of real applications (as Dhrystone)

• All three are discredited today (compiler writer and

architect can conspire to make the computer appear

faster than on real applications)

Advanced Architectures - 2024/2025 9 of 61

Taking advantage of parallelism

• In the design and analysis of computers, we need

• Principles and guidelines

• Observations about design

• Equations to evaluate alternatives

• Taking advantage of parallelism is one of the most

important methods for improving performance

• Parallelism at the system level – scalability

• Parallelism at the level of an individual processor - parallelism

among instructions

• Parallelism at the level of digital design - memories and ALUs

Advanced Architectures - 2024/2025 10 of 61

Taking advantage of parallelism

• Fundamental observations come from properties of

programs

• The most important program property that we regularly

exploit is the principle of locality

• Temporal locality states that recently accessed items are likely

to be accessed in the near future

• Spatial locality says that items whose addresses are near one

another tend to be referenced close together in time

Advanced Architectures - 2024/2025 11 of 61

Taking advantage of parallelism

• An important and pervasive principle of computer design

is to focus on the common case:

• In making a design trade-off, favor the frequent case over the

infrequent case

• This principle applies when determining how to spend

resources, since the impact of the improvement is

higher if the occurrence is frequent

• In applying this simple principle, we have to decide what

the frequent case is and how much performance can be

improved by making that case faster

Advanced Architectures - 2024/2025 12 of 61

Amdahl’s Law

• The performance gain obtained by improving some portion

of a computer can be calculated using Amdahl’s law

• Amdahl’s law:

• states that the time/performance improvement is limited by the

fraction of the time the faster mode can be used

• defines the speedup that can be gained by using a particular

feature

𝒔𝒑𝒆𝒆𝒆𝒅𝒖𝒑 =

=
𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 𝐟𝐨𝐫 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭

𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 𝐟𝐨𝐫 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭 𝐰𝐡𝐞𝐧 𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞

=
𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭 𝐰𝐡𝐞𝐧 𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭

Advanced Architectures - 2024/2025 13 of 61

Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup

from some enhancement, which depends on two factors:

1) The fraction of the computation time in the original computer

that can be converted to take advantage of the enhancement,

that is

Fractionenhanced = time with enhancement / total time

Example:

• A program takes 60 seconds in total

• 20 seconds of the execution time can use an enhancement

• The fraction is: 20/60

• This value is always less than or equal to 1

Advanced Architectures - 2024/2025 14 of 61

Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup

from some enhancement, which depends on two factors:

2) The improvement gained by the enhanced execution mode, that

is, how much faster the task would run if the enhanced mode

were used for the entire program:

Speedupenhanced = original mode time / enhanced mode time

Example:

• A portion of the program in the original mode is 5 seconds

• In the enhanced mode takes 2 seconds

• The improvement is 5/2

• This value is always greater than 1

Advanced Architectures - 2024/2025 15 of 61

Amdahl’s law

• The execution time using the original computer with the

enhanced mode will be the time spent using the

unenhanced portion of the computer plus the time spent

using the enhancement:

• The overall speedup is the ratio of the execution times:

enhanced

enhanced
enhancedoldnew

Speedup

Fraction
)Fraction – (1time Executiontime Execution

enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
)Fraction – (1

1

time Execution

time Execution
Speedup

Advanced Architectures - 2024/2025 16 of 61

Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the

Web serving application than the original processor

• Assume that the original processor is busy with computation

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the

enhancement?

Advanced Architectures - 2024/2025 17 of 61

Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the

Web serving application than the original processor

• Assume that the original processor is busy with computation

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the

enhancement?

Fractionenhanced = 0.4 Speedupenhanced = 10

6.1
0.64

1

10

0.4
0.4)– (1

1

Speedup

Fraction
)Fraction– (1

1
Speedup

enhanced

enhanced
enhanced

overall

Advanced Architectures - 2024/2025 18 of 61

Amdahl’s law

• Amdahl’s law can serve as a guide to understand:

• how much an enhancement will improve performance

• how to distribute resources to improve cost-performance

• The goal is to spend resources proportional to where time

is spent

• Amdahl’s law is useful

• to compare the overall system performance of two

alternatives

• to compare two processor design alternatives

Advanced Architectures - 2024/2025 19 of 61

Example

• A common transformation in graphics processors is

square root

• Implementations of floating-point square root (FPSQR)

vary significantly in performance among processors for

graphics

• Suppose

• FPSQR is responsible for 20% of the execution time of a

critical graphics benchmark and

• FP instructions are responsible for half of the execution time

for the application

Advanced Architectures - 2024/2025 20 of 61

Example

• We want to compare two proposals:

• To enhance the FPSQR hardware and speed up this operation

by a factor of 10

• To try to make all FP instructions in the graphics processor run

faster by a factor of 1.6

• Evaluate and compare these two design alternatives

Advanced Architectures - 2024/2025 21 of 61

Example

• We can compare the speedups

• 1) Speedup of 10 with FPSRT hw

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR

Advanced Architectures - 2024/2025 22 of 61

Example

• We can compare the speedups

• 1) Speedup of 10 with FPSRT hw

• 2) FP operations faster of 1,6 factor

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR

1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP

Advanced Architectures - 2024/2025 23 of 61

Example

• We can the speedups

• 1) Speedup of 10 with FPSRT hw

• 2) FP operations faster of 1,6 factor

• Improving the performance of the FP operations overall is

slightly better because of the higher frequency

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR

1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP

Advanced Architectures - 2024/2025 24 of 61

Amdahl’s law

• When we consider a parallel machine with 𝑁 nodes, the

speedup will be:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑠𝑒𝑞
𝑡𝑝𝑎𝑟

=
𝑇

1 − 𝛼 𝑇 +
𝛼𝑇
𝑁

=
1

1 − 𝛼 +
𝛼
𝑁

• Note that we are ignoring any partitioning or

communication or coordination costs

Advanced Architectures - 2024/2025 25 of 61

Processor Performance Equation

• All computers are constructed using a clock running at a

constant rate

• Discrete time events are called ticks, clock ticks, clock

periods, clocks, cycles, or clock cycles

• Computer designers refer to the time of a clock period by

its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz)

• CPU time for a program can then be expressed two ways:

• CPU time = CPU clock cycles for a program × Clock cycle time

or

• CPU time = CPU clock cycles for a program / Clock rate

Advanced Architectures - 2024/2025 26 of 61

Processor Performance Equation

• We can also count the number of instructions executed -

the instruction path length or instruction count (IC)

• If we know the number of clock cycles (CPU clock

cycles) and the instruction count, we can calculate the

average number of clock cycles per instruction (CPI):

CPI = CPU clock cycles for a program / IC

• From this formula we obtain

• CPU clock cycles for a program = CPI x IC

Advanced Architectures - 2024/2025 27 of 61

Processor Performance Equation

• This allows us to use CPI in the execution time formula and
obtain the performance equation:

• CPU time = IC × CPI × Clock cycle time

• In fact (using the units of measurement) we have:

• Observe that processor performance is equally
dependent upon: clock cycle (or rate), clock cycles per
instruction, and instruction count

 time CPU
Program

Seconds

cycles Clock

Seconds

nsInstructio

cycles Clock

Program

nsInstructio
 time cycle Clock CPI IC

Advanced Architectures - 2024/2025 28 of 61

Processor Performance Equation

• It is useful to calculate the number of total processor clock

cycles as

• where

• ICi is the number of times instruction i is executed in a program

• CPIi is the average number of clocks per instruction for instr. i

i

n

i

i CPIIC cycles clock CPU
1

Advanced Architectures - 2024/2025 29 of 61

Processor Performance Equation

• This expression can be used to express CPU time as

and the overall CPI as

i

n

i

i

i

n

i

i

CPI
count nInstructio

IC

count nInstructio

CPIIC

 CPI

1

1

time cycle ClockCPIIC time CPU i

n

1i
i

Advanced Architectures - 2024/2025 30 of 61

Example

• Suppose we have made the following measurements in

the previous example (of Amdahl’s Law):

• Frequency of FP operations = 25%

• Average CPI of FP operations = 4.0

• Average CPI of other instructions = 1.33

• Frequency of FPSQR = 2%

• CPI of FPSQR = 20

• Assume that the two design alternatives are:

• To decrease the CPI of FPSQR to 2

• To decrease the average CPI of all FP operations to 2.5

• Compare these two design alternatives using the

processor performance equation

Advanced Architectures - 2024/2025 31 of 61

Example

• Observe that only the CPI changes

• The clock rate and instruction count remain identical

• We start by finding the original CPI with no enhancement:

2.0 75%) (1.33 25%) (4

count nInstructio

IC
CPI CPI original

n

i

i
i

1

Advanced Architectures - 2024/2025 32 of 61

Example

• We can compute the CPI for the enhanced FPSQR by

subtracting the cycles saved from the original CPI:

1.64 2)-(20 2% - 2

) CPI- (CPI2%- CPI CPI only FPSR newFPSR oldoriginalFPSR new

Advanced Architectures - 2024/2025 33 of 61

Example

• We can compute the CPI for the enhanced FPSR by

subtracting the cycles saved from the original CPI:

• We can compute the CPI for the enhancement of all FP

instructions (the same way or) by summing the FP and

non-FP CPIs:

• Since the CPI of the overall FP enhancement is slightly

lower, its performance will be marginally better

1.625 75%) (1.33 25%) (2.5 CPI FP new

1.64 2)-(20 2% - 2

) CPI- (CPI2%- CPI CPI only FPSR newFPSR oldoriginalFPSR new

Advanced Architectures - 2024/2025 34 of 61

Example

• The speedup for the FPSQR enhancement is

• The speedup for the overall FP enhancement is

1.23
1.625

2.0

CPI

CPI

CPI cycle Clock IC

CPI cycle Clock IC

time CPU

time CPU
 Speedup

FPnew

original

FPnew

original

FPnew

original

FPnew

1.22
1.64

2.0

CPI

CPI

time CPU

time CPU
 Speedup

FPSR

original

FPSR

original

FPSR

Advanced Architectures - 2024/2025 35 of 61

In summary

• It is often easier to use the processor performance

equation than Amdahl’s law

• In fact,

• It is often possible to measure the constituent parts of the

processor performance equation

• It may be difficult to measure things such as the fraction of

execution time for which a set of instructions is responsible

• In practice, this would probably be computed by summing the

product of the instruction count and the CPI for each of the

instructions in the set

• Hence, the starting point is often individual instruction

count and CPI measurements performance equation

Advanced Architectures - 2024/2025 36 of 61

Gustafson and Barsis’ law

• Two decades after the Amdahl’s law was published,

Gustafson and Barsis noted that several programs were

speeding up exceeding the predicted speedup limits

• They noted that:

• Problem sizes grow as computer becomes more powerful

• As the problem size grows, the work required for the parallel part

frequently grows much faster than the serial part

• So the serial part decreases and the speedup improves

Advanced Architectures - 2024/2025 37 of 61

Gustafson and Barsis’ law

• Gustafson and Barsis managed to examine the problem

from a different point of view

• Instead of examining what a parallel program could do

relatively to a sequential one, we should examine how a

sequential machine would perform if it were required

to solve the same problem that a parallel one can

solve

Advanced Architectures - 2024/2025 38 of 61

Gustafson-Barsis’s law

Assume:

• We have a parallel application that requires T time to

execute on N CPUs

• The application spend 0 ≤ 𝛼 ≤ 1 percent of the total time

running on all machines

• The remaining 1 − 𝛼 has to be done sequentially

Solving the problem on a sequential machine would require

a total time:

𝑡𝑠𝑒𝑞 = 1 − 𝛼 𝑇 + 𝑁𝛼𝑇

as the parallel part now have be done sequentially

Advanced Architectures - 2024/2025 39 of 61

Gustafson-Barsis’s law

• The speedup would be:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑠𝑒𝑞

𝑡𝑝𝑎𝑟
=

1 − 𝛼 𝑇 + 𝑁𝛼𝑇

𝑇
= 1 − 𝛼 + 𝑁𝛼

• And the corresponding efficiency

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

𝑁
=

1 − 𝛼

𝑁
+ 𝛼

• So the 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 has a lower bound of 𝛼 as 𝑁 go to

infinity

Anyway, given the total disregard for the communication

costs, the results for 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 and 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 are

overestimated

Advanced Architectures - 2024/2025 40 of 61

Example

• Assuming a program consists of 50% non-parallelizable

code, compute the speedup when using 2 and 4

processors according to: Gustafson’s law and Amdahl’s law

Advanced Architectures - 2024/2025 41 of 61

Example

• Assuming a program consists of 50% non-parallelizable

code, compute the speed-up when using 2 and 4

processors according to: Gustafson’s law and Amdahl’s law

• Gustafson’s law

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 2 ∙

1

2
= 1,5

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 4 ∙

1

2
= 2,5

Advanced Architectures - 2024/2025 42 of 61

Example
• Assuming a program consists of 50% non-parallelizable code, compute

the speed-up when using 2 and 4 processors according to: Gustafson’s
law and Amdahl’s law

• Gustafson’s law

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 2 ∙

1

2
= 1,5

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 4 ∙

1

2
= 2,5

• Amdahl’s law

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 =
1

1 − 𝛼 +
𝛼
𝑁

=
1

1 −
1
2

+
1
4

=
1

3
4

≅ 1,33

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 =
1

1 − 𝛼 +
𝛼
𝑁

=
1

1 −
1
2

+
1
8

=
1

5
8

≅ 1,6

Advanced Architectures - 2024/2025 43 of 61

Example

Considerations to understand why speedup results are

different

• Gustafson’s law assumes that the parallel part of the

program increases with the problem size and the

sequential part stays fixed

• Amdahl’s law sees the percentage of non-parallelizable

code as a fixed limit for the speedup, even if we had an

infinite amount of processors, according to Amdahl’s law,

the speedup would never be greater than 2

Advanced Architectures - 2024/2025 44 of 61

COMMUNICATION

PERFORMANCE
Parallel Computer Architecture: A Hardware/Software Approach

D.E. Culler , J. P. Singh , A. Gupta Morgan Kaufmann, 1998

Chapter 1 - Introduction

Section 1.4 – Fundamental Design Issues
Section 1.4.6 – Performance

Advanced Architectures - 2024/2025 45 of 61

• In evaluating architectural trade-offs, the decision between

feasible alternatives rests upon their performance

• Programmers and compiler writers will avoid costly

operations where possible

• To have a complete vision of the fundamental issues of

parallel computer architecture, we need to understand

performance at many levels of design

• Fundamentally, there are three performance metrics:

• Latency: time taken for an operation

• Bandwidth: rate of performing operations

• Cost: impact on execution time of program

Communication Performance

Advanced Architectures - 2024/2025 46 of 61

• If the processor does one thing at a time these metrics

are directly related:

• bandwidth (operation per second) is about

1/latency (seconds per operation)

• cost is simply latency x number of operations

• But actually it is more complex in modern systems

• Modern computer systems do many different operations

at once and the relationship between these performance

metrics is much more complex

Communication Performance

Advanced Architectures - 2024/2025 47 of 61

• Characteristics apply to overall operations, as well as

individual components of a system

• Since the unique property of parallel computer

architecture is communication, the operations that we

are concerned with most often are data transfers

Communication Performance

Advanced Architectures - 2024/2025 48 of 61

• The time for a data transfer operation is generally

described by a linear model:

• Transfer time (n) = T0 + n/B

• n is the amount of data (e.g. number of bytes),

• B is the transfer rate of the component moving the data (e.g.

bytes per second),

• the constant term T0 is the start-up cost

• This is a very convenient model, and it is used to

describe a diverse collection of operations: messages,

memory accesses, bus transactions, and vector

operations

Linear Model of Data Transfer Latency

Advanced Architectures - 2024/2025 49 of 61

• It applies in many aspects of traditional computer

architecture, as well

• In such a case, we can observe that the transfer time:

• For memory operations, it is essentially the access

time

• For bus transactions, it reflects the bus arbitration

and command phases

• For any sort of pipelined operation, including

pipelined instruction processing or vector operations,

it is the time to fill pipeline

Linear Model of Data Transfer Latency

Advanced Architectures - 2024/2025 50 of 61

• But a linear model is not enough:

• It does not give any indication when the next such

operation can be initiated

• It does not indicate whether other useful work can be

performed during the transfer

• These other factors depend on how the transfer is

performed:

• Hence we need to know how transfer is performed

Linear Model of Data Transfer Latency

Advanced Architectures - 2024/2025 51 of 61

• The data transfer most interesting in parallel machines is

the one that occurs across the network

• It is initiated by the processor through the

communication assist

• The essential components of this operation can be

described by the following simple model:

Communication Time (n) =

= Overhead + Network Delay + Occupancy

Communication Cost Model

Advanced Architectures - 2024/2025 52 of 61

• As we know, a generic parallel machine organization

comprises a collection of essentially complete computers,

each with one or more processors and memory,

connected through a scalable communication network

• The communications assist is some kind of controller or

auxiliary processing unit which assists in generating

outgoing messages or handling incoming messages

• There is great diversity (and debate) as to what

functionality should be provided within the assist and how

it interfaces to the processor, memory system, and

network

Communication Cost Model

Advanced Architectures - 2024/2025 53 of 61

Communication Time (n) =

= Overhead + Network Delay + Occupancy

• The Overhead is the time the processor spends initiating

the transfer

• It may be a fixed cost, if the processor simply has to tell the

communication assist to start

• It may be linear in n, if the processor has to copy the data into

the assist

• The Overhead represents the time the processor:

• is busy with the communication event

• cannot do other useful work or initiate other communication

Communication Cost Model

Advanced Architectures - 2024/2025 54 of 61

Communication Time (n) =

= Overhead + Network Delay + Occupancy

• The remaining portions of the communication time is

considered the network latency

• It is the part that can be hidden by other processor

operations

• We can distinguish the two components Network Delay

and Occupancy

Communication Cost Model

Advanced Architectures - 2024/2025 55 of 61

Communication Time (n) =

= Overhead + Network Delay + Occupancy

• The Occupancy is the time it takes for the data to pass

through the slowest component on the communication path:

• For example, each link that is traversed in the network will be

occupied for time n/B, where B is the bandwidth of the link

• The data will occupy other resources, including buffers, switches, and

the communication assist that is often the bottleneck that determines

the occupancy

• The occupancy limits how frequently communication operations can

be initiated

• The next data transfer will have to wait until the critical resource is no

longer occupied before it can use that same resource

Communication Cost Model

Advanced Architectures - 2024/2025 56 of 61

Communication Time (n) =

= Overhead + Network Delay + Occupancy

• The remaining communication time is the Network Delay,
which includes:

• The time for a bit to be routed across the actual network

• And other factors, such as the time to get through the
communication assist

• From the processors viewpoint, the specific hardware
components contributing to network delay are indistinguishable

• The task of designing the network and its interfaces is very
concerned with the specific components and their contribution
to the aspects of performance that the processor observes

Communication Cost Model

Advanced Architectures - 2024/2025 57 of 61

Communication Time (n) =

= Overhead + Network Delay + Occupancy

• This equation gives a very general model, and can be used to

describe data transfers in many situations in computer systems

• For example, consider the time to move a block between cache and

memory on a miss:

• The overhead is the time the cache controller spends inspecting the

tag to determine that it is not a hit and then starting the transfer

• The occupancy is the block size divided by the bus bandwidth, unless

there is some slower component in the system

• The delay includes the normal time to arbitrate and gain access to the

bus plus the time spent delivering data into the memory

• Additional time spent waiting to gain access to the bus or wait for the

memory bank cycle to complete is due to contention

Communication Cost Model

Advanced Architectures - 2024/2025 58 of 61

• A useful model connecting the program characteristics to

the hardware performance is given by

Communication Cost =

frequency * (Comm. time - overlap)

• The frequency of communication:

• Is defined as the number of communication operations per unit of

work in the program

• It depends on many programming factors and many hardware

design factors

Communication Cost Model

Advanced Architectures - 2024/2025 59 of 61

Communication Cost =

= frequency * (Comm. time - overlap)

Note that:

• Hardware may:

• limit the transfer size and determine the min number of messages

• replicate data or migrate it to where it is used

• A certain amount of communication is inherent to parallel

execution, since data must be shared and processors must

coordinate their work

• A machine can support programs with a high communication

frequency if the other parts of the communication cost are

small: low overhead, low network delay, and small occupancy

Communication Cost Model

Advanced Architectures - 2024/2025 60 of 61

Communication Cost =

= frequency * (Comm. time - overlap)

• The overlap is the portion of the communication operation

which is performed concurrently with other useful work,

including computation or other communication

• This reduction of the effective cost is possible because much of the

communication time involves work done by components of the

system other than the processor, such as the network interface unit,

the bus, the network or the remote processor or memory

• Overlapping communication with other work is a form of small scale

parallelism

Communication Cost Model

Advanced Architectures - 2024/2025 61 of 61

