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INTRODUCTION 

Computer Architecture - A Quantitative Approach, Fifth Edition
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Section 4.4 – Graphics Processing Units

Programming Massively Parallel Processors

D.B. Kirk  W.W. Hwu
Chapter 1 - Introduction
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Graphics Processing Units

• GPUs and CPUs do not go back in computer architecture 

genealogy to a common ancestor

• The primary ancestors of GPUs are graphics accelerators

• Given the hardware invested to do graphics, the question is: 

how can be the design of GPUs used to improve the 

performance of a wider range of applications?
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Graphics Processing Units

• The challenge for the GPU programmer

• is not simply getting good performance on the GPU

• but also in coordinating the scheduling of computation on the 

system processor and the GPU and the transfer of data between 

system memory and GPU memory

• GPUs have virtually every type of parallelism that can 

be captured by the programming environment:

• multithreading

• instruction-level

• SIMD

• MIMD
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Programming the GPU

• NVIDIA developed a C-like language and programming 

environment denoted CUDA - Compute Unified Device 

Architecture

• CUDA produces:

• C/C++ for the system processor - host

• a C and C++ dialect for the GPU - device (D in CUDA)

• OpenCL is a similar language, which several companies 

are developing as an independent language for multiple 

platforms
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Programming the GPU

• NVIDIA unified all forms of parallelism in the CUDA Thread

• The compiler and the hardware can gang thousands of 

CUDA threads together to utilize the various styles of 

parallelism within a GPU (multithreading, MIMD, SIMD, ILP)

• NVIDIA classifies the CUDA programming model as Single 

Instruction, Multiple Thread (SIMT)

• Threads are blocked together - Thread Block - and 

executed in groups of 32 threads - warp
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CUDA Programming Model

• The GPU is viewed as a compute device with the following 
features:

• It is a coprocessor to the CPU (host)

• It has its own DRAM (device memory)

• It runs many threads in parallel

• Data-parallel portions of an application are executed on the 
device as kernels which run in parallel on many threads

• Differences between GPU and CPU threads 
• GPU threads are extremely lightweight

• Very little creation overhead

• GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few
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CPUs vs GPUs

• Since 2003, the semiconductor industry has settled on two main 
trajectories for designing microprocessors

• The multicore trajectory seeks to maintain the execution speed of 
sequential programs while moving into multiple cores:
• The multicores began with two-core processors 

• The number of cores increased with each semiconductor process 
generation

• A recent Intel multicore microprocessor comes with up to 12 
processor cores, where each of which 
• is an out-of-order, multiple instruction issue processor implementing the 

full X86 instruction set

• supporting hyper-threading with two hardware threads 

• designed to maximize the execution speed of sequential programs
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CPUs vs GPUs

• The many-thread trajectory focuses more on the execution 
throughput of parallel applications

• The many-threads began with a large number of threads and the 
number of threads increases with each generation

• A recent exemplar is the NVIDIA Tesla P100 graphics processing 
unit (GPU) with 10s of 1000s of threads, executing in a large 
number of simple, in order pipelines

• Many-thread processors, especially the GPUs, have led the race of 
floating-point performance
• In 2016, the ratio of peak floating-point calculation throughput between 

many-thread GPUs and multicore CPUs is about 10, and this ratio has been 
roughly constant for the past several years
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CPUs vs GPUs

• The large performance gap between parallel and sequential 
execution has motivated applications developers to move the 
computationally intensive parts of their software to GPU  

• Computationally intensive parts are the prime target of parallel 
programming where  the work is divided among cooperating 
parallel workers

• One might ask why there is such a large peak throughput gap 
between many-threaded GPUs and general-purpose multicore 
CPUs

• The answer lies in the differences in the fundamental design 
philosophies between the two types of processors
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CPUs: Latency Oriented Design 

The design of a CPU is optimized 

for sequential code performance

• Large caches

• Convert long latency memory accesses 

to short latency cache accesses

• Sophisticated control

• Branch prediction for reduced branch 

latency

• Data forwarding for reduced data 

latency

• Powerful ALU

• Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

Advanced Architectures/Intensive Computation - 2023/2024  12



GPUs: Throughput Oriented Design

The design of GPUs is throughput-

oriented 

• Small caches

• To boost memory throughput

• Simple control

• No branch prediction

• No data forwarding

• Energy efficient ALUs

• Many, long latency but heavily 

pipelined for high throughput

• Require massive number of 

threads to tolerate latencies

DRAM

GPU
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CPUs vs GPUs

• In summary, GPUs are designed as parallel, throughput-oriented
computing engines and they will not perform well on some tasks 
on which CPUs are designed to perform well

• For programs that have one or very few threads, CPUs with 
lower operation latencies can achieve much higher 
performance than GPUs

• When a program has a large number of threads, GPUs with 
higher execution throughput can achieve much higher 
performance than CPUs

• Therefore, one should expect that many applications use both 
CPUs and GPUs, executing the sequential parts on the CPU and 
numerically intensive parts on the GPUs
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GPU Architecture

• A typical CUDA-capable GPU can be organized into

• an array of highly threaded streaming multiprocessors (SMs)

• two SMs form a building block

• the number of SMs in a building block can vary from one generation of 

CUDA GPUs to another
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GPU Architecture 

• Each SM has a number of streaming processors (SPs) that 

share control logic and instruction cache

• Each GPU currently comes with up to 4 gigabytes of 

graphics double data rate (GDDR) SDRAM - global memory
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GPU Architecture

• The parallel G80 chip has 128 SPs (16 SMs with 8 SPs)

• Each SP has a multiply–add (MAD) unit and an additional 

multiply unit

• The G80 (128 SPs) produces a total of over 500 gigaflops

• The GT200 (240 SPs) exceeds 1 teraflops, the GTX680 1,5 teraflops
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GPU Architecture

• The G80 chip supports up to 768 threads per SM, which 

sums up to about 12,000 threads for this chip

• The GT200 supports 1024 threads per SM and up to about 

30,000 threads
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CUDA Programming Model

• The G80 had a communication link to the CPU core logic over a 
PCI-Express Generation 2 (Gen2) interface

• Over PCI-E Gen2, a CUDA application can transfer
• data from the system memory to the global memory at 4 GB/S

• at the same time upload data back to the system memory at 4 GB/S

• altogether, there is a combined total of 8 GB/S

• More recent GPUs use PCI-E Gen3 or Gen4, which supports 8-16 
GB/s in each direction

• The Pascal family of GPUs also supports NVLINK, a CPU–GPU and 
GPU–GPU interconnect that allows transfers of up to 40 GB/s per 
channel

Advanced Architectures/Intensive Computation - 2023/2024  19 of 114



INTRODUCTION TO CUDA

Programming Massively Parallel Processors

D.B. Kirk  W.W. Hwu
Chapter 2 - Data Parallel Computing
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CUDA Program Structure

• The structure of a CUDA program reflects the computing 

system consisting of 

• a host, which is a traditional central processing unit (CPU) 

• one or more devices (GPUs)

• A CUDA program is a unified source code encompassing 

both host and device code

• The NVIDIA C compiler - nvcc - separates the two during 

the compilation process
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CUDA Program Structure

• The host code is:

• straight ANSI C code 

• it is further compiled with the host’s standard C compilers 

and runs as an ordinary CPU process

• The device code is:

• written using ANSI C extended with keywords for labeling 

data-parallel functions, called kernels, and their 

associated data structures

• The device code is typically further compiled by the nvcc

and executed on the GPU device
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Device Code (PTX)

Compiling A CUDA Program

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code

Device Just-in-Time Compiler

Heterogeneous Computing Platform with

CPUs, GPUs
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CUDA Execution Model

• The execution starts with host (CPU) execution

• When a kernel function is launched, the execution is moved 

to a device (GPU), where a large number of threads are 

generated to take advantage of abundant data parallelism
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CUDA Execution Model

• All the threads that are generated by a kernel during an 

invocation are collectively called a grid

• Figure shows the execution of two grids of threads
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CUDA Execution Model

• When all threads of a kernel complete their execution:

• the corresponding grid terminates

• the execution continues on the host until another 

kernel is invoked
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Programming the GPU

• To distinguish between functions for the GPU (device) and 

functions for the system processor (host), CUDA uses:

• __device__ or __global__ for the device

• __host__ for the processor

• CUDA variables declared as in the

• __device__ (or __global__) functions 

are allocated to the GPU Memory which is accessible by all 

multithreaded SIMD processors
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Programming the GPU

• The call syntax for the function name that runs on the GPU 

name<<<dimGrid, dimBlock>>>(... parameter list ...)

where dimGrid and dimBlock specify the dimensions of 
the grid (in blocks) and the dimensions of a block (in 
threads)

• CUDA provides  keywords for:

• the identifier for blocks per grid - blockIdx -

• the identifier for threads per block - threadIdx -

• the number of threads per block - blockDim - which comes from the 

dimBlock parameter
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Example

• Consider the DAXPY example

// Invoke DAXPY

daxpy(n, 2.0, x, y);

// DAXPY in C

void daxpy(int n, double a, double *x, double *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}
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Example
• In the CUDA version, we launch:

• n threads, one per vector element 

• with 256 CUDA Threads per thread block 

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n + 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}
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Example

• The GPU function calculates the corresponding element index i based

on the block ID, the number of threads per block, and the thread ID

• If this index is within the array (i < n), it performs the multiply and add

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}
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Threads and Blocks

• The C version has:

• A loop where each iteration is independent of the others

• This allows the loop to be transformed into a parallel code 

• Each loop iteration becomes an independent thread

• The programmer determines the parallelism in CUDA 

explicitly by specifying

• the grid dimensions

• the number of threads per Streaming Processor

• By assigning a single thread to each element, there is no 

need to synchronize among threads when writing results to 

memory

Advanced Architectures/Intensive Computation - 2023/2024  32 of 114



Threads and Blocks

• A thread is associated with each data element

• CUDA threads, with thousands of which for various styles of 

parallelism

• Threads are organized into blocks

• Thread Blocks: groups of up to 512 elements

• Streaming Processor: hardware that executes a whole thread 

block (32 elements executed per thread at a time)

• Blocks are organized into a grid

• Blocks are executed independently and in any order

• Different blocks cannot communicate directly but can 

coordinate using memory operations in GPU Global Memory
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Vector Addition – Traditional C Code

// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)

{

for (i = 0, i < n, i++)

C[i] = A[i] + B[i];

}

int main()

{

// Memory allocation for A_h, B_h, and C_h

// I/O to read A_h and B_h, N elements

…

vecAdd(A_h, B_h, C_h, N);

}
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void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

int size = n* sizeof(float); 

float* d_A, d_B, d_C;

…

1. // Allocate device memory for A, B, and C

// Copy A and B to device memory 

2. // Kernel launch code – to have the device

// to perform the actual vector addition

3. // Copy C from the device memory

// Free device vectors

}

Part 1

CPU

Host Memory

GPU

Part 2

Device Memory

Part 3

Vector Addition – Kernel 
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Device Memory and Data Transfer

• The host and devices have separate memory spaces 

• To execute a kernel on a device

• the programmer needs to allocate memory on the device 

• transfer data from the host memory to the allocated device 

memory 

• this corresponds to Part 1 of Figure 

• After device execution

• the programmer needs to transfer result data from the device 

memory back to the host memory

• free up the device memory

• this corresponds to Part 3 of Figure

Advanced Architectures/Intensive Computation - 2023/2024  

Part 1

CPU

Host Memory

GPU

Part 2

Device Memory

Part 3

36 of 114



Device Memory and Data Transfer

• The CUDA memory model is supported by API functions that 

help programmers to manage data in memories

• The function cudaMalloc():

• called from the host code to allocate object in the device global 

memory

• Two parameters:

• address of a pointer variable to the allocated object after allocation

• size of the allocated object  in terms of bytes

• The function cudaFree() :

• Frees object from device global memory

• Pointer to freed object

• The function cudaMemcpy() for memory data transfer
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CUDA Device Memory Management API

• cudaMalloc()

• Allocates object in the device 

global memory

• Two parameters

• Address of a pointer to the 

allocated object

• Size of allocated object in terms 

of bytes

• cudaFree()

• Frees object from device global 

memory

• Pointer to freed object
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Host-Device Data Transfer API functions

• cudaMemcpy()

• memory data transfer

• requires four parameters

• Pointer to destination 

• Pointer to source

• Number of bytes copied

• Type/Direction of transfer

• Transfer to device is asynchronous
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Local Memory is 

private to a single 

CUDA Thread

Shared Memory is 

shared by all 

threads of SIMD 

instructions within 

a thread block 

GPU Global 

Memory is shared 

by all Grids

NVIDIA GPU Memory Structures
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void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

int size = n * sizeof(float); 

float* d_A, d_B, d_C;

1. // Transfer A and B to device memory 

cudaMalloc((void **) &d_A, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &d_B, size);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Allocate device memory for C

cudaMalloc((void **) &d_C, size);

2. // Kernel invocation code – to be shown later

…

3. // Transfer C from device to host

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory for A, B, C

cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

Vector Addition 
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Arrays of Parallel Threads

• A kernel function specifies the code to be executed by all 

threads during a parallel phase

• All of these threads execute the same code

• A CUDA kernel is executed by a grid (array) of threads 

• All threads in a grid run the same kernel code

• Each thread has an index that it uses to compute 
memory addresses and make control decisions
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Thread Blocks: Scalable Cooperation

• Thread array is divided into multiple blocks

• Threads within a block cooperate via shared memory, atomic 

operations and barrier synchronization

• Threads in different blocks cannot cooperate

i = blockIdx.x * 

blockDim.x + threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

Thread Block 0

…

1 2 254 255

Thread Block 1

0

i = blockIdx.x * 

blockDim.x + threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

1 2 254 255

Thread Block N-1

0

i = blockIdx.x * 

blockDim.x + threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

…… …
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Arrays of Parallel Threads

• When a kernel is invoked, it is executed as grid of parallel 

threads

• Each CUDA thread grid typically is comprised of thousands 

to millions of lightweight GPU threads per kernel invocation 

• Creating enough threads to fully utilize the hardware often 

requires a large amount of data parallelism
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Figure 3.2. An Example of CUDA Thread Organization.
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blockIdx and threadIdx

• Threads in a grid are organized into 

a two-level hierarchy

• top level, each grid consists of one or 

more thread blocks

• Each grid is organized as a as a three-

dimensional array of blocks

• All blocks in a grid have the same 

number of threads organized in the 

same manner

• Each block has a unique three 

dimensional coordinate given by the 
CUDA specific keywords blockIdx.x, 

blockIdx.y and blockIdx.z
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blockIdx and threadIdx

• Threads in a grid are organized into 

a two-level hierarchy

• Each thread block is organized as a 

three-dimensional array of threads with 

a total size of up to 1024 threads 

• The coordinates of threads in a block are 

uniquely defined by three thread indices: 
threadIdx.x, threadIdx.y, and 

threadIdx.z

• Not all applications will use all three 

dimensions of a thread block
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blockIdx and threadIdx

• Threads in a grid are organized into 

a two-level hierarchy

• In Figure 

• each thread block is organized into a 

4x2x2 three-dimensional array of threads

• this gives Grid 1 a total of 4x16 = 64 

threads

• Each thread uses indices to decide 
what data to work on
• blockIdx: 1D, 2D, or 3D (CUDA 4.0)

• threadIdx: 1D, 2D, or 3D 
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Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Advanced Architectures/Intensive Computation - 2023/2024  48



CUDA Thread Organization

• When a thread executes the kernel function, references to 

the blockIdx and threadIdx variables return the 

coordinates of the thread

• Additional built-in variables, gridDim and blockDim, 

provide the dimension of the grid and the dimension of 

each block

• threadID=blockIdx.x * blockDim.x + threadIdx

identifies the part of the input data to read from and the part 

of the output data structure to write to 

• Example Thread 3 of Block 0 has a threadID value of 0*M + 3 = 3

• Example Thread 3 of Block 5 has a threadID value of 5*M + 3
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CUDA threads, blocks and grids
• Nvidia use the Compute Capability specification to encode

what each generation of GPU chips is capable of

• The Compute Capability (CC) of a GPU can be discovered
by running the deviceQuery utility
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CUDA Thread Organization

• The exact organization of a grid is determined by the 

execution configuration provided at kernel launch

• The first parameter specifies the dimensions of the grid as # blocks

• The second specifies the dimensions of each block as # threads

• Each such parameter is a dim3 type, a C struct with three unsigned 

integer fields: x, y, and z

• Example
dim3 dimGrid(128, 1, 1);

dim3 dimBlock(32, 1, 1);

vecAddKernel<<<dimGrid, dimBlock>>>(. . .);

oppure
dim3 cat(128, 1, 1);

dim3 dog(32, 1, 1);

KernelFunction<<<cat, dog>>>(. . .); 
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Execution Configuration Examples
Assuming we have

dim3 b(3,3,3);

dim3 g(20,100);

Different grid-block combination are possible

• foo<<<g,b>>>();    // Run a 20x100 grid made of 3x3x3 blocks

• foo<<<10,b>>>();   // Run a 10-block grid, each block made by
3x3x3 threads

• foo<<<g,256>>>();  // Run a 20x100 grid, made of 256 threads

• foo<<<g,2048>>>(); // An invalid example: maximum block size is
1024 threads even for compute capability 5.x

• foo<<<5,g>>>();    // Another invalid example, that specifies a block 
size of 20x100=2000 threads

• foo<<<10,256>>>;   // Simplified configuration for a 1D grid of 1D 
blocks
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Synchronization 

• CUDA allows threads in the same block to coordinate 

their activities using a barrier synchronization function, 
__syncthreads()

• The thread that executes the function call will be held at the calling 

location until every thread in the block reaches the location

• This process ensures that all threads in a block have completed a 

phase of their execution of the kernel before any of them can 

proceed to the next phase

• A __syncthreads() statement must be executed by all 

threads in a block of the kernel before any moves on to 

the next phase
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Thread and Block Assignment

• Once a kernel is launched, the CUDA runtime system 

generates the corresponding grid of threads 

• threads are assigned to execution resources on a block-by-block basis

• The execution resources are organized into streaming 

multiprocessors (SMs)

• Each device has a limit on

the number of blocks that

can be assigned to each SM
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Thread and Block Assignment
• When an insufficient amount of any one or more types of 

resources needed for the simultaneous execution of 

blocks, the CUDA runtime automatically reduces the 

number of blocks assigned to each SM 

• The runtime system maintains a list of blocks that need to 

execute and assigns new blocks to SMs as they complete 

the execution of blocks previously assigned to them
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Thread Scheduling

• Once a block is assigned to a streaming multiprocessor, it is 

further divided into 32-thread units called warps

• The warp is the unit of thread scheduling in SMs

• Each warp consists of 32 threads of consecutive threadIdx

values: 

• threads 0 through 31 form the first warp

• threads 32 through 63 the second warp, and so on

• We can calculate the number of warps that reside in an SM 

for a given block size and a given number of blocks assigned 

to each SM
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Thread Scheduling
• So, each Block is executed as 

32-thread Warps

– Warps are scheduling units in SM

• Example If 3 blocks are 

assigned to an SM and each 

block has 256 threads, how 

many warps are there in an 

SM?
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Thread Scheduling
• So, each Block is executed as 

32-thread Warps

– Warps are scheduling units in SM

• Example If 3 blocks are 
assigned to an SM and each 
block has 256 threads, how 
many warps are there in an 
SM?

• each block has 256 threads 

• each block is  divided into   
256/32 = 8 warps

• having 3 blocks in each SM, we 
have 8 x 3 = 24 warps in each SM
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Thread Scheduling
• Why do we need to have so many warps in an SM if there 

are only 8 SPs in an SM? 

• The answer is for efficiently executing long-latency operations 

such as global memory accesses

• When an instruction executed by the threads in a warp needs to 

wait for the result of a previously initiated long-latency operation, 

the warp is not selected for execution

• Another resident warp (that is no waiting for results) is selected for 

execution

• If more than one warp is ready for execution, a priority mechanism

is used to select one for execution 

• This mechanism of filling the latency of expensive operations with 

work from other threads is often referred to as latency hiding
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Thread Scheduling
• Note that warp scheduling is also used for tolerating other 

types of long latency operations such as pipelined floating-

point arithmetic and branch instructions

• With enough warps around

• the hardware will likely find a warp to execute at any point in time

• full use of the execution hardware in spite of long-latency 

operations

• The selection of ready warps for execution

• does not introduce any idle time into the execution timeline

• zero-overhead thread scheduling

• With warp scheduling, the long waiting time of warp 

instructions is hidden by executing instructions from other 

warps
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SM Warp Scheduling
• SM hardware implements zero-overhead 

warp scheduling
• Warps whose next instruction has its 

operands ready for consumption are 
eligible for execution

• Eligible warps are selected for 
execution on a prioritized scheduling 
policy

• All threads in a warp execute the 
same instruction when selected

• Example - In G80, 4 clock cycles are 
needed to dispatch the same instruction 
for all threads in a warp

• If one global memory access is needed 
for every 4 instructions

• A minimum of 13 Warps are needed to 
fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96
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Thread Scheduling

List of GPU chips and their SM capabilty
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Exercise 
Simple exercise (register and shared memory not considered)

• Assume a CUDA device allowing 8  blocks, 1024 threads per 

SM and 512 thread in each block

• For matrix multiplication, should we use 8x8, 16x16, or 32x32 

thread blocks? 

• Analyze the pros and cons of each choice
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Exercise 
Simple exercise (register and shared memory not considered)

• Assume a CUDA device allowing 8  blocks, 1024 threads per 

SM and 512 thread in each block

• For matrix multiplication, should we use 8x8, 16x16, or 32x32 

thread blocks? 

• Analyze the pros and cons of each choice

• If we use 8x8 blocks, each block would have only 64 threads, and we 

will need 1024/64 = 12 blocks to fully occupy an SM

• We are limited to 8 blocks in each SM, we will end up with only 64 x 8 = 

512 threads in each SM

• Then the SM execution resources will likely be underutilized because 

there will be fewer warps to schedule around long-latency operations
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Exercise 
Simple exercise (register and shared memory not considered)

• Assume a CUDA device allowing 8  blocks, 1024 threads per 
SM and 512 thread in each block

• For matrix multiplication, should we use 8x8, 16x16, or 32x32 
thread blocks? 

• Analyze the pros and cons of each choice

• The 16x16 blocks give 256 threads per block 

• This means that each SM can take 1024/256 = 4 blocks 

• This is within the 8-block limitation 

• Good configuration:  

• full thread capacity in each SM and the 

• maximal number of warps for scheduling around the long-latency oper. 

• The 32x32 blocks exceed the limitation of up to 512 threads per block
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Programmer View of  CUDA Memories

• At the bottom of the figure, we 

see global memory and 

constant memory

• These types of memory can 

be written (W) and read (R) 

by the host by calling API 

functions

• The constant memory 

supports short-latency, high-

bandwidth, read-only access 

by the device when all 

threads simultaneously 

access the same location

Grid
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Programmer View of  CUDA Memories
Device code can:

• R/W per-thread registers

• R/W per-thread local 
memory

• R/W per-block shared 
memory

• R/W per-grid global memory

• Read-only per-grid constant 
memory

Host code can:

• Transfer data to/from per-grid

global and constant memories

Grid
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Programmer View of  CUDA Memories

• Registers and shared 

memory are on-chip memories

• Variables on these memories 

can be accessed at very high 

speed in a highly parallel 

manner
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Programmer View of  CUDA Memories

• Registers are allocated to 

individual threads and each 

thread can only access its 

own registers

• A kernel function uses registers 

to hold frequently accessed 

variables private to each thread
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Programmer View of  CUDA Memories

Shared memory is allocated 

to thread blocks

• All threads in a block can 

access variables in the 

shared memory locations 

allocated to the block

• Shared memory is used by 

threads to cooperate by 

sharing their input data and 

the intermediate results
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Variables
• In the Table we see the CUDA syntax for declaring program 

variables into the various types of device memory

• Each declaration gives to CUDA variable scope and lifetime

• A scope identifies the range of threads that can access the variable: 

single thread only, all threads of a block, or all threads of all grids

• A lifetime specifies the portion of the program’s execution duration 

when the variable is available for use: either within a kernel’s 

invocation or throughout the entire application
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Variable declaration Memory Scope Lifetime

Automatic Variables register thread kernel

__device__ __shared__   int SharedVar; shared block kernel

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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A motivating example
Example on grid and block size and performance

• Let us assume that:

• We have a kernel that requires 48 registers per thread

• Target platform is a GTX 580 card (CC 2.0, 16SMs, 32k registers/SM)

• Execution configuration is a grid of 4x5x3 blocks, each 100 threads

• Each block requires 100*48=4800 registers

• The grid is made of 4*5*3 = 60 blocks that need to be 
distributed to the 16 SMs of the card
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A motivating example
• There will be 12 SMs that will receive 4 blocks and 4 SMs that will 

receive 3 blocks  Inefficient because during the time the 12 

SMs process the last four blocks the remaining SMs are idle

• Additionally, each of the 100-thread blocks would be split

into warps

• The first three warps would have 32 threads and the last would 

have 4 threads! 

• So during the execution of the last warp of each block

of the SPs will be idle
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A motivating example
• These issues indicate the kernel design and deployment are

critical for extracting the maximum performance from a GPU

• To gain in performance the programmer needs to

understand how threads and warps are executed

• Threads in a warp may execute as one, but they operate on 

different data

• Note that a conditional operation can create a stall

• For example, if the result of a conditional operation leads

threads to different paths, the divergent paths are evaluated

in sequence until the paths merge again
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MATRIX MULTIPLICATION EXAMPLE
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Matrix multiplication
• Each element of the product matrix P is 

generated by performing a dot product 

between a row of input matrix M and a column 

of input matrix N: P = M x N

• The dot product operations for computing 

different matrix P elements can be 

simultaneously performed

• None of these dot products will affect the 

results of each other
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Matrix multiplication
• For large matrices, the number of dot products 

can be very large

• Example, a 1000 x 1000 matrix multiplication 

has 1,000,000 independent dot products, 

each involving 1000 multiply and 1000 

accumulate arithmetic operations

• Matrix multiplication of large dimensions can 

have very large amount of data parallelism
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Matrix multiplication
• The entire matrix multiplication computation

can be implemented as a kernel

• Each thread is used to compute one element 

of output matrix P

• The number of threads used by the kernel is 

a function of the matrix dimension

• For a 1000 x 1000 matrix multiplication, the 

kernel would generate 1,000,000 threads 

when it is invoked
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Matrix multiplication
• Assume that the matrices are square in 

shape, and the dimension of each matrix is 

specified by the parameter WIDTH

• The main program first allocates the M, N, 

and P matrices in the host memory and then 

performs I/O to read in M and N

• After completing the multiplication, the main 

function performs I/O to write the product 

matrix P and to free memory
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Matrix multiplication
CPU-only matrix multiplication function
• void MatrixMulOnHost(float* M, float* N, 

float* P, int Width)

{   

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

float sum = 0;

for (int k = 0; k < Width; ++k) {

float a = M[i * Width + k];

float b = N[k * Width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}
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Matrix multiplication
• The index used for accessing the M matrix in the innermost 

loop is i * Width + k

• The M matrix elements are placed into the system memory 

according to the row-major convention:

• All elements of a row are placed into consecutive memory locations

• The rows are then placed one after another
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Matrix multiplication
• To port the matrix multiplication function into CUDA, we can 

modify the MatrixMultiplication() function to move the bulk of 

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float); 

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory 

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}
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Matrix multiplication
• To port the matrix multiplication function into CUDA, we can 

modify the MatrixMultiplication() function to move the bulk of 

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float); 

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory 

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}

Part 1 

- allocates device (GPU) 

memory to hold copies of 

the M, N, and P matrices, 

- copies these matrices 

over to the device memory
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Matrix multiplication
• To port the matrix multiplication function into CUDA, we can 

modify the MatrixMultiplication() function to move the bulk of 

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float); 

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory 

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}

Part 2 

- invokes a kernel that 

launches parallel 

execution of the actual 

matrix multiplication on 

the device 
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Matrix multiplication
• To port the matrix multiplication function into CUDA, we can 

modify the MatrixMultiplication() function to move the bulk of 

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float); 

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory 

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}

Part 3 

- copies the product

matrix P from the 

device memory back 

to the host memory
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Matrix multiplication
Assume M, N and P are on the host and 

Md, Nd and Pd on device
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float); 

float* Md, Nd, Pd;

…

1. // Allocate and Load M, N to device memory 

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);
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Matrix multiplication
Assume M, N and P are on the host and Md, Nd and Pd on 

device
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float); 

float* Md, Nd, Pd;

…

1. // Allocate and Load M, N to device memory 

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

The two symbolic constants, 
cudaMemcpyHostToDevice

and
cudaMemcpyDeviceToHost

are predefined constants of 

the CUDA programming 

environment, recognized by 
cudaMemcpy
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Matrix multiplication
2.   // Kernel invocation code – to be shown later

…

3.    // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); 

cudaFree(Nd); 

cudaFree(Pd);

}

-The product data is 

copied from device 

memory to host memory 

so the value will be 

available to main() by a 
call to the cudaMemcpy()

function

- Then Md, Nd, and Pd 

are freed from the device 

memory by calls to the 
cudaFree() functions
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Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Width + k];

float Ndelement = Nd[k * Width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

Advanced Architectures/Intensive Computation - 2023/2024  89 of 114



Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Width + k];

float Ndelement = Nd[k * Width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}
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The CUDA-specific
keyword __global__ in 

front of the declaration 
of MatrixMulKernel() 

indicates that:

- the function is a kernel 

- it can be called from a 

host functions to 

generate a grid of 

threads on a device

90 of 114



Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Width + k];

float Ndelement = Nd[k * Width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}
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• The keywords threadIdx.x and 

threadIdx.y refer to the thread 

indices of a thread 

• The original loop variables i and

j are now replaced with  

threadIdx.x and threadIdx.y

• The CUDA threading hardware 

generates all of the threadIdx.x

and threadIdx.y values for each

thread (instead of the loop 

increment the values of i and j for 

loop iteration)
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Matrix multiplication
• Limitation of this simple code is the size of matrices: 16x16

• Infact the kernel function does not use blockIdx

• Then, we are limited to using only one block of threads

• Even if we used more blocks, threads from different blocks 

would calculate the same Pd element if they have the same 

threadIdx value 

• The code can only calculate a product matrix of up to 512 

elements  infact a thread block can have only up to 512 

threads and each thread calculates one element of the matrix
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Matrix multiplication
• For square matrices, 32x32 requires more than 512 threads

per block  then we are limited to 16x16

• This is obviously not acceptable

• The product matrix must have millions of elements in order 

to have a sufficient amount of data parallelism to benefit from 

execution on a device

• Now we revise the matrix multiplication kernel function using

multiple blocks
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Matrix multiplication
• In order to accommodate larger matrices, we need to use 

multiple thread blocks

• Conceptually, we break Pd into square tiles

• All the Pd elements of a tile are computed by a block of 

threads

• By keeping the dimensions of these Pd tiles small, we 

keep the total number of threads in each block under 512, 

the maximal allowable block size

• In the following, we abbreviate:

• threadIdx.x and threadIdx.y as tx and ty

• blockIdx.x and blockIdx.y as bx and by
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Matrix multiplication
• Consider a very small matrix - 4x4 - and  a very small 

TILE_WIDTH value - 2 - and divide the matrix into 4 tiles

• We create blocks organized into 2x2 arrays of threads

• Each block calculates 4 Pd elements

Pd1,0Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Block(0,0)

Block(1,1)Block(0,1)

Block(1,0)
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Matrix multiplication
• thread (0, 0) of block (0, 0) calculates Pd0,0

• thread (0, 0) of block (1, 0) calculates Pd2,0

The Pd element calculated by thread (0, 0) of block (1, 0) can 

be computed by: 

Pd[bx* TILE_WIDTH + tx] [by* TILE_WIDTH + ty] =

=Pd[1*2 + 0][0*2 + 0] = Pd[2][0]

Pd1,0Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Block(0,0)

Block(1,1)Block(0,1)

Block(1,0)
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Matrix multiplication
• We also need the row index y of Md and the column index 

x of Nd for input values

• The row index of Md used by thread (tx, ty) of block (bx, by) 

is (by*TILE_WIDTH + ty)

• The column index of Nd used by the same thread is 

(bx*TILE_WIDTH + tx)

Pd1,0Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Block(0,0)

Block(1,1)Block(0,1)

Block(1,0)
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Matrix multiplication
• Threads in block (0, 0) produce four dot 

products: 

• Thread (0, 0) generates Pd0,0 by calculating 

the dot product of row 0 of Md and column 0 

of Nd

• Thread (1, 0) generates Pd1,0 by calculating 

the dot product of row 0 of Md and column 1 

of Nd

• …

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3
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• The arrows of Pd0,0, 

and Pd1,0 shows the 

row and column 

used for generating 

their result value
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Matrix multiplication
Revised matrix multiplication kernel function with blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, 

float* Pd, int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-
matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

Each thread uses 
its blockIdx and

threadIdx values 

to identify the row 

index - Row - and 

the column index -

Col - of the Pd 

element
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Matrix multiplication
• Revised matrix multiplication kernel function with blocks
__global__ void MatrixMulKernel(float* Md, float* 

Nd, float* Pd, int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block 
sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

Each thread performs:

- a dot product on the 

row of Md and column 

of Nd to generate the 

value of the Pd element

- eventually writes the 

Pd value to the 

appropriate global

memory location
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Matrix multiplication
• This kernel can handle matrices of up to 16 x 65,535 

elements in each dimension

• In the situation where matrices larger than this new limit are 

to be multiplied, one can divide the Pd matrix into 

submatrices of a size permitted by the kernel

• All blocks can run in parallel with each other and will fully 

utilize parallel execution resources
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Matrix multiplication
• Revised host code to be used in the MatrixMultiplication()

to launch the revised kernel MatrixMulKernel() with

multiple blocks

• Note that the dimGrid is Width/TILE_WIDTH for both the x 

dimension and the y dimension

// Set up the execution configuration

dim3 dimGrid(Width/TILE_WIDTH,Width/TILE_WIDTH)

dim3 dimBlock(TILE_WIDTH,TILE_WIDTH)

// launch the device computation thread

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,Width);
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Matrix multiplication
Memory access: global vs shared

• The table shows the global memory accesses done by all 

threads in block(0,0)

• The threads are listed in the horizontal direction, with the time 

of access increasing downward in the vertical direction
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P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order
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Matrix multiplication
• Each thread accesses 4 elements of Md and 4 elements 

of Nd during its execution

• there is a significant overlap of the Md and Nd accesses:

• thread(0,0) and thread(1,0) both access Md1,0 as well as the rest of 

row 0 of Md

• thread(1,0) and thread(1,1) both access Nd1,0 as well as the rest of 

column 1 of Nd
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P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order
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Matrix multiplication
• The kernel is written so both thread(0,0) and thread(1,0) 

access these Md row 0 elements from the global memory

• In general, every Md and Nd element is accessed exactly 

twice during the execution of block(0,0)

• If thread(0,0) and thread(1,0) collaborate so that Md

elements are only loaded from global memory once, the 

total number of accesses to the global memory reduced by 

half

• The potential reduction in global memory traffic in the 

matrix multiplication example is proportional to the 

dimension of the blocks used

• NxN blocks  potential reduction of global memory is N 
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Matrix multiplication
• The kernel is written so both thread(0,0) and thread(1,0) 

access these Md row 0 elements from the global memory

• In general, every Md and Nd element is accessed exactly 

twice during the execution of block(0,0)

• If thread(0,0) and thread(1,0) collaborate so that Md

elements are only loaded from global memory once, the 

total number of accesses to the global memory  by half

• The potential reduction in global memory traffic in the 

matrix multiplication example is proportional to the 

dimension of the blocks used

• NxN blocks  potential reduction of global memory is N 
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Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory
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Matrix multiplication
• The multiplication algorithm where threads collaborate to 

reduce the traffic to the global memory exploits the 

shared memory

• Threads collaboratively load Md and Nd elements into the 

shared memory before they individually use these 

elements in their dot product calculation

• The size of the shared memory is quite small 

• To no exceed the capacity of the shared memory when 

loading Md and Nd elements we consider Md and Nd

matrices divided into tiles
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Matrix multiplication
• Md and Nd divided into 2x2 tiles

• The dot product calculations performed by 

each thread are now divided into phases

• In each phase, all threads in a block 

collaborate to load a tile of Md and a tile of 

Nd into the shared memory:

• every thread in a block loads one Md element 

and one Nd element
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Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3
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Matrix multiplication
• Activities of threads in block(0,0) (other 

blocks are the same)

• At the beginning of Phase 1, the four 

threads of block(0,0) load a tile of Md

into shared memory

• thread(0,0) loads Md0,0 into Mds0,0

• thread(1,0) loads Md1,0 into Mds1,0 

• thread(0,1) loads Md0,1 into Mds0,1

• thread(1,1) loads Md1,1 into Mds1,1
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Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

• The shared memory array 

for the Md elements is 

Mds, and for the Nd

elements is Nds

109 of 114



• The shared memory array for the Md elements is Mds, and for the Nd

elements is Nds

Phase 1 Phase 2

T0,0 Md0,0

↓ 

Mds0,0

Nd0,0

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

Md2,0

↓ 

Mds0,0

Nd0,2

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

T1,0 Md1,0

↓ 

Mds1,0

Nd1,0

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

Md3,0

↓ 

Mds1,0

Nd1,2

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

T0,1 Md0,1

↓ 

Mds0,1

Nd0,1

↓ 

Nds0,1

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

Md2,1

↓ 

Mds0,1

Nd0,3

↓ 

Nds0,1

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

T1,1 Md1,1

↓ 

Mds1,1

Nd1,1

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

Md3,1

↓ 

Mds1,1

Nd1,3

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

time

Matrix multiplication
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• At the beginning of Phase 1, 
the four threads of block(0,0) 
load a tile of Md into the 
shared memory and a tile of
Nd

• These values are used in the 
calculation of the dot product

• Note that each value in the 
shared memory is used twice

Example

• Md0,1 is loaded by thread0,1 into 
Mds0,1 and is used once by 
thread0,1 and once by thread1,1

• Nd1,0 is loaded by thread1,0 into 
Nds1,0 and is used once by 
thread1,0 and once by thread1,1

Phase 1

T0,0 Md0,0

↓ 

Mds0,0

Nd0,0

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

T1,0 Md1,0

↓ 

Mds1,0

Nd1,0

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

T0,1 Md0,1

↓ 

Mds0,1

Nd0,1

↓ 

Nds0,1

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

T1,1 Md1,1

↓ 

Mds1,1

Nd1,1

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

Matrix multiplication
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• Phase 2 is similar and it allow to

complete the computation

• Note that the two phases use the 

same Mds e Nds.

Phase2

T0,0 Md2,0

↓ 

Mds0,0

Nd0,2

↓ 

Nds0,0

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1

T1,0 Md3,0

↓ 

Mds1,0

Nd1,2

↓ 

Nds1,0

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1

T0,1 Md2,1

↓ 

Mds0,1

Nd0,3

↓ 

Nds0,1

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1

T1,1 Md3,1

↓ 

Mds1,1

Nd1,3

↓ 

Nds1,1

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3
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Tiled matrix multiplication kernel using shared memories 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* 
Pd, int Width)

{

1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

Matrix multiplication
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7.    float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute 
the Pd element

8.    for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared 
memory

9. Mds[ty][tx] = Md[Row*Width+(m*TILE_WIDTH + tx)]; 

10.    Nds[ty][tx] = Nd[Col+(m*TILE_WIDTH + ty)*Width];

11.     __syncthreads();

12.     for (int k = 0; k < TILE_WIDTH; ++k)

13.  Pvalue += Mds[ty][k] * Nds[k][tx];

14.  synchthreads();

}

15.  Pd[Row*Width+Col] = Pvalue;

}

Matrix multiplication
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