
GPUs II
Exam exercises

Agenda

Exercises!
Introduction

and slight
recall

Matrix
multiplication

Intro
The exam takeover from
the previous lesson

On the previous episode…

● Blocks, threads, grid

On the previous episode…

● Blocks, threads, grid

● Compute capability

Threads

In CUDA, a logic thread = a physical core

Threads

In CUDA, a logic thread = a physical core
You can picture a thread as the smallest unit being

executed at a time

Threads

In CUDA, a logic thread = a physical core
You can picture a thread as the smallest unit being

executed at a time

We have a huge number of threads/cores and thus
execution needs to group them under a logical

structure

This ensure the parallelism of execution up to a
certain point, thus this leads us towards…

Blocks

A block is a logical (and physical) group of threads

Blocks

A block is a logical (and physical) group of threads

They group many cores running inside the same SM

Blocks

A block is a logical (and physical) group of threads

They group many cores running inside the same SM

Instruction pointer is shared amongst them

Grid
Computation gets so big that another logical

grouping is needed, the Grid

Grid
Computation gets so big that another logical

grouping is needed, the Grid

The Grid is yet another logical grouping of Blocks

Take away from this

A thread is just an element of a block

Take away from this

A thread is just an element of a block

A block is an element of the grid

Take away from this

A thread is just an element of a block

A block is an element of the grid

Each of them uses 3d indexing

(Next slide is
a full page

on this
image)

Indexing (z-axis misses for clarity)

Compute capability
Over the years new hardware was introduced and
thus each GPU was differently capable than the

previous one

Compute capability
Over the years new hardware was introduced and
thus each GPU was differently capable than the

previous one

This number represents the “power” of each device,
the bigger, the better.

Matrix
multiplication
The heart of 3d
graphics

Rows times columns

Not a math class, but genuine question…

Rows times columns

Not a math class, but genuine question…

Why?

(Extra) try it yourself!

Write down two matrices (2x2 for simplicity)

(Extra) try it yourself!

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

(Extra) try it yourself!

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

Now apply B to the result like B(Ax)

(Extra) try it yourself!

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

Now apply B to the result like B(Ax)

In principle the result should be equal to the operation
BA(x), you’ll see the formula naturally appear!

(Extra) try it yourself!

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

Now apply B to the result like B(Ax)

In principle the result should be equal to the operation
BA(x), you’ll see the formula naturally appear!

This but faster

Each dot product depends on the previous result…

This but faster

Each dot product depends on the previous result…

…But each row times the column is independent!

This but faster

Each dot product depends on the previous result…

…But each row times the column is independent!

Same operation with different data, HUGE GPU
playground

The slow implementation
void matrix_mul(int*a, int * b, int width, int height){

for(int i=0;i<width;i++)
for(int j=0;j<height;j++){

int sum=0;
for(int k=0;k<height;k++){

int a = A[i * width + k];
int b = B[k * height + j];
sum += a*b;

}
B[i*width+j]=sum;

}
}

Why is it slow?

~O(n^3)

Why is it slow?

~O(n^3)

For large matrices (100.000x100.000) this is
already a problem

We can do better

The GPU implementation!
VSCODE incoming

Tiling

Exercises
Past years exam
exercises

Exercise 1, indexing

Describe how to obtain a unique ID for each
thread by using the block ID and thread ID, in

the case of a 2D grid and 3D blocks

Exercise 1, indexing

Describe how to obtain a unique ID for each
thread by using the block ID and thread ID, in

the case of a 2D grid and 3D blocks

ID = threadIdx.x +
blockDim.x * (threadIdx.y +
blockDim.y * (threadIdx.z +
blockDim.z * (blockIdx.x +
gridDim.x * blockIdx.y

)))

Exercise 2, thread scheduling

Assume a CUDA device allowing 8 blocks, 1024
threads per SM and 512 threads in each block

● For matrix multiplication, should we use
8x8, 16x16 or 32x32?

● Analyze the pros and cons of each choice

Exercise 2, thread scheduling
● 8x8

this means 8x8 = 64 threads per block
each SM have 1024 threads
1024 / 64 = 16 blocks, but we have 8 per SM

Exercise 2, thread scheduling
● 8x8

this means 8x8 = 64 threads per block
each SM have 1024 threads
1024 / 64 = 16 blocks, but we have 8 per SM

● 16x16
this means 16x16 = 256 threads per block
1024 / 256 = 4 blocks

Exercise 2, thread scheduling
● 8x8

this means 8x8 = 64 threads per block
each SM have 1024 threads
1024 / 64 = 16 blocks, but we have 8 per SM

● 16x16
this means 16x16 = 256 threads per block
1024 / 256 = 4 blocks

● 32x32
It’s not even schedulable

Exercise 3, gpu capabilities

You need to write a kernel that operates on an image represented by
a matrix of size 1440x1280x24. You would like to assign one thread to
each matrix element. You would like your thread blocks to use the
maximum number of threads per block possible on your device.

● How would you select the dimensions of a 2D grid and 2D
rectangular blocks for your kernel, minimizing the number of idle
threads? Consider a device having compute capability 1.3.

● b) How would you select the dimensions of a 2D grid and 3D
blocks with the three sides all equal for your kernel, minimizing
the number of idle threads? Consider a device having compute
capability 3.5

Exercise 3, gpu capabilities

Exercise 3, gpu capabilities
max block size = 512 = 2 ** 9
we can split in half
● x = 2**4
● y = 2**5

gridDim.x = 1440 / x = 90
gridDimy = (1280 * 24) / y = 960

We can do better with 2**3 and 2**6
gridDim.x = 180
gridDim.y = 480

Exercise 3, gpu capabilities
max block size = 1024 = 2 ** 10
we can split in three
● x = 2**3
● y = 2**4
● z = 2**3

gridDim.x = 1440 / x = 180
gridDim.y = (1280 * 24) / (y * z) = 240

The End

