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QUANTUM SYSTEMS
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Quantum Computing

• Quantum computing exploits quantum-mechanical effects – in 
particular superposition and entanglement – to more efficiently 
execute a computation

• Theory of quantum mechanics originated from the crisis arisen 
in physics and ended in the early 1920s after a quarter century 

• Quantum mechanics allows the calculation of properties and 
behaviour of physical systems

• Quantum mechanics has been an indispensable part of science 
ever since, and has been applied to everything including the 
structure of the atom, nuclear fusion in stars, superconductors, 
the structure of DNA, and the elementary particles of nature
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Quantum Computing

• Quantum mechanics is a mathematical framework or set of 
rules for the construction of physical theories

• For example, quantum electrodynamics describes with fantastic 
accuracy the interaction of atoms and light, and is built up within 
the framework of quantum mechanics and contains specific rules 
not determined by quantum mechanics

• Quantum computing basically deals with the manipulation of 
quantum systems

• The ability to control single quantum systems is essential to 
exploit the power of quantum mechanics to quantum computing
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Quantum Computing

• Compared to traditional digital computing, quantum 
computing offers the potential to dramatically reduce both
execution time and energy consumption

• We will define the common terms and concepts used for 
quantum computing

• We will not discuss how the constructs are related to the 
foundations of quantum mechanics
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Quantum Computing

• In the mathematical formulation of quantum mechanics, the 
state of a quantum mechanical system is:
• a vector 𝝍 belonging to a (separable) complex Hilbert space 𝓗

• vector 𝝍 is postulated to be normalized under the inner product and it is 
well-defined up to a complex number of modulus 1 (the global phase)

• Physical quantities of interest – position, momentum, energy, spin – are 
represented by observables, which are Hermitian linear operators acting 
on the Hilbert space

• A complex Hilbert space is a complex vector space with an inner product which is also 
complete with respect to the norm defined by the inner product (complete here 
means that every Cauchy sequence of vectors converges to a vector in the sense that 
the norm of differences approaches zero)

• The inner product between the vectors  𝑣 = 𝑣0 ⋯ 𝑣𝑁−1 𝑇 and 𝑤 = 𝑤0 ⋯ 𝑤𝑁−1
𝑇

(𝑇 denotes transpose so 𝑣 and 𝑤 are vectors column vectors) is given by σ0
𝑁−1𝑣𝑖𝑤𝑖

∗

where * denotes the complex conjugate 
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Quantum Computing

• The elementary unit of quantum information and the basic building 
block of quantum computation is the qubit, short for quantum bit 

• The qubit can be seen as the quantum mechanical generalization of a 
bit used in classical computers

• More precisely, a qubit is a two-dimensional quantum system

• The qubit can be prepared, manipulated and measured in a 
controlled way

• A quantum computer can be seen as a collection of n qubits and its 
wave function (mathematical description of the quantum state of an 
isolated quantum system, complex-valued) resides in a 2n-dimensional 
complex Hilbert space
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Quantum Computing

• We said that the state of any quantum system is always 
represented by a vector in a complex vector space, the Hilbert 
space of wave functions

• Quantum algorithms are always expressible as transformations
acting on the Hilbert vector space of wave functions

• For quantum computing we need only deal with finite quantum 
systems 

• It suffices to consider finite dimensional complex vector spaces 
with an inner product

Advanced Architectures/Intensive Computation - 2023/2024 9 of 104



Quantum Computing

• Quantum state spaces and the tranformations acting on them 
can be described in terms of vectors and matrices respectively

• Qubit are represented using the bra-ket notation invented by 
Paul Dirac

• ket is for column vectors: ȁ ۧ𝑥 =
𝑥0
𝑥1

• bra is for row vectors: ۦ ȁ𝑥 = 𝑥0 𝑥1

• Any ket ȁ ۧ𝑥 has a corresponding bra ۦ ȁ𝑥

• We can convert between them using the conjugate transpose 
(denoted by the ∗ or † operation) , that is the vector is 
transposed and the elements are complex conjugated
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Quantum Computing

• A fundamental feature of the quantum theory is that it usually 
cannot predict with certainty what will happen, but only give 
probabilities

• Mathematically, a probability is found by taking the square of 
the absolute value of a complex number, known as a 
probability amplitude
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QUBITS
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Qubit
• Just as a classical bit has a state – either 0 or 1 – a qubit also 

has a state
• Two possible states for a qubit are the states 

ȁ ۧ0 =
1
0

ȁ ۧ1 =
0
1

which correspond to the states 0 and 1 for a classical bit

• The vectors ȁ ۧ𝟎 and ȁ ۧ𝟏
• encode the two basis states of a two-dimensional Hilbert vector

space
• are normalized and mutually orthogonal quantum states

(representing the values 0 and 1 of a classical bit)
• are known as computational basis states
• together give the computational basis, and span the two-

dimensional linear vector (Hilbert) space of the qubit
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Qubit
• Qubits are described as mathematical objects with certain 

specific properties

• Qubits, like bits, can be realized as actual physical systems

• Treating qubits as abstract entities allows us to construct a 
general theory of quantum computation and information which 
does not depend upon a specific system for its realization

• The difference between bits and qubits is that a qubit can be in 
a state other than ȁ ۧ𝟎 or ȁ ۧ𝟏

• Since the states ȁ ۧ𝟎 and ȁ ۧ𝟏 form an orthonormal basis, we can 
represent any 2D vector with a linear combination of these two 
states, that in quantum mechanics is denoted superposition
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Qubit
• The state of a qubit may be expressed, using the superposition

principle, as

ȁ ۧ𝜓 = αȁ ۧ0 + βȁ ۧ1

where α and β are complex numbers – called probability 
amplitudes – constrained by the normalization condition

ȁ ȁ𝛼
2
+ ȁ ȁ𝛽

2
= 1

• A probability amplitude is a quantity which when absolute-
squared gives probability, hence ȁ ȁ𝛼

2
and ȁ ȁ𝛽

2
are probabilities

• We can also write:

ȁ ۧ𝜓 = αȁ ۧ0 + βȁ ۧ1 = α
1
0
+ β

0
1

• In general, a qubit is a vector in a two-dimensional complex 
vector space
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Qubit
• Differently from the classical case, we cannot examine a qubit to 

determine its quantum state, that is, the values of α and β, we 
can only acquire much more restricted information about the 
quantum state

• Measurement corresponds to transforming the quantum 
information (stored in a quantum system) into classical 
information

• A central principle of quantum mechanics is that measurement 
outcomes are probabilistic
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Qubit
• Measuring a qubit typically corresponds to reading out a 

classical bit, i.e. whether the qubit is 0 or 1

• When we measure a qubit we get either the result 0, with 
probability ȁ ȁ𝛼

2
, or the result 1, with probability ȁ ȁ𝛽

2

• Naturally, ȁ ȁ𝛼
2
+ ȁ ȁ𝛽

2
=1 since the probabilities must sum to one

• The ability of a qubit to be in a superposition state runs counter 
to our common sense understanding of the physical world 

• A classical bit is like a coin: either heads or tails up

• By contrast, a qubit can exist in a continuum of states between 
ȁ ۧ𝟎 and ȁ ۧ𝟏 – until it is observed
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Qubit
• The inner product (generalization of the dot product ) between

a bra (row vector), given by ۦ ȁ𝑎 = 𝑎0
∗ 𝑎1

∗ , and

a ket (column vector), given by ȁ ۧ𝑏 =
𝑏0
𝑏1

is: ۦ) ȁ𝑎 )(ȁ ۧ𝑏 ) = 𝑎 𝑏 = 𝑎0
∗ 𝑏0 + 𝑎1

∗ 𝑏1

• The inner product is useful to understand the measurements

• To find the probability of measuring a state ȁ ۧ𝜓 in the state ȁ ۧ𝑥
we do:

𝑝(ȁ ۧ𝜓 ) = ȁ ȁ𝑥 𝜓
2
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Qubit

• Exploiting the orthonormal basis given by the states ȁ ۧ0 and ȁ ۧ1
and the superposition of these two states we can define  the  
qubit's statevector 𝑞0 and write the state in the form:

ȁ ۧ𝑞0 =
1

2
ȁ ۧ0 +

𝑖

2
ȁ ۧ1 =

1

2
𝑖

2

• In fact: ȁ ۧ𝑞0 =
1

2
ȁ ۧ0 +

𝑖

2
ȁ ۧ1 =

1

2

1
0
+

𝑖

2

0
1

=

=
1

2

0
+

0
𝑖

2

=

1

2
𝑖

2

Advanced Architectures/Intensive Computation - 2023/2024 19 of 104



Qubit

• As we said, when we measure ȁ ۧ𝜓 , the probability of 
measuring ȁ ۧ𝑥 is obtained by taking the inner product 
of ȁ ۧ𝑥 and the state we are measuring and then squaring 
the magnitude, i.e. 𝑝(ȁ ۧ𝜓 ) = ȁ ȁ𝑥 𝜓

2

• For example, for the state ȁ ۧ𝑞0 =
1

2
ȁ ۧ0 +

𝑖

2
ȁ ۧ1 , the probability 

of measuring ȁ ۧ0 is 1/2

In fact: 0 𝑞0 =
1

2
0 0 +

𝑖

2
0 1 =

1

2
1 0

1
0
+

𝑖

2
1 0

0
1

=
1

2
1 +

𝑖

2
0 =

1

2

and ȁ ȁ0 𝑞0
2
=

1

2
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Qubit

• On the other hand, if we want the probabilities to add up to 1 
(which they should), we need to ensure that the statevector is 
properly normalized, that is its magnitude to be 1:

𝜓 𝜓 =1

• Thus, if  ȁ ۧ𝜓 = αȁ ۧ0 + βȁ ۧ1 then the normalization condition is

ȁ ȁ𝛼
2
+ ȁ ȁ𝛽

2
= 1

• And we obtain the factors of 2 we saw before

• Notice that, nowhere does it tell us that ȁ ۧ𝑥 can only be either
ȁ ۧ0 or ȁ ۧ1

• The measurements we have considered so far are in fact only 
one of an infinite number of possible ways to measure a qubit
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Qubit

• Measuring the state ȁ ۧ0 or the state ȁ ۧ1 will give us the output 1 
with certainty 

• Notice that if we consider a state such as  
0
𝑖
= 𝑖ȁ ۧ1 and apply 

the measurement rule we obtain: 

ȁ ȁ𝑥 (𝑖ȁ1 )
2
= ȁ𝑖 ȁ𝑥 1

2
= ȁ ȁ𝑖

2ȁ ȁ𝑥 1
2
= ȁ ȁ𝑥 1

2

• The factor 𝒊 disappears once we take the magnitude of the 
complex number

• This effect is completely independent of the measured state ȁ ۧ𝑥

• The probability for the state 𝑖ȁ ۧ1 is identical to that for ȁ ۧ1

Advanced Architectures/Intensive Computation - 2023/2024 22 of 104



Qubit

• Since measurements are the only way we can extract any 
information from a qubit, this implies that the two states ȁ ۧ1
and 𝑖ȁ ۧ1 are equivalent in all ways that are physically relevant

• More generally, we refer to any overall factor γ on a state for 
which γ 2 = 1 as  global phase 

• States that differ only by a global phase (such as ȁ ۧ𝑎 and γ ȁ ۧ𝑎 )
are physically indistinguishable, in fact:

𝑥 (γȁ𝑎 ) 2 = ȁγ ȁ𝑥 𝑎
2
= ȁ ȁ𝑥 𝑎

2

Advanced Architectures/Intensive Computation - 2023/2024 23 of 104



Qubit

• We know that the amplitudes contain information about the 
probability of finding the qubit in a specific state

• Once we have measured the qubit, we know with certainty what 
the state of the qubit is

• For example

• If we measure a qubit in the state ȁ ۧq and find it in the state ȁ ۧ0

• Then, if we measure again, there is a 100% chance of finding the 
qubit in the state ȁ ۧ0

• This means the act of measuring changes the state of our qubits

ȁ ۧ𝜓 =
α
𝛽

𝑚𝑒𝑎𝑠𝑢𝑟𝑒ȁ ۧ0
ȁ ۧ𝜓 = ȁ ۧ0 =

1
0

• We refer to this as collapsing the state of the qubit
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Qubit

• If we constantly measure each of our qubits to keep track of 
their value at each point in a computation, they would always 
simply be in a well-defined state of either ȁ ۧ0 or ȁ ۧ1 and they 
would be no different from classical bits 

• To achieve truly quantum computation we must allow the 
qubits to explore more complex states 

• Measurements are therefore only used when we need to extract 
an output, and are all placed at the end of a quantum circuit

• In general, a quantum computation is composed of three steps: 

• Preparation of the input state 

• Implementation of the unitary transformation acting on this state

• Measurement of the output state
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Qubit

• Since a global phase for a state never has any observable 
consequences, the states ȁ ۧ𝜓 and 𝑒𝑖𝛾ȁ ۧ𝜓 both produce the same 
observable consequences

• In fact, all complex number with absolute value 1 can be 
expressed according to Euler’s formula as 𝑒𝑖𝛾 = cos 𝛾 + 𝑖 sin 𝛾

and it holds that 𝑒𝑖𝛾 = 1 since the absolute value of a complex 

number 𝑧 = 𝑎 + 𝑖𝑏 is: 𝑧 = 𝑧 ҧ𝑧 = 𝑎2 + 𝑏2, 

• It is useful to always choose the global phase such that the 
coefficient of the ket ȁ ۧ0 is real and non-negative:

• We can express 𝛼 and 𝛽 in polar form:
ȁ ۧ𝜓 = 𝛼ȁ ۧ0 + 𝛽ȁ ۧ1 = 𝑟1𝑒

𝑖𝜑1ȁ ۧ0 + 𝑟2𝑒
𝑖𝜑2ȁ ۧ1 = 𝑒𝑖𝜑1(𝑟1ȁ ۧ0 + 𝑟2𝑒

𝑖(𝜑2−𝜑1)ȁ ۧ1 )

• That is the same as: 𝑟1ȁ ۧ0 + 𝑟2𝑒
𝑖(𝜑2−𝜑1)ȁ ۧ1
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Qubit

• Hence the state of a single qubit ȁ ۧ𝜓 can be represented by 
ȁ ۧ𝜓 = 𝑟1ȁ ۧ0 + 𝑟2𝑒

𝑖𝜑ȁ ۧ1

• with:
• 𝑟1, 𝑟2 ∈ ℝ, 𝑟1

2 + 𝑟2
2 = 1 and 0 ≤ 𝜑 < 2𝜋

• Moreover, we can find 0 ≤ 𝜃 < 𝜋 with 𝑟1 = cos
𝜃

2
and 𝑟2 = sin

𝜃

2
so that:

ȁ ۧ𝜓 = cos
𝜃

2
ȁ ۧ0 + 𝑒𝑖𝜑sin

𝜃

2
ȁ ۧ1
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Qubit

• We can describe the state of any qubit using the two
variables 𝝋 and 𝜽:

ȁ ۧ𝜓 = cos
𝜃

2
ȁ ۧ0 + 𝑒𝑖𝜑sin

𝜃

2
ȁ ۧ1 with 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜑 < 2𝜋
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• If we interpret

• 𝜃 and 𝜑 as spherical coordinates

• with radius 𝑟 = 1 (since the 
magnitude of the qubit state is 1)

we can plot any single qubit state on 
the surface of a sphere, known as
the Bloch sphere
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Qubit

• The Bloch sphere  can be embedded in a three-dimensional 
space of Cartesian coordinates:

ቐ
𝑥 = cos𝜙 sin𝜃
y = sin𝜙 sin𝜃
𝑧 = cos𝜃
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• By definition, a Bloch vector is a vector 
whose components (x, y, z) single out a 
point on the Bloch sphere

• Therefore, each Bloch vector must 
satisfy the normalization condition 
𝑥2 + 𝑦2 + 𝑧2 = 1
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Qubit

• To avoid confusing the qubit statevector with its Bloch vector
remember that: 
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• The statevector is the vector that 
holds the amplitudes for the two 
states our qubit can be in

• The Bloch vector is a visualisation
method that maps the 2D, 
complex statevector onto real, 3D 
space
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Qubit

• For the generic stateȁ ۧ𝜓 we can write:

Advanced Architectures/Intensive Computation - 2023/2024

ȁ ۧ𝜓 = cos
𝜃

2
ȁ ۧ0 + 𝑒𝑖𝜙sin

𝜃

2
ȁ ۧ1 =

cos
𝜃

2

𝑒𝑖𝜙sin
𝜃

2

=

1 + cos𝜃

2

(cos𝜙 + 𝑖 sin𝜙)
1 − cos𝜃

2

=

1 + cos𝜃

2

(cos𝜙 + 𝑖 sin𝜙)
1 − cos2𝜃

2(1 + cos𝜃)

=

1 + cos𝜃

2

cos𝜙sin𝜃 + 𝑖 sin𝜙sin𝜃

2(1 + cos𝜃)

=

1 + 𝑧

2

𝑥 + 𝑖 𝑦

2(1 + 𝑧)
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ȁ ۧ𝝍

Qubit

• Note that single qubit states ȁ ۧ0 and ȁ ۧ1 (which are orthogonal) 
are not orthogonal vectors on the Bloch sphere, i.e. as points 
along the positive and the negative z axis represented as 𝜃 =
0 and 𝜃 = 𝜋
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ȁ ۧ𝝍

Qubit

• Apart from canonical states ȁ ۧ0 and ȁ ۧ1 which permit to describe 
the qubit state with a linear combinations of two vectors lying on 
the z-axis, there are other four remarkable states that lie along 
the x and y axes
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ȁ ۧ𝝍

Qubit

• Hence, the Z-basis is not the only basis we can use

• The X-basis is given by the two vectors ȁ ۧ+ and ȁ ۧ− :

ȁ ۧ+ =
1

2
ȁ ۧ0 + ȁ ۧ1 =

1

2

1
1

ȁ ۧ− =
1

2
ȁ ۧ0 − ȁ ۧ1 =

1

2

1
−1
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ȁ ۧ𝝍

Qubit

• Another (less commonly used) basis is

ȁ ۧ𝑖 + = ȁ ۧ↺ =
1

2
ȁ ۧ0 + 𝑖ȁ ۧ1 =

1

2

1
𝑖

ȁ ۧ𝑖 − = ȁ ۧ↻ =
1

2
ȁ ۧ0 − 𝑖ȁ ۧ1 =

1

2

1
−𝑖

Advanced Architectures/Intensive Computation - 2023/2024 35 of 104



ȁ ۧ𝝍

Qubit

• Summing up, we have three pairs of basis elements:

• ȁ ۧ0 , ȁ ۧ1 Computational basis (Bloch sphere Z-axis) 

• ȁ ۧ+ , ȁ ۧ− Hadamard basis (Bloch sphere X-axis) 

• ȁ ۧ↺ , ȁ ۧ↻ = {ȁ ۧ𝑖 , ȁ− ۧ𝑖 } Circular basis (Bloch sphere Y-axis) 
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MULTI-QUBIT
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Multi-Qubit

• The mathematical structure of a qubit generalizes to higher 
dimensional quantum systems 

• The state of any quantum system is a normalized vector (a vector 
of norm one) in a complex vector space
• The normalization is necessary to ensure that the total probability of 

all the outcomes of a measurement sum to one

• The joint state of a system of qubits is described using an 
operation known as the tensor product, ⊗, that mathematically 
is the same as taking the Kronecker product of their vectors

ȁ ۧ𝑎 =
𝑎0
𝑎1

ȁ ۧ𝑏 =
𝑏0
𝑏1

ȁ ۧ𝑏𝑎 = ȁ ۧ𝑏 ⊗ ȁ ۧ𝑎 =
𝑏0 ×

𝑎0
𝑎1

𝑏1 ×
𝑎0
𝑎1

=

𝑏0𝑎0
𝑏0𝑎1
𝑏1𝑎0
𝑏1𝑎1
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Multi-Qubit

• A single bit has two possible states and a qubit state has two
complex amplitudes

• Similarly, two bits have four possible states (00, 01, 10, 11) and  
the state of two qubits requires four complex amplitudes

• These amplitudes are stored in a 4D-vector:

ȁ ۧ𝑎 = 𝑎00ȁ ۧ00 + 𝑎01ȁ ۧ01 + 𝑎10ȁ ۧ10 + 𝑎11ȁ ۧ11 =

𝑎00
𝑎01
𝑎10
𝑎11

• The rules of measurement still work in the same way:

𝑝(ȁ ۧ00 ) = ȁ ȁ00 𝑎
2
= ȁ ȁ𝑎00

2

• And the same normalisation condition holds:
ȁ ȁ𝑎00

2
+ ȁ ȁ𝑎01

2
+ ȁ ȁ𝑎10

2
+ ȁ ȁ𝑎11

2
= 1
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Multi-Qubit

• If we have n qubits, we will need to keep track of 2n complex 
amplitudes

• Vectors representing more qubits grow exponentially with the 
number of qubits

• This is the reason quantum computers with large numbers of 
qubits are so difficult to simulate

• A modern laptop can easily simulate a general quantum state of 
around 20 qubits, but simulating 100 qubits is too difficult for 
the largest supercomputers
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Multi-Qubit

• The state of any n qubit system can be written as a normalized 
linear combination of the 2n bit-string states (states formed by 
the tensor products of |0ۧ’s and |1ۧ’s)

• The orthonormal basis formed by the 2n bit-string states is called 
the computational basis

• A system of two qubits, e.g. ȁ ۧ𝜓1𝜓2 , whose complete state is 
the tensor product of two different single qubit states , e.g. 
ȁ ۧ𝜓1 = (𝛼0ȁ ۧ0 + 𝛼1ȁ ۧ1 ) and ȁ ۧ𝜓2 = (𝛽0ȁ ۧ0 + 𝛽1ȁ ۧ1 ), can be 
described by an equation in the form

ȁ ۧ𝜓1𝜓2 = 𝛼0𝛽0ȁ ۧ00 + 𝛼0𝛽1ȁ ۧ01 + 𝛼1𝛽0ȁ ۧ10 + 𝛼1𝛽1ȁ ۧ11 =

= 𝑎00ȁ ۧ00 + 𝑎01ȁ ۧ01 + 𝑎10ȁ ۧ10 + 𝑎11ȁ ۧ11
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Multi-Qubit

• It is possible for two qubits to be in a state that cannot be 
written as the tensor product of two single qubit states

• States of a system of which cannot be expressed as a tensor 
product of states of its individual subsystems, that is are not 
separable, are called entangled states

• Instead, states separable into the tensor product of states from 
the constituent subsystems are referred to as separable states
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Multi-Qubit

Exercises

1. Write down the kronecker product of the qubits:

a) ȁ ۧ0 ⊗ ȁ ۧ1

b) ȁ ۧ0 ⊗ ȁ ۧ+

c) ȁ ۧ+ ⊗ ȁ ۧ1

d) ȁ ۧ1 ⊗ ȁ ۧ+

e) ȁ ۧ− ⊗ ȁ ۧ+

2. Write the state: ȁ ۧ𝜓 =
1

2
ȁ ۧ00 +

𝑖

2
ȁ ۧ01 as two separate qubits
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Multi-Qubit

• The state ȁ ۧ00 + ȁ ۧ11 is an example of a quantum state that 
cannot be described in terms of the state of each of its 
components (qubits) separately

• In other words, we cannot find 𝑎1, 𝑎2, 𝑏1, 𝑏2 such that 

(𝑎1ȁ ۧ0 + 𝑏1ȁ ۧ1 )⨂(𝑎2ȁ ۧ0 + 𝑏2ȁ ۧ1 ) = ȁ ۧ00 + ȁ ۧ11

since 

𝑎1ȁ ۧ0 + 𝑏1ȁ ۧ1 ⨂ 𝑎2ȁ ۧ0 + 𝑏2ȁ ۧ1

= 𝑎1𝑎2ȁ ۧ00 + 𝑎1𝑏2ห ۧ01 + 𝑏1𝑎2ȁ ۧ10 + 𝑏1𝑏2ȁ ۧ11

and 𝑎1𝑏2 = 0 implies  𝑎1𝑎2 = 0 or  𝑏1𝑏2 = 0
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Multi-Qubit

• Bell states are a very famous example of entangled states:

ȁ ۧ𝜓1 =
ȁ ۧ00 +ȁ ۧ11

2
ȁ ۧ𝜓2 =

ȁ ۧ00 −ȁ ۧ11

2

ȁ ۧ𝜓3 =
ȁ ۧ01 +ȁ ۧ10

2
ȁ ۧ𝜓4 =

ȁ ۧ01 −ȁ ۧ10

2

• Take as example ȁ ۧ𝜓1 :

• If the first qubit is measured, and the result is ȁ ۧ0 , then also 
the measurement of the second qubit will give ȁ ۧ0 as a result

• In general, for entangled states, it holds that measured one of 
the two qubits, also the state of the other qubit is well
determined
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Multi-Qubit

• There exist entangled states also for three and more qubits

• Entanglement is a form of quantum mechanical correlation 
which tells that the state of a single quantum system could 
depend instantly on the state of other quantum systems

• In other words, entanglement tells that not always a complex 
system can be understood in terms of its constituents

• Without the existence of entangled states, quantum computers 
would be no more powerful than their classical counterparts 

• Entanglement makes it possible to create a complete 2n

dimensional complex vector space to do computations in, using 
just n physical qubits
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QUANTUM LOGIC GATES
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Quantum logic gates

• A quantum logic gate is a basic quantum circuit operating on a 
small number of qubits

• Quantum gates are the building blocks of quantum circuits, like 
classical logic gates are for conventional digital circuits

• Quantum gates are unitary operators, and are described as 
unitary matrices relative to some basis

• An (invertible) complex square matrix U is called unitary if its 
adjoint (conjugate transpose) and its inverse coincide, i.e.:

𝑈†𝑈 = 𝑈𝑈† = 𝐼

where 𝐼 is the identity matrix
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Quantum logic gates

• Quantum gates can be used to manipulate the state of one or 
more qubits by changing the state vector ȁ ۧ𝜓 , with the 
normalization condition continuing to be valid

• Quantum gates must be reversible, i.e. when an operator is 
applied to a given state, it must be always possible to 
reconstruct the input state starting from the output

• A gate which acts on 𝒏 qubits is represented by a 𝟐𝒏 × 𝟐𝒏

unitary matrix, and the set of all such gates with the group 
operation of matrix multiplication is the symmetry group U(2𝑛)
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Quantum logic gates

• To see the effect of a gate on a qubit, we simply multiply the 
qubit’s statevector by the gate represented as a matrix 2x2,  
whereas for n qubits we have a statevector of size 𝟐𝒏 and a 
matrix (gate) of size  𝟐𝒏 × 𝟐𝒏

• The most common quantum gates operate on vector spaces of 
one or two qubits, just like the common classical logic gates 
operate on one or two bits

• There are two different conventions regarding the order in 
which the qubits in a quantum circuit have to be read:
• The traditional notation where the top qubit is the most significant one

• The IBM notation where the top qubit is the least significant one
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ONE QUBIT GATES
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One-Qubit gates: the Pauli gates 

The Pauli gates: X-gate 

• The X-gate is the quantum equivalent of the classical not gate

• It is able to flip the ȁ ۧ0 state in ȁ ۧ1 state (and vice versa)

• The X-gate is represented by the Pauli-X matrix: 

X =
0 1
1 0

= ȁ ۧ0 ۦ ȁ1 + ȁ ۧ1 ۦ ȁ0

• The X-gate switches the amplitudes of the states ȁ ۧ0 and ȁ ۧ1 :

𝑋ȁ ۧ0 =
0 1
1 0

1
0

=
0
1

= ȁ ۧ1

• Because of the its effect on a qubit, it is also called bit-flip gate
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One-Qubit gates: the Pauli gates 

The Pauli gates: X-gate 

• In general: ȁ ۧ𝜓′ = 𝑋ȁ ۧ𝜓 =
0 1
1 0

α
β =

β
α

• In quantum circuits, the X-gate is represented as 
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• By looking at the Bloch sphere, it is 
possible to interpret the action of X gate 
in terms of a rotation around the x-axis of 
π radians (180°)

• The poles are flipped and points in the lower 
hemisphere move to the upper and vice versa
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One-Qubit gates: the Pauli gates 

The Pauli gates: Z-gate

• The Z-gate is able to swap ȁ ۧ+ and ȁ ۧ− state as well as ȁ ۧ𝑖 and  
ȁ− ۧ𝑖

• The Z-gate is represented by the Pauli-Z matrix: 

Z =
1 0
0 −1

= ȁ ۧ0 ۦ ȁ0 − ȁ ۧ1 ۦ ȁ1

• Z-gate do not change the probabilities of measuring ȁ ۧ0 and ȁ ۧ1

• 𝑍ȁ ۧ0 =
1 0
0 −1

1
0

=
1
0

= ȁ ۧ0 and 𝑍ȁ ۧ1 =
1 0
0 −1

0
1

= −
0
1

= −ȁ ۧ1

• the states ȁ ۧ0 and ȁ ۧ1 are the two eigenstates of the Z-gate

• In fact, the computational basis formed by the states ȁ ۧ0 and ȁ ۧ1 is often 
called the Z-basis
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One-Qubit gates: the Pauli gates 

The Pauli gates: Z-gate 

• In general: ȁ ۧ𝜓′ = Zȁ ۧ𝜓 =
1 0
0 −1

α
β =

α
−β

• In quantum circuits, the Z-gate is represented as 
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• By looking at the Bloch sphere, the action of 
this gate is a rotation around the z-axis of π
radians (180°)

• It is also called phase-flip gate

• It has no effect on ȁ ۧ0 but transforms ȁ ۧ1 to −ȁ ۧ1
which are the same point ȁ ۧ1 on the Bloch sphere
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One-Qubit gates: the Pauli gates 

The Pauli gates: Y-gate 

• The Y-gate is represented by the Pauli-y matrix: 

Y =
0 −𝑖
𝑖 0

= −𝑖ȁ ۧ0 ۦ ȁ1 + 𝑖ȁ ۧ1 ۦ ȁ0

• The final state has both a different relative phase and a 
different amplitude probability

• Since its action on the qubit state corresponds to the one that 
can be achieved by combining a Pauli X gate and a Pauli Z gate, 
it is usually called bit-phase-flip gate 
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One-Qubit gates: the Pauli gates 

The Pauli gates: Y-gate 

• In general: ȁ ۧ𝜓′ = 𝑌ȁ ۧ𝜓 =
0 −𝑖
𝑖 0

α
β =

−𝑖 β
𝑖 α

= −𝑖
β
−α

• In quantum circuits, the X-gate is represented as 
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• By looking at the Bloch sphere, it is 
possible to interpret the action of this 
gate in terms of a rotation around the 
y-axis of π radians (180°)
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• The Hadamard gate (H-gate) is a fundamental quantum gate

• It allows us to move away from the poles of the Bloch sphere 
and create a superposition of ȁ ۧ0 and ȁ ۧ1

• It has the matrix: 𝐻 =
1

2

1 1
1 −1

• In quantum circuits, the H-gate is represented as 

• We can see that the H-gate performs the transformations:

𝐻ȁ ۧ0 =ȁ ۧ+ and  𝐻ห ۧ1 = ȁ ۧ−

• The action of Hadamard gate is a rotation around the y-axis of
π/2 radians, followed by a rotation around the x-axis of π radians

One-Qubit gates: the Hadamard Gate
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One-Qubit gates

Exercises

• Verify that all gates introduced so far are their own inverse 

• Note that gates introduces so far are unitary matrices, then the inverse is 
equal to the conjugate transpose

• Note also that if a complex square matrix is equal to its own conjugate 
transpose, then it is a Hermitian matrix (or self-adjoint matrix) 

• Verify that you can create an X-gate by sandwiching a Z-gate 
between two H-gates, that is 𝑋 = 𝐻𝑍𝐻

• Starting in the Z-basis, the H-gate switches our qubit to the X-basis, the 
Z-gate performs a NOT in the X-basis, and the final H-gate returns our 
qubit to the Z-basis
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One-Qubit gates: the Pauli gates 

Exercises - solutions

• Verifying 𝑿, 𝒀, 𝒁,𝑯 are their own inverse 

• 𝑋𝑋 =
0 1
1 0

0 1
1 0

=
1 0
0 1

• 𝑌𝑌 =
0 −𝑖
𝑖 0

0 −𝑖
𝑖 0

= −𝑖2 0
0 −𝑖2

=
1 0
0 1

• 𝑍𝑍 =
1 0
0 −1

1 0
0 −1

=
1 0
0 1

• 𝐻𝐻 =
1

2

1 1
1 −1

1

2

1 1
1 −1

=
1

2

2 0
0 2

=
1 0
0 1

• Verifying 𝑯𝒁𝑯 behaves like an X-gate 

• 𝐻𝑍𝐻 =
1

2

1 1
1 −1

1 0
0 −1

1

2

1 1
1 −1

=
1

2

0 2
2 0

=
0 1
1 0

= 𝑋
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One-Qubit gates: Arbitrary rotations

• There are three gates that allow to do an arbitrary rotation 
around the x, y and z axis, respectively

• These operators are 𝑅𝑥, 𝑅𝑦 and 𝑅𝑧, and are defined as:

𝑅𝑥(𝜃) =
cos

𝜃

2
−𝑖 sin

𝜃

2

𝑖 sin
𝜃

2
cos

𝜃

2

𝑅𝑦(𝜃) =
cos

𝜃

2
−sin

𝜃

2

sin
𝜃

2
cos

𝜃

2

𝑅𝑧(𝜑) =
1 0
0 𝑒𝑖𝜑

• Notice that while 𝑅𝑥 and 𝑅𝑦 change the probabilities of the 

system states, 𝑅𝑧 does not (i.e. the probability of measuring ȁ ۧ0
rather than ȁ ۧ1 remains the same)

• What 𝑅𝑧 changes is the relative phase of the qubit
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One-Qubit gates

Exercises

• Apply 𝑅𝑥(𝜃) =
cos

𝜃

2
−𝑖 sin

𝜃

2

𝑖 sin
𝜃

2
cos

𝜃

2

and 𝑅𝑦(𝜃) =
cos

𝜃

2
−sin

𝜃

2

sin
𝜃

2
cos

𝜃

2

to ȁ ۧ0 , ȁ ۧ1 and ȁ ۧ𝑞0 =
1

2
ȁ ۧ0 +

𝑖

2
ȁ ۧ1 and verify that the 

probabilities of the state change

• Apply 𝑅𝑧(𝜑) =
1 0
0 𝑒𝑖𝜑

to ȁ ۧ0 , ȁ ۧ1 and ȁ ۧ𝑞0 =
1

2
ȁ ۧ0 +

𝑖

2
ȁ ۧ1

and verify that the probabilities of the state do not change
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One-Qubit gates: Arbitrary rotations

• 𝑅𝑧 performs a rotation of 𝜑 around the Z-axis direction and 
changes the relative phase of the qubit

• 𝑅𝑧 is a parametrized gate and is also called P-gate

• It needs a real number 𝜑 to tell it exactly what to do

• Notice that the Z-gate, that is  𝑍 =
1 0
0 −1

, is a special case of 

the P-gate 𝑃 =
1 0
0 𝑒𝑖𝜑

, with 𝜑 = 𝜋:

𝑍 =
1 0
0 −1

=
1 0
0 𝑒𝑖𝜋
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One-Qubit gates: the S-gate

• The S-gate, also known as 𝑍-gate, is a P-gate with 𝜑 = Τ𝜋 2
around the Z-axis direction

• The S-gate does a quarter-turn around the Bloch sphere

• The matrix is: 𝑆 =
1 0

0 𝑒𝑖
𝜋

2

• The name 𝑍-gate is due to the fact that two successively 
applied S-gates has the same effect as one Z-gate: 

𝑆𝑆ȁ ۧ𝑞 =
1 0

0 𝑒𝑖
𝜋
2

1 0

0 𝑒𝑖
𝜋
2
ȁ ۧ𝑞 =

1 0
0 𝑒𝑖𝜋

ȁ ۧ𝑞 =
1 0
0 −1

ȁ ۧ𝑞

= 𝑍ȁ ۧ𝑞
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One-Qubit gates: the S-gate

• Unlike other gates introduced so far, the S-gate is not its own 
inverse

• We can have 𝑆†-gate (or 𝑍
†

-gate)

• The 𝑆†-gate is clearly a P-gate with 𝜑 = Τ−𝜋 2

• The matrix is: 𝑆† =
1 0

0 𝑒−𝑖
𝜋

2

• It holds

𝑆𝑆† =
1 0

0 𝑒𝑖
𝜋
2

1 0

0 𝑒−𝑖
𝜋
2
=

1 0

0 𝑒𝑖(
𝜋
2−

𝜋
2)

=
1 0
0 1
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One-Qubit gates: the T-gate

• The T-gate is a P-gate with 𝜑 = Τ𝜋 4

• The matrices for 𝑇 and 𝑇† are: 

𝑇 =
1 0

0 𝑒𝑖
𝜋

4
𝑇† =

1 0

0 𝑒−𝑖
𝜋

4

• As with the S-gate, the T-gate is sometimes also denoted as 

the 
4
𝑍-gate
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One-Qubit gates: the U-gate

• The U-gate is the most general of all single-qubit quantum gates 

• It is a parametrised gate of the form:

𝑈(𝜃, 𝜙, 𝜆) =
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜙+𝜆) cos

𝜃

2

• Every gate could be specified as 𝑈(𝜃, 𝜙, 𝜆), but it is unusual to 
see this in a circuit diagram

• As an example, we see the U-gate for representing the H-gate
and P-gate respectively

𝑈(
𝜋

2
, 0, 𝜋) =

1

2

1 1
1 −1

and   𝑈 0,0, 𝜆 =
1 0
0 𝑒𝑖𝜆

= 𝑃
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MULTI-QUBIT GATES
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Multi-Qubit gates

• Among the multiple-qubit gates, there is a wide range of gates 
which is based on the same principle: controlled gates

• A given number of control qubits decide if a given operation 
must be performed on another set of qubits or not

• In the case of a two-qubit, there is one control qubit and one 
target qubit
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Multi-Qubit gates: CNOT gate

• An important two-qubit gate is the CNOT-gate

• It is a conditional gate that performs an X-gate on the second 
qubit, target bit, if the state of the first qubit, control bit is ȁ ۧ𝟏

• In the picture q1 is the control qubit and q0 is the target qubit
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+
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Multi-Qubit gates: CNOT gate

• The matrix of the CNOT gate is

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

• This matrix swaps the amplitudes of ȁ ۧ𝟏𝟎 and ȁ ۧ𝟏𝟏 in the 
statevector:

ȁ ۧ𝑎 =

𝑎00
𝑎01
𝑎10
𝑎11

CNOTȁ ۧ𝑎 =

𝑎00
𝑎01
𝑎11
𝑎10
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Multi-Qubit gates: CNOT gate

• The CNOT, or controlled-NOT, or Feynman gate is a reversible
gate and perform the XOR, as shown in the true table below

• The second bit, or target bit, is flipped if and only if the first bit 
is set to one and therefore 𝑏′ = 𝑎 ⊕ 𝑏
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Multi-Qubit gates: CNOT gate

• Note that, if we set the target bit to 0, the CNOT gates 
becomes the FANOUT gate: 𝑎, 0 → (𝑎, 𝑎)

• It is easy to check that CNOT is self-inverse: 

• Indeed, the application of two CNOT gates, leads to

𝑎, 𝑏 → 𝑎, 𝑎 ⨁𝑏 → 𝑎, 𝑎⨁ 𝑎⨁𝑏 = (𝑎, 𝑏)

• Therefore, (CNOT)2 = I, that is CNOT-1 = CNOT
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Multi-Qubit gates: Controlled gates

Generic controlled gates

• The operation performed by the generic single-qubit gate U can 
be represented by using the generic matrix

𝑈 =
𝑢00 𝑢01
𝑢10 𝑢11

• If the action of U on the target qubit must be taken only if the 
first qubit is equal to ȁ ۧ1 , the controlled-U gate it holds that:

controlled 𝑈 = 𝐶𝑈 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

• Note that all the single qubit gates previously presented can be 
theoretically implemented in the controlled version
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Multi-Qubit gates: Controlled gates

• We can write the action of CU for all the four possible input 
patterns and observe the action when the control qubit is ȁ ۧ1

𝑪𝑼ȁ ۧ𝟎𝟎 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

1
0
0
0

=

1
0
0
0

= ȁ ۧ00 𝑪𝑼ȁ ۧ𝟎𝟏 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

0
1
0
0

=

0
1
0
0

= ȁ ۧ01

𝑪𝑼ȁ ۧ𝟏𝟎 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

0
0
1
0

=

1
0
𝑢00
𝑢10

= ห ۧ1 ⊗ 𝑈ȁ ۧ0

𝑪𝑼ȁ ۧ𝟏𝟏 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

0
0
0
1

=

1
0
𝑢01
𝑢11

= ห ۧ1 ⊗ 𝑈ȁ ۧ1
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Multi-Qubit gates: Swap gate

• The Swap gate allows to swap two qubits

• It is defined as follows:

𝑆𝑊𝐴𝑃 =

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

• In general, the action is:  ȁ ۧ𝜓′ = 𝑆𝑊𝐴𝑃ȁ ۧ𝜓 =

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

𝑎
𝑏
𝑐
𝑑

=

𝑎
𝑐
𝑏
𝑑

• The SWAP gate is that it can be implemented, for example, using 
three CNOT gates
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Multi-Qubit gates: CCNOT gate

• It is possible to show that two-bit reversible gates are not 
enough for universal computation 

• Instead, a universal gate is the controlled-controlled-NOT
(CCNOT) or Toffoli gate, which is a three-bit gate

• The Toffoli gate has two control qubits and one target qubit

• The X operation is applied to the target qubit if and only if both 
control qubits are set to ȁ ۧ1
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Multi-Qubit gates: CCNOT gate

• The CCNOT gate acts as follows: 

• the two control bits are unchanged, that is  a' = a and b’ = b

• the target bit is flipped if and only if the two control bits are set to 
1, that is  c’ = c xor ab 

Table and circuit of the CCNOT
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Multi-Qubit gates: CCNOT gate

• The CCNOT gate (Toffoli gate) is universal

• To prove the CCNOT universality, we show how to use it to 
construct both NAND and FANOUT gates
• If we set a = 1, the Toffoli gate acts on the other two bits as a CNOT and 

we have seen that the FANOUT gate can be constructed from the CNOT

• Since 𝑐′ = 𝑐 ⊕ 𝑎𝑏 = ҧ𝑐 𝑎𝑏 + 𝑐 𝑎𝑏, if we set 𝑐 = 1, then 𝑐′ = 1⊕ 𝑎𝑏 =
0 𝑎𝑏 + 1 𝑎𝑏 = 𝑎𝑏
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Multi-Qubit gates: CSWAP gate

• Another universal reversible gate is the controlled-EXCHANGE 
gate or CSWAP gate or Fredkin gate 

• The SWAP operation is performed if and only if the control bit a 
is set to 1 and the two target qubits b and c e are swapped

Table and circuit of the controlled-EXCHANGE
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Multi-Qubit gates

• Both the Toffoli and Fredkin gates are self-inverse

• The price to pay to have irreversible gates is the introduction of 
additional bits and on output this produces garbage bits

• Garbage bits

• are not reused during the computation

• are needed to store the information that would allow us to 
reverse the operations

• For instance, if we set c = 1 at the input of the Toffoli gate, we 
obtain 𝑐′ = 𝑎𝑏 plus two garbage bits 𝑎′ = 𝑎 and 𝑏′ = 𝑏
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QUANTUM CIRCUITS
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Quantum circuit

• Quantum operators are described by means of unitary 
matrices

• A quantum circuit can be seen as set of gates connected to 
each other, where each gate is represented by a unitary matrix

• There can be two kinds of connections between gates 
belonging to the same circuit: series and parallel connections

• To understand the behavior of a given circuit, it is necessary to 
understand how to compute the overall unitary matrix 
describing the action of gates placed in parallel or in series
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Quantum circuit

• The time-flow in a circuit is represented from left to right

• This means that the evolution of the state of a qubit has a 
physical meaning if considered from left to right

• However, when the matrix transfer function of the whole (or a 
part of the) circuit has to be computed, unitary matrices must 
be written from right to left

• The leftmost gate in the circuit is described by the rightmost 
unitary matrix
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Quantum circuit

Gates Connected in Series

• The overall transfer function of two generic one-qubit 

quantum gates connected in series can be computed as shown 
in the figure below

• The output after the input passed through gate A and B is:
ȁ ۧ𝝍 = 𝑩𝑨ȁ ۧ𝝍

• The method can be extended to an arbitrary number of gates

Advanced Architectures/Intensive Computation - 2023/2024 85 of 104



Quantum circuit

Gates Connected in Parallel

• When two gates are placed in parallel, the overall unitary 
matrix acting on the two qubits is obtained using the 
Kronecker product, as shown in the figure below

• The output after the inputs passed through gates A and B is:
𝑨ȁ ۧ𝝍𝟏 ⊗𝑩ȁ ۧ𝝍𝟐 = 𝑨⊗𝑩 ȁ ۧ𝝍𝟏 ⊗ ȁ ۧ𝝍𝟐 = 𝑨⊗𝑩 ȁ ۧ𝝍𝟏𝝍𝟐

• The method can be extended to an arbitrary number of gates
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One-Qubit gates on multi-Qubit

Example

• We have that a single bit gate acts on a qubit in a multi-qubit 
vector using the tensor product to calculate matrices that act 
on multi-qubit statevectors

• For example, if on 𝑞1 acts the X-gate (NOT) and on 𝑞0 acts the 
H-gate we can represent the simultaneous operations X and H 
using their Kronecker product: 

𝑋ȁ ۧ𝑞1 ⊗𝐻ȁ ۧ𝑞0 = 𝑋⊗𝐻 ȁ ۧ𝑞1𝑞0
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One-Qubit gates on multi-Qubit

• The operation 𝑋ȁ ۧ𝑞1 ⊗𝐻ȁ ۧ𝑞0 = 𝑋⊗𝐻 ȁ ۧ𝑞1𝑞0 is given by:

𝑋 ⊗𝐻 =
0 1
1 0

⊗
1

2

1 1
1 −1

=

=
1

2

0 ×
1 1
1 −1

1 ×
1 1
1 −1

1 ×
1 1
1 −1

0 ×
1 1
1 −1

=
1

2

0 0
0 0

1 1
1 −1

1 1
1 −1

0 0
0 0

=
0 𝐻
𝐻 0
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One-Qubit gates on multi-Qubit

Gates Connected in Parallel

• If gates are applied only to a subset of the inputs, qubits where 
no gates are acting can be treated as operated by an identity, 
as shown in the figure below

• The output after the inputs passed through gate B is:
ȁ ۧ𝝍𝟏 ⊗𝑩ȁ ۧ𝝍𝟐 = 𝑰⊗𝑩 ȁ ۧ𝝍𝟏 ⊗ ȁ ۧ𝝍𝟐 = 𝑰⊗𝑩 ȁ ۧ𝝍𝟏𝝍𝟐
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One-Qubit gates on multi-Qubit

Example

• We need to apply a gate to only one qubit at a time, such as in 
the circuit below where on 𝑞1 acts the X-gate (NOT)

• In such a case, we describe the operation using Kronecker
product with the identity matrix, e.g.: 𝑋 ⊗ 𝐼, giving

𝑋 ⊗ 𝐼 =

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

=
0 𝐼
𝐼 0
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HOW TO ANALYZE

QUANTUM CIRCUITS
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Example of a circuit

• Let us consider the following circuit, where A, B, C and D 
represent generic gates

• To analyze this circuit, two steps have to be followed
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Example of a circuit

1) Write a unique expression for the three input qubits by 

performing the tensor product among them:
ȁ ۧ𝝍𝟏 ⊗ ȁ ۧ𝝍𝟐 ⊗ ȁ ۧ𝝍𝟑 = ȁ ۧ𝝍𝟏𝝍𝟐𝝍𝟑

2) Compute the overall matrix function considering the gates  
from right to left (where 𝑰𝒌 is the identity matrix of order 𝑘):

ȁ ۧ𝝍𝒐𝒖𝒕 = (𝑰𝟐 ⊗𝑫⊗ 𝑰𝟐) ⋅ (𝑪⊗ 𝑰𝟒) ⋅ 𝑨⊗ 𝑰𝟐 ⊗𝑩 ȁ ۧ𝝍𝟏𝝍𝟐𝝍𝟑
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Example of a circuit

• The step-by-step analysis is shown here below
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Example with H and CNOT gates

• In real quantum circuit analysis, we can follow two different
strategies:

• Exploiting the matrix calculation, as done before

• Adopting a method based on truth tables of different gates, 
that can be faster

• Let us consider the circuit below
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Example with H and CNOT gates

Matrix multiplication

• In this circuit we have two operators: the Hadamard gate and 
the CNOT gate, represented by the two unitary matrices

H =
1

2

1 1
1 −1

CNOT =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

• We compute ȁ ۧ𝑞1 , ȁ ۧ𝑞2 and ȁ ۧ𝑞3 corresponding to the values
shown in the figure
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Example with H and CNOT gates

Matrix multiplication

• ȁ ۧ𝑞1 =ȁ ۧ0 ⊗ ȁ ۧ0 = ȁ0 ۧ0 =

1
0
0
0

• ȁ ۧ𝑞2 = 𝐻⊗ 𝐼 ȁ0 ۧ0 =
1

2

1 1
1 −1

⊗
1 0
0 1

1
0
0
0

=

1

2

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

1
0
0
0

=
1

2

1
0
1
0

=
1

2
(ȁ ۧ00 + ȁ ۧ10 )
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Example with H and CNOT gates

Matrix multiplication

• ȁ ۧ𝑞3 =𝐶𝑁𝑂𝑇 ⋅
1

2
ȁ ۧ00 + ȁ ۧ10 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1

2

1
0
1
0

=
1

2

1
0
0
1

=

1

2
(ȁ ۧ00 + ȁ ۧ11 )
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Example with H and CNOT gates

• We can look at this circuit also in a different way

• Applying the H gate to ȁ ۧ0 we obtain state ȁ ۧ+

Hȁ ۧ0 =
1

2

1 1
1 −1

1
0

=
1

2

1
1

=
1

2
(ȁ ۧ0 + ȁ ۧ1 ) = ȁ ۧ+

• So, we can see how CNOT gate acts on a qubit in superposition 

given by  the state ȁ ۧ+
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Example with H and CNOT gates

• Before we apply the CNOT we have

ȁ ۧ+0 = ȁ ۧ+ ⊗ ȁ ۧ0 = Hȁ ۧ0 ⊗ ȁ ۧ0 =
1

2

1
1
⊗

1
0

=
1

2

1 ×
1
0

1 ×
1
0

=
1

2

1
0
1
0

=
1

2

1
0
0
0

+

0
0
1
0

=
1

2
(ȁ ۧ00 + ȁ ۧ10 )

• When we apply the CNOT gate, we have the state 

CNOTȁ ۧ+0 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1

2

1
0
1
0

=
1

2

1
0
0
1

=
1

2

1
0
0
0

+

0
0
0
1

=
1

2
(ȁ ۧ00 + ȁ ۧ11 )
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Example with H and CNOT gates

Truth tables

• The approach based on truth tables exploits the precomputed 
results that are listed in a table, as shown here below for the 
involved operators H and CNOT

• It is typically much quicker to apply than the matrix method 
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𝐻ȁ ۧ0 =
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2
(ȁ ۧ0 + ȁ ۧ1 ) = ȁ ۧ+ CNOTȁ ۧ0𝑥 = ȁ ۧ0𝑥

𝐻ȁ ۧ1 =
1
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Example with H and CNOT gates
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Truth tables

• ȁ ۧ𝑞1 =ȁ ۧ0 ⊗ ȁ ۧ0 = ȁ0 ۧ0

• ȁ ۧ𝑞2 = 𝐻ȁ ۧ0 ⊗ ȁ ۧ0 =
1

2
(ȁ ۧ0 + ȁ ۧ1 ) ⊗ ȁ ۧ0 =

1

2
(ȁ ۧ00 + ȁ ۧ10 )

• ȁ ۧ𝑞3 =𝐶𝑁𝑂𝑇(
1

2
ȁ ۧ00 + ȁ ۧ10 ) =

1

2
𝐶𝑁𝑂𝑇ȁ ۧ00 + 𝐶𝑁𝑂𝑇ȁ ۧ10 =

1

2
(ȁ ۧ00 + ȁ ۧ11 )



Entanglement with H and CNOT gates

• The circuit considered in the example produces  one of the 
four Bell states 

CNOTȁ ۧ+0 =
1

2
(ȁ ۧ00 + ȁ ۧ11 )

• As we said, this is an interesting state because the result is that 
the two qubits are entangled and we have:

• 50% probability of being measured in the state ȁ ۧ00

• 50% probability of being measured in the state ȁ ۧ11

• And, most interestingly, it has a 0% probability of being 
measured in the states ȁ ۧ01 or ȁ ۧ10

• This combined state cannot be written as two separate qubit 
states
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Entanglement with H and CNOT gates

• Although our qubits are in superposition, measuring one will tell 
us the state of the other and collapse its superposition

• For example, if we measured the top qubit and got the state ȁ ۧ1
the collective state of our qubits changes like 

1

2
(ȁ ۧ00 + ȁ ۧ11 )

measure
ȁ ۧ11

• Even if we separated these qubits light-years away, measuring 
one qubit collapses the superposition and appears to have an 
immediate effect on the other
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