
ADVANCED ARCHITECTURES

INTENSIVE COMPUTATION

Performance
Annalisa Massini Lecture 12

2023-2024

SPEED-UP PERFORMANCE

AND EXAMPLES
Computer Architecture - A Quantitative Approach

John L. Hennessy, David A. Patterson

Chapter 1 - Fundamentals of Quantitative Design and Analysis

Section 1.8 - Measuring, Reporting, and Summarizing Performance

Multicore and GPU programming
G. Barlas

Chapter 1 - Introduction

Advanced Architectures/Intensive Computation - 2023/2024 2 of 43

Measuring Performance

• When we say one computer is faster than another we can

mean different things:

• response time - also referred to as execution time - the time

between the start and the completion of an event

• The computer user is interested in reducing the response time

• throughput - the total amount of work done in a given time

• The operator of a warehouse-scale computer may be interested in

increasing throughput

Advanced Architectures/Intensive Computation - 2023/2024 3 of 43

Measuring Performance

• In comparing design alternatives, we often want to relate
the performance of two different computers: X and Y

• When we say X is faster than Y we mean that the
response time or execution time is lower on X than on Y
for the given task

• In particular, X is n times faster than Y will mean:

Execution time 𝑌

Execution time 𝑋
= 𝑛

• Execution time is the reciprocal of performance

Advanced Architectures/Intensive Computation - 2023/2024 4 of 43

Measuring Performance

• Since execution time is the reciprocal of performance,

the following relationship holds:

𝑛 =
Execution time 𝑌

Execution time 𝑋
=
Performance 𝑋

Performance 𝑌

• The phrase the throughput of X is 1.3 times higher than

Y signifies that the number of tasks completed per unit

time on computer X is 1.3 times the number of tasks

completed on Y

Advanced Architectures/Intensive Computation - 2023/2024 5 of 43

Measuring Performance

• Unfortunately, time is not always the metric quoted in

comparing the performance of computers

• But (for Hennessy and Patterson) the only consistent

and reliable measure of performance is the execution

time of real programs

• All proposed alternatives to time as a metric or to real

programs as the items measured have eventually led to

misleading claims or even mistakes in computer design

Advanced Architectures/Intensive Computation - 2023/2024 6 of 43

Measuring Performance

• Even execution time can be defined in different ways

depending on what we count

• The most straightforward definition of time is called

wall-clock time, response time, or elapsed time

which is the latency to complete a task, including disk

accesses, memory accesses, input/output activities,

operating system overhead…

Advanced Architectures/Intensive Computation - 2023/2024 7 of 43

Measuring Performance

• With multiprogramming, the processor works on another

program while waiting for I/O and may not necessarily

minimize the elapsed time of one program

• Hence, we need a term to consider this activity

• CPU time recognizes this distinction and means the time

the processor is computing, not including the time waiting

for I/O or running other programs

• Clearly, the response time seen by the user is the elapsed

time of the program, not the CPU time

Advanced Architectures/Intensive Computation - 2023/2024 8 of 43

Measuring Performance

• Benchmarks can be used to measure performance

• The best choice of benchmarks is real applications

• Attempts at running programs much simpler than a real

application have led to performance pitfalls

• Examples include:

• Kernels, which are small, key pieces of real applications

• Toy programs, which are 100-line programs (such as quicksort)

• Synthetic benchmarks, which are fake programs invented to try to

match the profile and behavior of real applications (as Dhrystone)

• All three are discredited today (compiler writer and

architect can conspire to make the computer appear

faster than on real applications)

Advanced Architectures/Intensive Computation - 2023/2024 9 of 43

Taking advantage of parallelism

• In the design and analysis of computers, we need

• Principles and guidelines

• Observations about design

• Equations to evaluate alternatives

• Taking advantage of parallelism is one of the most

important methods for improving performance

• Parallelism at the system level – scalability

• Parallelism at the level of an individual processor - parallelism

among instructions

• Parallelism at the level of digital design - memories and ALUs

Advanced Architectures/Intensive Computation - 2023/2024 10 of 43

Taking advantage of parallelism

• Fundamental observations come from properties of

programs

• The most important program property that we regularly

exploit is the principle of locality

• Temporal locality states that recently accessed items are likely

to be accessed in the near future

• Spatial locality says that items whose addresses are near one

another tend to be referenced close together in time

Advanced Architectures/Intensive Computation - 2023/2024 11 of 43

Taking advantage of parallelism

• An important and pervasive principle of computer design

is to focus on the common case:

• In making a design trade-off, favor the frequent case over the

infrequent case

• This principle applies when determining how to spend

resources, since the impact of the improvement is

higher if the occurrence is frequent

• In applying this simple principle, we have to decide what

the frequent case is and how much performance can be

improved by making that case faster

Advanced Architectures/Intensive Computation - 2023/2024 12 of 43

Amdahl’s Law

• The performance gain obtained by improving some portion

of a computer can be calculated using Amdahl’s law

• Amdahl’s law:

• states that the performance improvement is limited by the fraction

of the time the faster mode can be used

• defines the speedup that can be gained by using a particular

feature

𝒔𝒑𝒆𝒆𝒆𝒅𝒖𝒑 =

=
𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭 𝐰𝐡𝐞𝐧 𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭

=
𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 𝐟𝐨𝐫 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭

𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 𝐟𝐨𝐫 𝐞𝐧𝐭𝐢𝐫𝐞 𝐭𝐚𝐬𝐤 𝐮𝐬𝐢𝐧𝐠 𝐭𝐡𝐞 𝐞𝐧𝐡𝐚𝐧𝐜𝐞𝐦𝐞𝐧𝐭 𝐰𝐡𝐞𝐧 𝐩𝐨𝐬𝐬𝐢𝐛𝐥𝐞

Advanced Architectures/Intensive Computation - 2023/2024 13 of 43

Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup

from some enhancement, which depends on two factors:

1) The fraction of the computation time in the original computer

that can be converted to take advantage of the enhancement,

that is

Fractionenhanced = time with enhancement / total time

Example:

• A program takes 60 seconds in total

• 20 seconds of the execution time can use an enhancement

• The fraction is: 20/60

• This value is always less than or equal to 1

Advanced Architectures/Intensive Computation - 2023/2024 14 of 43

Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup

from some enhancement, which depends on two factors:

2) The improvement gained by the enhanced execution mode, that

is, how much faster the task would run if the enhanced mode

were used for the entire program:

Speedupenhanced = original mode time / enhanced mode time

Example:

• A portion of the program in the original mode is 5 seconds

• In the enhanced mode takes 2 seconds

• The improvement is 5/2

• This value is always greater than 1

Advanced Architectures/Intensive Computation - 2023/2024 15 of 43

Amdahl’s law

• The execution time using the original computer with the

enhanced mode will be the time spent using the

unenhanced portion of the computer plus the time spent

using the enhancement:

• The overall speedup is the ratio of the execution times:













enhanced

enhanced
enhancedoldnew

Speedup

Fraction
)Fraction – (1time Executiontime Execution

enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
)Fraction – (1

1

time Execution

time Execution
Speedup





Advanced Architectures/Intensive Computation - 2023/2024 16 of 43

Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the

Web serving application than the original processor

• Assume that the original processor is busy with computation

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the

enhancement?

Advanced Architectures/Intensive Computation - 2023/2024 17 of 43

Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the

Web serving application than the original processor

• Assume that the original processor is busy with computation

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the

enhancement?

Fractionenhanced = 0.4 Speedupenhanced = 10

6.1
0.64

1

10

0.4
0.4)– (1

1

Speedup

Fraction
)Fraction– (1

1
Speedup

enhanced

enhanced
enhanced

overall 









Advanced Architectures/Intensive Computation - 2023/2024 18 of 43

Amdahl’s law

• Amdahl’s law can serve as a guide to understand:

• how much an enhancement will improve performance

• how to distribute resources to improve cost-performance

• The goal is to spend resources proportional to where time

is spent

• Amdahl’s law is useful

• for comparing the overall system performance of two

alternatives

• to compare two processor design alternatives

Advanced Architectures/Intensive Computation - 2023/2024 19 of 43

Example

• A common transformation in graphics processors is

square root

• Implementations of floating-point square root (FPSQR)

vary significantly in performance among processors for

graphics

• Suppose

• FPSQR is responsible for 20% of the execution time of a

critical graphics benchmark and

• FP instructions are responsible for half of the execution time

for the application

Advanced Architectures/Intensive Computation - 2023/2024 20 of 43

Example

• Two proposals:

• To enhance the FPSQR hardware and speed up this operation

by a factor of 10

• To try to make all FP instructions in the graphics processor run

faster by a factor of 1.6

• Compare these two design alternatives

Advanced Architectures/Intensive Computation - 2023/2024 21 of 43

Example

• We can compare these two alternatives by comparing the

speedups

• 1) Speedup of 10 with FPSRT hw

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





Advanced Architectures/Intensive Computation - 2023/2024 22 of 43

Example

• We can compare these two alternatives by comparing the

speedups

• 1) Speedup of 10 with FPSRT hw

• 2) FP operations faster of 1,6 factor

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP 





Advanced Architectures/Intensive Computation - 2023/2024 23 of 43

Example

• We can compare these two alternatives by comparing the

speedups

• 1) Speedup of 10 with FPSRT hw

• 2) FP operations faster of 1,6 factor

• Improving the performance of the FP operations overall is

slightly better because of the higher frequency

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP 





Advanced Architectures/Intensive Computation - 2023/2024 24 of 43

Amdahl’s law

• When we consider a parallel machine with 𝑁 nodes, the

speedup will be:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑠𝑒𝑞
𝑡𝑝𝑎𝑟

=
𝑇

1 − 𝛼 𝑇 +
𝛼𝑇
𝑁

=
1

1 − 𝛼 +
𝛼
𝑁

• Note that we are ignoring any partitioning or

communication or coordination costs

Advanced Architectures/Intensive Computation - 2023/2024 25 of 43

Processor Performance Equation

• All computers are constructed using a clock running at a

constant rate

• Discrete time events are called ticks, clock ticks, clock

periods, clocks, cycles, or clock cycles

• Computer designers refer to the time of a clock period by

its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz)

• CPU time for a program can then be expressed two ways:

• CPU time = CPU clock cycles for a program × Clock cycle time

or

• CPU time = CPU clock cycles for a program / Clock rate

Advanced Architectures/Intensive Computation - 2023/2024 26 of 43

Processor Performance Equation

• We can also count the number of instructions executed -

the instruction path length or instruction count (IC)

• If we know the number of clock cycles and the

instruction count, we can calculate the average number

of clock cycles per instruction (CPI):

CPI = CPU clock cycles for a program / IC

• From this formula we obtain

• CPU clock cycles for a program = CPI x IC

Advanced Architectures/Intensive Computation - 2023/2024 27 of 43

Processor Performance Equation

• This allows us to use CPI in the execution time formula and
obtain the performance equation:

• CPU time = IC × CPI × Clock cycle time

• In fact (using the units of measurement) we have:

• Observe that processor performance is equally
dependent upon clock cycle (or rate), clock cycles per
instruction, and instruction count

 time CPU
Program

Seconds

cycles Clock

Seconds

nsInstructio

cycles Clock

Program

nsInstructio
 time cycle Clock CPI IC





Advanced Architectures/Intensive Computation - 2023/2024 28 of 43

Processor Performance Equation

• It is useful to calculate the number of total processor clock

cycles as

• where

• ICi is the number of times instruction i is executed in a program

• CPIi is the average number of clocks per instruction for instr. i

i

n

i

i CPIIC cycles clock CPU 
1

Advanced Architectures/Intensive Computation - 2023/2024 29 of 43

Processor Performance Equation

• This expression can be used to express CPU time as

and the overall CPI as

i

n

i

i

i

n

i

i

CPI
count nInstructio

IC

count nInstructio

CPIIC

 CPI 



 






1

1

time cycle ClockCPIIC time CPU i

n

1i
i 








 



Advanced Architectures/Intensive Computation - 2023/2024 30 of 43

Example

• Suppose we have made the following measurements in

the previous example (of Amdahl’s Law):

• Frequency of FP operations = 25%

• Average CPI of FP operations = 4.0

• Average CPI of other instructions = 1.33

• Frequency of FPSQR = 2%

• CPI of FPSQR = 20

• Assume that the two design alternatives are:

• To decrease the CPI of FPSQR to 2

• To decrease the average CPI of all FP operations to 2.5

• Compare these two design alternatives using the

processor performance equation

Advanced Architectures/Intensive Computation - 2023/2024 31 of 43

Example

• Observe that only the CPI changes

• The clock rate and instruction count remain identical

• We start by finding the original CPI with no enhancement:

2.0 75%) (1.33 25%) (4

count nInstructio

IC
CPI CPI original






n

i

i
i

1

Advanced Architectures/Intensive Computation - 2023/2024 32 of 43

Example

• We can compute the CPI for the enhanced FPSQR by

subtracting the cycles saved from the original CPI:

1.64 2)-(20 2% - 2

) CPI- (CPI2%- CPI CPI only FPSR newFPSR oldoriginalFPSR new





Advanced Architectures/Intensive Computation - 2023/2024 33 of 43

Example

• We can compute the CPI for the enhanced FPSR by

subtracting the cycles saved from the original CPI:

• We can compute the CPI for the enhancement of all FP

instructions (the same way or) by summing the FP and

non-FP CPIs:

• Since the CPI of the overall FP enhancement is slightly

lower, its performance will be marginally better

1.625 75%) (1.33 25%) (2.5 CPI FP new 

1.64 2)-(20 2% - 2

) CPI- (CPI2%- CPI CPI only FPSR newFPSR oldoriginalFPSR new





Advanced Architectures/Intensive Computation - 2023/2024 34 of 43

Example

• The speedup for the FPSQR enhancement is

• The speedup for the overall FP enhancement is

1.23
1.625

2.0

CPI

CPI

CPI cycle Clock IC

CPI cycle Clock IC

time CPU

time CPU
 Speedup

FPnew

original

FPnew

original

FPnew

original

FPnew









1.22
1.64

2.0

CPI

CPI

time CPU

time CPU
 Speedup

FPSR

original

FPSR

original

FPSR 

Advanced Architectures/Intensive Computation - 2023/2024 35 of 43

In summary

• It is often easier to use the processor performance

equation than Amdahl’s law

• In fact,

• It is often possible to measure the constituent parts of the

processor performance equation

• It may be difficult to measure things such as the fraction of

execution time for which a set of instructions is responsible

• In practice, this would probably be computed by summing the

product of the instruction count and the CPI for each of the

instructions in the set

• Hence, the starting point is often individual instruction

count and CPI measurements  performance equation

Advanced Architectures/Intensive Computation - 2023/2024 36 of 43

Gustafson’s law

• Two decades after the Amdahl’s law was published,
Gustafson and Barsis noted that several programs were
speeding up exceeding the predicted speedup limits

• They noted that:
• Problem sizes grow as computer becomes more powerful

• As the problem size grows, the work required for the parallel part
frequently grows much faster than the serial part

• So the serial part decreases and the speedup improves

• Gustafson and Barsis managed to examine the problem
from a different point of view:
• Instead of examining what a parallel program could do relatively to

a sequential one, we should examine how a sequential machine
would perform if it were required to solve the same problem
that a parallel one can solve

Advanced Architectures/Intensive Computation - 2023/2024 37 of 43

Gustafson-Barsis’s law

Assume:

• We have a parallel application that requires T time to

execute on N CPUs

• The application spend 0 ≤ 𝛼 ≤ 1 percent of the total time

running on all machines

• The remaining 1 − 𝛼 has to be done sequentially

Solving the problem on a sequential machine would require

a total time:

𝑡𝑠𝑒𝑞 = 1 − 𝛼 𝑇 + 𝑁𝛼𝑇

as the parallel part now have be done sequentially

Advanced Architectures/Intensive Computation - 2023/2024 38 of 43

Gustafson-Barsis’s law

• The speedup would be:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑠𝑒𝑞
𝑡𝑝𝑎𝑟

=
1 − 𝛼 𝑇 + 𝑁𝛼𝑇

𝑇
= 1 − 𝛼 + 𝑁𝛼

• And the corresponding efficiency

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

𝑁
=

1 − 𝛼

𝑁
+ 𝛼

• So the 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 has a lower bound of 𝛼 as 𝑁 go to

infinity

Anyway, given the total disregard for the communication

costs, the results for 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 and 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 are

overestimated

Advanced Architectures/Intensive Computation - 2023/2024 39 of 43

Example

• Assuming a program consists of 50% non-parallelizable

code, compute the speedup when using 2 and 4

processors according to: Gustafson’s law and Amdahl’s law

Advanced Architectures/Intensive Computation - 2023/2024 40 of 43

Example

• Assuming a program consists of 50% non-parallelizable

code, compute the speed-up when using 2 and 4

processors according to: Gustafson’s law and Amdahl’s law

• Gustafson’s law

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 2 ∙

1

2
= 1,5

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 4 ∙

1

2
= 2,5

Advanced Architectures/Intensive Computation - 2023/2024 41 of 43

Example
• Assuming a program consists of 50% non-parallelizable code, compute

the speed-up when using 2 and 4 processors according to: Gustafson’s
law and Amdahl’s law

• Gustafson’s law

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 2 ∙

1

2
= 1,5

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 = 1 − 𝛼 + 𝑁𝛼 =
1

2
+ 4 ∙

1

2
= 2,5

• Amdahl’s law

𝑠𝑝𝑒𝑒𝑑𝑢𝑝2 =
1

1 − 𝛼 +
𝛼
𝑁

=
1

1 −
1
2

+
1
4

=
1

3
4

≅ 1,33

𝑠𝑝𝑒𝑒𝑑𝑢𝑝4 =
1

1 − 𝛼 +
𝛼
𝑁

=
1

1 −
1
2

+
1
8

=
1

5
8

≅ 1,6

Advanced Architectures/Intensive Computation - 2023/2024 42 of 43

Example

Considerations to understand why speedup results are

different

• Gustafson’s law assumes that the parallel part of the

program increases with the problem size and the

sequential part stays fixed

• Amdahl’s law sees the percentage of non-parallelizable

code as a fixed limit for the speedup, even if we had an

infinite amount of processors, according to Amdahl’s law,

the speedup would never be greater than 2

Advanced Architectures/Intensive Computation - 2023/2024 43 of 43

