
GPUs
More than gaming

Agenda

ArchitectureIntroduction Cuda Practice

Intro
Why do these things
even exist

Welcome to the 70’s

Not the 70’s we’re interested in

Welcome to the 70’s

Not the 70’s we’re interested in

Welcome to the 70’s

Now we talking

In a nutshell? Gaming.
You may have heard that gaming is what drove the industry
forward to create more powerful dedicated hardware

In a nutshell? Gaming.
You may have heard that gaming is what drove the industry
forward to create more powerful dedicated hardware

And this is precisely right

The pre-GPU era
Early gpus were nothing more than super-specialized custom
hardware to draw pixels on screen

The pre-GPU era
Early gpus were nothing more than super-specialized custom
hardware to draw pixels on screen

This would free up the more slow cpu so that a not-so-powerful
overall cpu was needed

The pre-GPU era
Early gpus were nothing more than super-specialized custom
hardware to draw pixels on screen

This would free up the more slow cpu so that a not-so-powerful
overall cpu was needed

Making the hardware for the cabinet way less expensive

Things escalated quickly

In the 80’s Gpus could perform way
more tasks meeting the demand to
display color

Things escalated quickly

In the 80’s Gpus could perform way
more tasks meeting the demand to
display color

In the 90’s 3d rendering was
already possible by such devices

Moar than just Moar performance

I would like to briefly break
down what a specialized
chip would do to make
something like crash
bandicoot possible.

Triangles

I bet you already know that
each 3d model is composed
of triangles.

Triangles

I bet you already know that
each 3d model is composed
of triangles.

Such shapes hold (obviously)
3 vertices

Coordinates and operations

Each vertice holds 3 coordinates
in a 3d environment

Coordinates and operations

Each vertice holds 3 coordinates
in a 3d environment

On each frame such triangles
move, in particular

Coordinates and operations

They rotate.

Coordinates and operations

They rotate

They shrink/enlarge
(scale)

Coordinates and operations

They rotate

They shrink/enlarge
(scale)

They get projected onto the
screen

Coordinates and operations

All of this with the help of simple first year linear algebra
maths: matrices

The need for speed™
Scenes in the 90’s typically contained about 40K+ triangles

The need for speed™
Scenes in the 90’s typically contained about 40K+ triangles

Each frame needed to be computed in about 33.33 ms

The keypoint
All of these operations can be done simultaneously

A chip to perform such task does not need to do
everything a cpu can, just some multiplication/division for
a huge number of objects in parallel

Modern Gpus

Thus “modern” gpus
were born

In the meantime…

CPU History

How to get faster programs?

CPU History

How to get faster programs?
Just make the CPU faster.

CPU History

Does it actually work?

CPU History

Does it actually work?
Kinda

CPU History

Does it actually work?
Kinda

What are the limitations?

CPU History

Does it actually work?
Kinda

What are the limitations?
Physics

CPU History

More Frequency =

CPU History

CPU History

Maybe we need to find another way?

CPU History

Maybe we need to find another way?
We could go parallel

It’s Multicore Time

Average Multicore
Experience:

Multicore

Multicore CPU
Architecture ->

Multicore

Not enough?

Multicore

Not enough?
We need more hardware

Multicore

Not enough?
We need more hardware

Maybe a dedicated one…

Multicore

Not enough?
We need more hardware

Maybe a dedicated one…
WAIT!! WE HAVE GPUS!!

CPU vs GPU

GPU

What is this?

GPU

What is this?
Obviously a Warp!

GPU

What is this?
Obviously a Warp!

A Warp is a collection
of 32 cuda cores

GPU

What is this?
Obviously a Warp!

A Warp is a collection
of 32 cuda cores
Every Warp shares the IP

(The Instruction Pointer
not the network address)

GPU

What is this?
Obviously a Warp!

A Warp is a collection
of 32 cuda cores
Every Warp shares the IP

(The Instruction Pointer
not the network address)

Is this a problem?

GPU

What is this?
Obviously a Warp!

A Warp is a collection
of 32 cuda cores
Every Warp shares the IP

(The Instruction Pointer
not the network address)

Is this a problem?
Yes, it can be

The Enemy

The Enemy

IF

Divergence

What happens if there is a
branch in the execution flow?

Divergence

What happens if there is a
branch in the execution flow?

We have an event called divergence

Divergence

What happens if there is a
branch in the execution flow?

We have an event called divergence

Divergence

What happens if there is a
branch in the execution flow?

We have an event called divergence

they are executed
sequentially

Some clarifications…

In gpus:

Some clarifications…

In gpus:

Threads = Cores (Cuda cores)

Some clarifications…

In gpus:

Threads = Cores (Cuda cores)

Thread block = Streaming Multiprocessor

Some clarifications…

In gpus:

Threads = Cores (Cuda cores)

Thread block = Streaming Multiprocessor

Kernel Grid = The GPU

Little drawing on this

Scheduling
Now that we know this…
How we actually run threads?

Scheduling
Now that we know this…
How we actually run threads?

We can use…

The Grid

The Grid
A grid is a 3D space
composed by blocks

The Grid
A grid is a 3D space
composed by blocks

A block is a 3D
space made out of
threads

The Grid
A grid is a 3D space
composed by blocks

A block is a 3D
space made out of
threads

From an hardware
POV, a block is
made out of warps

Memory
Ok… Now we can run
programs, but where
do we store the data?

Memory
Ok… Now we can run
programs, but where
do we store the data?

Memory

● Texture memory
● Constant memory
● Global memory
● Shared memory
● Local memory
● Cache
● Registers

We have a lot of
memory types here:

Memory
● Texture

It’s a global memory,
and it’s used to store
textures (it’s also
optimized for them)

Memory
● Texture

It’s a global memory,
and it’s used to store
textures (it’s also
optimized for them)

● Constant
It’s a read-only global
memory

Memory
● Texture

It’s a global memory,
and it’s used to store
textures (it’s also
optimized for them)

● Constant
It’s a read-only global
memory

● Global
It’s a global memory
similar to our
standard heap

Memory
● Texture

It’s a global memory,
and it’s used to store
textures (it’s also
optimized for them)

● Constant
It’s a read-only global
memory

● Global
It’s a global memory
similar to our
standard heap

● Shared
It’s a memory shared
between threads
inside a block

Memory
● Texture

It’s a global memory,
and it’s used to store
textures (it’s also
optimized for them)

● Constant
It’s a read-only global
memory

● Global
It’s a global memory
similar to our
standard heap

● Shared
It’s a memory shared
between threads
inside a block

● Local
It’s a thread local
memory used like the
traditional stack

Texture memory

What does it mean that this memory is “optimized for textures”?

Texture memory

What does it mean that this memory is “optimized for textures”?

First, some debunking, texture memory as “dedicated memory
for textures” does not exist

Texture memory

What does it mean that this memory is “optimized for textures”?

First, some debunking, texture memory as “dedicated memory
for textures” does not exist

We refer to texture memory as global memory for which there’s
a dedicated cache that uses a spatial locality policy, which in
case of texture workloads (not only), can really speed up reads.

Texture memory

What does it mean that this memory is “optimized for textures”?

First, some debunking, texture memory as “dedicated memory
for textures” does not exist

We refer to texture memory as global memory for which there’s
a dedicated cache that uses a spatial locality policy, which in
case of texture workloads (not only), can really speed up reads.

Such cache is READ ONLY, so not every application will
benefit, also has some hardware enhancements to deal
with on-fly decompression etc…

Constant memory
Constant memory follows the same fate, in a sense that it
does not really exist and is part of global memory…

Constant memory
Constant memory follows the same fate, in a sense that it
does not really exist and is part of global memory…

but

Constant memory
Constant memory follows the same fate, in a sense that it
does not really exist and is part of global memory…

but

It is cached in special 64K read only block

Constant memory
Constant memory follows the same fate, in a sense that it
does not really exist and is part of global memory…

but

It is cached in special 64K read only block

It supports broadcasting of a single value within all the
elements of a warp, providing near-register-speed access when
all threads access the same element at the same time

Global memory

VRAM.

Shared memory

Blazingly fast on-chip memory.

Shared memory

Blazingly fast on-chip memory.

According to NVIDIA, memory latency can get down to 100x
smaller *compared to uncached Global memory

Shared memory

Blazingly fast on-chip memory.

According to NVIDIA, memory latency can get down to 100x
smaller *compared to uncached Global memory

Threads within a thread block can access shared memory
loaded in from other threads, giving the user the ability to
create and manage caches

Local memory
Threads can have their own local memory, isolated from other
threads

Local memory
Threads can have their own local memory, isolated from other
threads

Such memory isn’t particularly fast…
(similar speeds to the global memory)

Memory

Are we done with memories?

Memory

Are we done with memories?
Well…

Zero-Copy Memory

What is this?

Zero-Copy Memory

What is this?
This is a page-locked memory

It’s pinned in memory, so it cannot be swapped

Zero-Copy Memory

What is this?
This is a page-locked memory

It’s pinned in memory, so it cannot be swapped

The GPU access this memory directly into the CPU’s RAM

Memory

ARE WE DONE NOW??

Memory

ARE WE DONE NOW??

Unified Memory

Also known as Managed Memory

Unified Memory

Also known as Managed Memory

This maps memory in both CPU and GPU memory

Unified Memory

Also known as Managed Memory

This maps memory in both CPU and GPU memory

On page fault copies automatically the memory

Unified Memory

Also known as Managed Memory

This maps memory in both CPU and GPU memory

On page fault copies automatically the memory
Cons: initial fault latency

Memories

Now We’re done FR

Memories

Now We’re done FR

Atomic

What if we want to do something simple like
var += result

with var as something shared

Atomic

What if we want to do something simple like
var += result

var ->

Atomic

What if we want to do something simple like
var += result

We can go Atomic!

Atomic

What if we want to do something simple like
var += result

We can go Atomic!

We have the standard atomic operations

Atomic

What if we want to do something simple like
var += result

We can go Atomic!

We have the standard atomic operations
● Bitwise
● Arithmetical
● Compares
● And more…

Now Practice!
Me ssh-ing into toms docker and
performing sudo rm -rf /:

The End

