P\
"R

rcises

e ——"
ol

ﬁ
]

exe

Introduction

d sliaght Matrix .
onrescl& multiplication Exercisest

e\
"R

over from

S

|
|
y

m tak

|

On the previous episode...

e Blocks, threads, grid

On the previous episode...

e Blocks, threads, grid

e Compute capability

Threads

In CUDA, a logic thread = a physical core

Threads

In CUDA, a logic thread = a physical core

You can picture a thread as the smallest unit being
executed at a time

Threads

In CUDA, a logic thread = a physical core

You can picture a thread as the smallest unit being
executed at a time

We have a huge number of threads/cores and thus
execution needs to group them under a logical
structure

This ensure the parallelism of execution up to a
certain point, thus this leads us towards...

Blocks

A block is a logical (and physical) group of threads

Blocks

A block is a logical (and physical) group of threads

They group many cores running inside the same SM

Blocks

A block is a logical (and physical) group of threads

They group many cores running inside the same SM

Instruction pointer is shared amongst them

Grid

Computation gets so big that another logical
grouping is needed, the Grid

Grid

Computation gets so big that another logical
grouping is needed, the Grid

The Grid is yet another logical grouping of Blocks

Take away from this

A thread is just an element of a block

Take away from this

A thread is just an element of a block

A block is an element of the grid

Take away from this

A thread is just an element of a block
A block is an element of the grid

Each of them uses

GRID LEVEL BLOCK LEVEL
dex of block iny threadldx.y = index of thread in y

(Next slide is oo I | —m
a full page | |
on this
image)

(1,00) | (1,1,0)
1] (6]

=X

(20,0 | (2,10
2] 71

(2,3,0
(17

(3,00 | (31,0)
Bl 8]

(3,3,0
(18]

1 $320]q Jo Jaquinu

x
3
~
S
)
5]
x
o]
°
=
n
x
x
=
=
]
S
]

threadldx.x = index of thread in x
X Ul SPEaJy} JO JAqINU = X'Wwigy20|q

(4,20) | (43,0
(9] 9] [14] (19]

G=

—==——
gy gptimer oflocen e blockDim.y = number of threads iny =5

Indexing (z-axis misses for clarity)

GRID LEVEL BLOCK LEVEL
blockldx.y = index of block in y threadldx.y = index of thread iny

(O’O:O) (011'0) (01210) (01310) ot (0'010) (01110) (01210) (01310) (07410>
(0] (5] (10] (0] (5] (10] (15] (20]

(1,0,0) | (1,1,0) | (3,20) | (1,3,0) | (1,4,0)

(1,00) | (1,1,0) | (1,20) |42
& (1] (6] (1] (16] [21]

(1] (6]

(200) | (2,1,0) | (2,20) | (230) | (24,0)
(2] (7] [12] (17] [22]

(2,00) | (2,1,0)
(2] (7] (17]

(3,00 | (310 | (320 | (330 | (34,0)
3] (8] (13] (18] (23]

(3,0,0) (3,1,0) Z2,9)., | (3,3,0)
Bl | @ -418)

threadldx.x = index of thread in x
X Ul SPeaJy} JO Jaquinu = X'Wi@y20|q

=X Ul $Y20|q J0 JAqWINU = X'WIgP!

>
=
.4
o
9
o
—
o
>
O]
©
£
Il
x
x
2
£
o
o
re)

(41050) (4I1I0) = (413I0) e (4I0I0) (4I1I0) (4,2,0) (4,3,0) (4I4I0)
[4) (9] (19] Rl [9] (14] | [19] | (4]
‘ 1 . -

S3
G=

gridDim.y = number of blocks iny = 4 blockDim.y = number of threads iny =5

Compute capability

Over the years new hardware was introduced and
thus each GPU was differently capable than the
previous one

Compute capability

Over the years new hardware was introduced and
thus each GPU was differently capable than the
previous one

This number represents the “power” of each device,
the bigger, the better.

. graphics

Rows times columns

Not a math class, but genuine question...

Rows times columns

Not a math class, but genuine question...

10 11
3 X |20 21
30 31

1x10 +2x20 + 3x30 1x11 + 2x21 + 3x31
4x10 +5x20 + 6x30 4x11 + 5x21 + 6x31

10+40+90 11+42+93 140 146
40+100+180 44+105+186 320 335

Why?

(Extra) try it yourselfl

Write down two matrices (2x2 for simplicity)

(Extra) try it yourselfl

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

(Extra) try it yourselfl

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

Now apply B to the result like B(Ax)

(Extra) try it yourselfl

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

Now apply B to the result like B(Ax)

In principle the result should be equal to the operation
BA(x), yoU'll see the formula naturally appear!

(Extra) try it yourselfl

Write down two matrices (2x2 for simplicity)

Compute a linear operator like Ax

Now apply B to the result like B(Ax)

In principle the result should be equal to the operation
BA(x), yoU'll see the formula naturally appear!

This but faster

Each dot product depends on the previous result...

This but faster

Each dot product depends on the previous result...

..But each row times the column is independent!

This but faster

Each dot product depends on the previous result...

..But each row times the column is independent!

Same operation with different data, HUGE GPU
playground

The slow implementation

void matrix_mul(int*q, int * b, int width, int height){
for(int i=0;icwidth;i++)
for(int j=0;j<height;j++){

int sum=0;

for(int k=0;k<height;k++){
int a = Ali * width + k];
int b =B[k * height +j];
sum += a*b;

}
Bli*width+j]=sum;

Why is it slow?

~O(n*3)

Why is it slow?
~O(n"3)

For large matrices (100.000x100.000) this is
already a problem

We can do better

The GPU implementation!
VSCODE incoming

matrix

Matrix A Matrix B Matrix C

| Outer loop over tiles Inner loop over elements Temporary result tile

Current tile in outer loop | | Current element in inner loop

Exercise 1, indexing

Describe how to obtain a unique ID for each
thread by using the block ID and thread ID, in
the case of a 2D grid and 3D blocks

Exercise 1, indexing

Describe how to obtain a unique ID for each
thread by using the block ID and thread ID, in
the case of a 2D grid and 3D blocks

ID = threadldx.x +

blockDim.x * (threadldx.y +
blockDim.y * (threadldx.z +
blockDim.z * (blockldx.x +
gridDim.x * blockldx.y

))

Exercise 2, thread scheduling

Assume a CUDA device allowing 8 blocks, 1024
threads per SM and threads in each block

. For matrix multiplication, should we use
8x8, 16x16 or 32x327
. Analyze the pros and cons of each choice

Exercise 2, thread scheduling

. 8x8

this means 8x8 = 64 threads per block
each SM have 1024 threads
1024 / 64 =16 blocks, but we have 8 per SM

Exercise 2, thread scheduling

. 8x8

this means 8x8 = 64 threads per block
each SM have 1024 threads
1024 / 64 =16 blocks, but we have 8 per SM

. 16x16

this means 16x16 = 256 threads per block
1024 / 256 = 4 blocks

Exercise 2, thread scheduling

. 8x8

this means 8x8 = 64 threads per block
each SM have 1024 threads
1024 / 64 =16 blocks, but we have 8 per SM

. 16x16

this means 16x16 = 256 threads per block
1024 / 256 = 4 blocks

. 32x32

It's not even schedulable

Exercise 3, gpu capabilities

You need to write a kernel that operates on an image represented by
a matrix of size 1440x1280x24. You would like to assign one thread to
each matrix element. You would like your thread blocks to use the
maximum number of threads per block possible on your device.

e How would you select the dimensions of a 2D grid and 2D
rectangular blocks for your kernel, minimizing the number of idle
threads? Consider a device having compute capability 1.3.

e b) How would you select the dimensions of a 2D grid and 3D
blocks with the three sides all equal for your kernel, minimizing
the number of idle threads? Consider a device having compute
capability 3.5

Exercise 3, gpu capabilities

Technical specifications

Compute capability (version)

1.2

1.3

2.X

3.0

35

Maximum dimensionality of grid of thread blocks

Maximum x-dimension of a grid of thread blocks

Maximum y-, or z-dimension of a grid of thread blocks

Maximum dimensionality of thread block

Maximum x- or y-dimension of a block

Maximum z-dimension of a block

Maximum number of threads per block

Warp size

Maximum number of resident blocks per multiprocessor

Maximum number of resident warps per multiprocessor

12

48

Maximum number of resident threads per multiprocessor

1024

1536

2048

Technical specifications

1.2

1.3

2.xX

3.0

3.5

3.7

Compute capability (version)

Exercise 3, gpu capabilities

max block size =0512=2"9
we can split in half

. X=2"4

. y=2"5

gridDim.x =1440 / x =90
gridDimy = (1280 * 24) / y = 960

We can do better with 2**3 and 2**6
gridDim.x =180
gridDim.y = 480

Exercise 3, gpu capabilities

max block size =1024 =2 " 10

we can split in three

. X=2"3

. y=2"4

. 2=2"3

gridDim.x =1440 / x = 180
goridDim.y = (1280 " 24) / (y " z) = 240

The End

T END

