
ADVANCED ARCHITECTURES

INTENSIVE COMPUTATION

GRAPHICS PROCESSING UNITS
Annalisa Massini Lectures 10-11

2023-2024

Programming Massively Parallel Processors
D.B. Kirk W. W. Hwu

• Chapter 3 - Introduction to Data Parallelism and CUDA C
• Sections 3.2 - 3.6

• Chapter 4 - Data Parallel Execution Model

• Sections 4.5 - 4.7

• Chapter 5 - CUDA Memories

• Sections 5.2 - 5.4

Multicore and GPU Programming
G. Barlas

• Chapter 6 - GPU Programming
• Sections 6.2 - 6.7

Computer Architecture - A Quantitative Approach, Fifth Edition
Hennessy Patterson

• Chapter 4 - Data-Level Parallelism in Vector, SIMD, and GPU Architectures

• Section 4.4 – Graphics Processing Units

Advanced Architectures/Intensive Computation - 2023/2024 2 of 114

INTRODUCTION

Computer Architecture - A Quantitative Approach, Fifth Edition

J.L. Hennessy D.A. Patterson
Section 4.4 – Graphics Processing Units

Programming Massively Parallel Processors

D.B. Kirk W.W. Hwu
Chapter 1 - Introduction

Advanced Architectures/Intensive Computation - 2023/2024 3 of 114

Graphics Processing Units

• GPUs and CPUs do not go back in computer architecture

genealogy to a common ancestor

• The primary ancestors of GPUs are graphics accelerators

• Given the hardware invested to do graphics, the question is:

how can be the design of GPUs used to improve the

performance of a wider range of applications?

Advanced Architectures/Intensive Computation - 2023/2024 4 of 114

Graphics Processing Units

• The challenge for the GPU programmer

• is not simply getting good performance on the GPU

• but also in coordinating the scheduling of computation on the

system processor and the GPU and the transfer of data between

system memory and GPU memory

• GPUs have virtually every type of parallelism that can

be captured by the programming environment:

• multithreading

• instruction-level

• SIMD

• MIMD

Advanced Architectures/Intensive Computation - 2023/2024 5 of 114

Programming the GPU

• NVIDIA developed a C-like language and programming

environment denoted CUDA - Compute Unified Device

Architecture

• CUDA produces:

• C/C++ for the system processor - host

• a C and C++ dialect for the GPU - device (D in CUDA)

• OpenCL is a similar language, which several companies

are developing as an independent language for multiple

platforms

Advanced Architectures/Intensive Computation - 2023/2024 6 of 114

Programming the GPU

• NVIDIA unified all forms of parallelism in the CUDA Thread

• The compiler and the hardware can gang thousands of

CUDA threads together to utilize the various styles of

parallelism within a GPU (multithreading, MIMD, SIMD, ILP)

• NVIDIA classifies the CUDA programming model as Single

Instruction, Multiple Thread (SIMT)

• Threads are blocked together - Thread Block - and

executed in groups of 32 threads - warp

Advanced Architectures/Intensive Computation - 2023/2024 7 of 114

CUDA Programming Model

• The GPU is viewed as a compute device with the following
features:

• It is a coprocessor to the CPU (host)

• It has its own DRAM (device memory)

• It runs many threads in parallel

• Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

• Differences between GPU and CPU threads
• GPU threads are extremely lightweight

• Very little creation overhead

• GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

Advanced Architectures/Intensive Computation - 2023/2024 8 of 114

CPUs vs GPUs

• Since 2003, the semiconductor industry has settled on two main
trajectories for designing microprocessors

• The multicore trajectory seeks to maintain the execution speed of
sequential programs while moving into multiple cores:
• The multicores began with two-core processors

• The number of cores increased with each semiconductor process
generation

• A recent Intel multicore microprocessor comes with up to 12
processor cores, where each of which
• is an out-of-order, multiple instruction issue processor implementing the

full X86 instruction set

• supporting hyper-threading with two hardware threads

• designed to maximize the execution speed of sequential programs

Advanced Architectures/Intensive Computation - 2023/2024 9 of 114

CPUs vs GPUs

• The many-thread trajectory focuses more on the execution
throughput of parallel applications

• The many-threads began with a large number of threads and the
number of threads increases with each generation

• A recent exemplar is the NVIDIA Tesla P100 graphics processing
unit (GPU) with 10s of 1000s of threads, executing in a large
number of simple, in order pipelines

• Many-thread processors, especially the GPUs, have led the race of
floating-point performance
• In 2016, the ratio of peak floating-point calculation throughput between

many-thread GPUs and multicore CPUs is about 10, and this ratio has been
roughly constant for the past several years

Advanced Architectures/Intensive Computation - 2023/2024 10 of 114

CPUs vs GPUs

• The large performance gap between parallel and sequential
execution has motivated applications developers to move the
computationally intensive parts of their software to GPU

• Computationally intensive parts are the prime target of parallel
programming where the work is divided among cooperating
parallel workers

• One might ask why there is such a large peak throughput gap
between many-threaded GPUs and general-purpose multicore
CPUs

• The answer lies in the differences in the fundamental design
philosophies between the two types of processors

Advanced Architectures/Intensive Computation - 2023/2024 11 of 114

CPUs: Latency Oriented Design

The design of a CPU is optimized

for sequential code performance

• Large caches

• Convert long latency memory accesses

to short latency cache accesses

• Sophisticated control

• Branch prediction for reduced branch

latency

• Data forwarding for reduced data

latency

• Powerful ALU

• Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

Advanced Architectures/Intensive Computation - 2023/2024 12

GPUs: Throughput Oriented Design

The design of GPUs is throughput-

oriented

• Small caches

• To boost memory throughput

• Simple control

• No branch prediction

• No data forwarding

• Energy efficient ALUs

• Many, long latency but heavily

pipelined for high throughput

• Require massive number of

threads to tolerate latencies

DRAM

GPU

Advanced Architectures/Intensive Computation - 2023/2024 13

CPUs vs GPUs

• In summary, GPUs are designed as parallel, throughput-oriented
computing engines and they will not perform well on some tasks
on which CPUs are designed to perform well

• For programs that have one or very few threads, CPUs with
lower operation latencies can achieve much higher
performance than GPUs

• When a program has a large number of threads, GPUs with
higher execution throughput can achieve much higher
performance than CPUs

• Therefore, one should expect that many applications use both
CPUs and GPUs, executing the sequential parts on the CPU and
numerically intensive parts on the GPUs

Advanced Architectures/Intensive Computation - 2023/2024 14 of 114

GPU Architecture

• A typical CUDA-capable GPU can be organized into

• an array of highly threaded streaming multiprocessors (SMs)

• two SMs form a building block

• the number of SMs in a building block can vary from one generation of

CUDA GPUs to another

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Advanced Architectures/Intensive Computation - 2023/2024 15 of 114

GPU Architecture

• Each SM has a number of streaming processors (SPs) that

share control logic and instruction cache

• Each GPU currently comes with up to 4 gigabytes of

graphics double data rate (GDDR) SDRAM - global memory

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Advanced Architectures/Intensive Computation - 2023/2024 16 of 114

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

GPU Architecture

• The parallel G80 chip has 128 SPs (16 SMs with 8 SPs)

• Each SP has a multiply–add (MAD) unit and an additional

multiply unit

• The G80 (128 SPs) produces a total of over 500 gigaflops

• The GT200 (240 SPs) exceeds 1 teraflops, the GTX680 1,5 teraflops

Advanced Architectures/Intensive Computation - 2023/2024 17 of 114

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

GPU Architecture

• The G80 chip supports up to 768 threads per SM, which

sums up to about 12,000 threads for this chip

• The GT200 supports 1024 threads per SM and up to about

30,000 threads

Advanced Architectures/Intensive Computation - 2023/2024 18 of 114

CUDA Programming Model

• The G80 had a communication link to the CPU core logic over a
PCI-Express Generation 2 (Gen2) interface

• Over PCI-E Gen2, a CUDA application can transfer
• data from the system memory to the global memory at 4 GB/S

• at the same time upload data back to the system memory at 4 GB/S

• altogether, there is a combined total of 8 GB/S

• More recent GPUs use PCI-E Gen3 or Gen4, which supports 8-16
GB/s in each direction

• The Pascal family of GPUs also supports NVLINK, a CPU–GPU and
GPU–GPU interconnect that allows transfers of up to 40 GB/s per
channel

Advanced Architectures/Intensive Computation - 2023/2024 19 of 114

INTRODUCTION TO CUDA

Programming Massively Parallel Processors

D.B. Kirk W.W. Hwu
Chapter 2 - Data Parallel Computing

Advanced Architectures/Intensive Computation - 2023/2024 20 of 114

CUDA Program Structure

• The structure of a CUDA program reflects the computing

system consisting of

• a host, which is a traditional central processing unit (CPU)

• one or more devices (GPUs)

• A CUDA program is a unified source code encompassing

both host and device code

• The NVIDIA C compiler - nvcc - separates the two during

the compilation process

Advanced Architectures/Intensive Computation - 2023/2024 21 of 114

CUDA Program Structure

• The host code is:

• straight ANSI C code

• it is further compiled with the host’s standard C compilers

and runs as an ordinary CPU process

• The device code is:

• written using ANSI C extended with keywords for labeling

data-parallel functions, called kernels, and their

associated data structures

• The device code is typically further compiled by the nvcc

and executed on the GPU device

Advanced Architectures/Intensive Computation - 2023/2024 22 of 114

Device Code (PTX)

Compiling A CUDA Program

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code

Device Just-in-Time Compiler

Heterogeneous Computing Platform with

CPUs, GPUs

Advanced Architectures/Intensive Computation - 2023/2024 23

CUDA Execution Model

• The execution starts with host (CPU) execution

• When a kernel function is launched, the execution is moved

to a device (GPU), where a large number of threads are

generated to take advantage of abundant data parallelism

Advanced Architectures/Intensive Computation - 2023/2024

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

24

CUDA Execution Model

• All the threads that are generated by a kernel during an

invocation are collectively called a grid

• Figure shows the execution of two grids of threads

Advanced Architectures/Intensive Computation - 2023/2024

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

25

CUDA Execution Model

• When all threads of a kernel complete their execution:

• the corresponding grid terminates

• the execution continues on the host until another

kernel is invoked

Advanced Architectures/Intensive Computation - 2023/2024

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

26

Programming the GPU

• To distinguish between functions for the GPU (device) and

functions for the system processor (host), CUDA uses:

• __device__ or __global__ for the device

• __host__ for the processor

• CUDA variables declared as in the

• __device__ (or __global__) functions

are allocated to the GPU Memory which is accessible by all

multithreaded SIMD processors

Advanced Architectures/Intensive Computation - 2023/2024 27 of 114

Programming the GPU

• The call syntax for the function name that runs on the GPU

name<<<dimGrid, dimBlock>>>(... parameter list ...)

where dimGrid and dimBlock specify the dimensions of
the grid (in blocks) and the dimensions of a block (in
threads)

• CUDA provides keywords for:

• the identifier for blocks per grid - blockIdx -

• the identifier for threads per block - threadIdx -

• the number of threads per block - blockDim - which comes from the

dimBlock parameter

Advanced Architectures/Intensive Computation - 2023/2024 28 of 114

Example

• Consider the DAXPY example

// Invoke DAXPY

daxpy(n, 2.0, x, y);

// DAXPY in C

void daxpy(int n, double a, double *x, double *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

Advanced Architectures/Intensive Computation - 2023/2024 29 of 114

Example
• In the CUDA version, we launch:

• n threads, one per vector element

• with 256 CUDA Threads per thread block

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n + 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

Advanced Architectures/Intensive Computation - 2023/2024 30 of 114

Example

• The GPU function calculates the corresponding element index i based

on the block ID, the number of threads per block, and the thread ID

• If this index is within the array (i < n), it performs the multiply and add

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

Advanced Architectures/Intensive Computation - 2023/2024 31 of 114

Threads and Blocks

• The C version has:

• A loop where each iteration is independent of the others

• This allows the loop to be transformed into a parallel code

• Each loop iteration becomes an independent thread

• The programmer determines the parallelism in CUDA

explicitly by specifying

• the grid dimensions

• the number of threads per Streaming Processor

• By assigning a single thread to each element, there is no

need to synchronize among threads when writing results to

memory

Advanced Architectures/Intensive Computation - 2023/2024 32 of 114

Threads and Blocks

• A thread is associated with each data element

• CUDA threads, with thousands of which for various styles of

parallelism

• Threads are organized into blocks

• Thread Blocks: groups of up to 512 elements

• Streaming Processor: hardware that executes a whole thread

block (32 elements executed per thread at a time)

• Blocks are organized into a grid

• Blocks are executed independently and in any order

• Different blocks cannot communicate directly but can

coordinate using memory operations in GPU Global Memory

Advanced Architectures/Intensive Computation - 2023/2024 33 of 114

Vector Addition – Traditional C Code

// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)

{

for (i = 0, i < n, i++)

C[i] = A[i] + B[i];

}

int main()

{

// Memory allocation for A_h, B_h, and C_h

// I/O to read A_h and B_h, N elements

…

vecAdd(A_h, B_h, C_h, N);

}

Advanced Architectures/Intensive Computation - 2023/2024 34

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

int size = n* sizeof(float);

float* d_A, d_B, d_C;

…

1. // Allocate device memory for A, B, and C

// Copy A and B to device memory

2. // Kernel launch code – to have the device

// to perform the actual vector addition

3. // Copy C from the device memory

// Free device vectors

}

Part 1

CPU

Host Memory

GPU

Part 2

Device Memory

Part 3

Vector Addition – Kernel

Advanced Architectures/Intensive Computation - 2023/2024 35

Device Memory and Data Transfer

• The host and devices have separate memory spaces

• To execute a kernel on a device

• the programmer needs to allocate memory on the device

• transfer data from the host memory to the allocated device

memory

• this corresponds to Part 1 of Figure

• After device execution

• the programmer needs to transfer result data from the device

memory back to the host memory

• free up the device memory

• this corresponds to Part 3 of Figure

Advanced Architectures/Intensive Computation - 2023/2024

Part 1

CPU

Host Memory

GPU

Part 2

Device Memory

Part 3

36 of 114

Device Memory and Data Transfer

• The CUDA memory model is supported by API functions that

help programmers to manage data in memories

• The function cudaMalloc():

• called from the host code to allocate object in the device global

memory

• Two parameters:

• address of a pointer variable to the allocated object after allocation

• size of the allocated object in terms of bytes

• The function cudaFree() :

• Frees object from device global memory

• Pointer to freed object

• The function cudaMemcpy() for memory data transfer

Advanced Architectures/Intensive Computation - 2023/2024 37 of 114

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Device Memory Management API

• cudaMalloc()

• Allocates object in the device

global memory

• Two parameters

• Address of a pointer to the

allocated object

• Size of allocated object in terms

of bytes

• cudaFree()

• Frees object from device global

memory

• Pointer to freed object

Advanced Architectures/Intensive Computation - 2023/2024 38

Host-Device Data Transfer API functions

• cudaMemcpy()

• memory data transfer

• requires four parameters

• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type/Direction of transfer

• Transfer to device is asynchronous

Advanced Architectures/Intensive Computation - 2023/2024

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

39

Local Memory is

private to a single

CUDA Thread

Shared Memory is

shared by all

threads of SIMD

instructions within

a thread block

GPU Global

Memory is shared

by all Grids

NVIDIA GPU Memory Structures

Advanced Architectures/Intensive Computation - 2023/2024

Local Memory

Shared Memory

Global Memory

40 of 114

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

int size = n * sizeof(float);

float* d_A, d_B, d_C;

1. // Transfer A and B to device memory

cudaMalloc((void **) &d_A, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &d_B, size);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Allocate device memory for C

cudaMalloc((void **) &d_C, size);

2. // Kernel invocation code – to be shown later

…

3. // Transfer C from device to host

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory for A, B, C

cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

Vector Addition

Advanced Architectures/Intensive Computation - 2023/2024 41 of 114

Arrays of Parallel Threads

• A kernel function specifies the code to be executed by all

threads during a parallel phase

• All of these threads execute the same code

• A CUDA kernel is executed by a grid (array) of threads

• All threads in a grid run the same kernel code

• Each thread has an index that it uses to compute
memory addresses and make control decisions

Advanced Architectures/Intensive Computation - 2023/2024

i = blockIdx.x * blockDim.x

+ threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

…

42 of 114

Thread Blocks: Scalable Cooperation

• Thread array is divided into multiple blocks

• Threads within a block cooperate via shared memory, atomic

operations and barrier synchronization

• Threads in different blocks cannot cooperate

i = blockIdx.x *

blockDim.x + threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

Thread Block 0

…

1 2 254 255

Thread Block 1

0

i = blockIdx.x *

blockDim.x + threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

1 2 254 255

Thread Block N-1

0

i = blockIdx.x *

blockDim.x + threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

…… …

Advanced Architectures/Intensive Computation - 2023/2024 43 of 114

Arrays of Parallel Threads

• When a kernel is invoked, it is executed as grid of parallel

threads

• Each CUDA thread grid typically is comprised of thousands

to millions of lightweight GPU threads per kernel invocation

• Creating enough threads to fully utilize the hardware often

requires a large amount of data parallelism

Advanced Architectures/Intensive Computation - 2023/2024 44 of 114

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

blockIdx and threadIdx

• Threads in a grid are organized into

a two-level hierarchy

• top level, each grid consists of one or

more thread blocks

• Each grid is organized as a as a three-

dimensional array of blocks

• All blocks in a grid have the same

number of threads organized in the

same manner

• Each block has a unique three

dimensional coordinate given by the
CUDA specific keywords blockIdx.x,

blockIdx.y and blockIdx.z

Advanced Architectures/Intensive Computation - 2023/2024 45

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

blockIdx and threadIdx

• Threads in a grid are organized into

a two-level hierarchy

• top level, each grid consists of one or

more thread blocks

• Each grid is organized as a as a three-

dimensional array of blocks

• All blocks in a grid have the same

number of threads organized in the

same manner

• Each block has a unique three

dimensional coordinate given by the
CUDA specific keywords blockIdx.x,

blockIdx.y and blockIdx.z

Advanced Architectures/Intensive Computation - 2023/2024 46

blockIdx and threadIdx

• Threads in a grid are organized into

a two-level hierarchy

• Each thread block is organized as a

three-dimensional array of threads with

a total size of up to 1024 threads

• The coordinates of threads in a block are

uniquely defined by three thread indices:
threadIdx.x, threadIdx.y, and

threadIdx.z

• Not all applications will use all three

dimensions of a thread block

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Advanced Architectures/Intensive Computation - 2023/2024 47

blockIdx and threadIdx

• Threads in a grid are organized into

a two-level hierarchy

• In Figure

• each thread block is organized into a

4x2x2 three-dimensional array of threads

• this gives Grid 1 a total of 4x16 = 64

threads

• Each thread uses indices to decide
what data to work on
• blockIdx: 1D, 2D, or 3D (CUDA 4.0)

• threadIdx: 1D, 2D, or 3D

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Advanced Architectures/Intensive Computation - 2023/2024 48

CUDA Thread Organization

• When a thread executes the kernel function, references to

the blockIdx and threadIdx variables return the

coordinates of the thread

• Additional built-in variables, gridDim and blockDim,

provide the dimension of the grid and the dimension of

each block

• threadID=blockIdx.x * blockDim.x + threadIdx

identifies the part of the input data to read from and the part

of the output data structure to write to

• Example Thread 3 of Block 0 has a threadID value of 0*M + 3 = 3

• Example Thread 3 of Block 5 has a threadID value of 5*M + 3

Advanced Architectures/Intensive Computation - 2023/2024 49 of 114

CUDA threads, blocks and grids
• Nvidia use the Compute Capability specification to encode

what each generation of GPU chips is capable of

• The Compute Capability (CC) of a GPU can be discovered
by running the deviceQuery utility

Advanced Architectures/Intensive Computation - 2023/2024 50 of 114

CUDA Thread Organization

• The exact organization of a grid is determined by the

execution configuration provided at kernel launch

• The first parameter specifies the dimensions of the grid as # blocks

• The second specifies the dimensions of each block as # threads

• Each such parameter is a dim3 type, a C struct with three unsigned

integer fields: x, y, and z

• Example
dim3 dimGrid(128, 1, 1);

dim3 dimBlock(32, 1, 1);

vecAddKernel<<<dimGrid, dimBlock>>>(. . .);

oppure
dim3 cat(128, 1, 1);

dim3 dog(32, 1, 1);

KernelFunction<<<cat, dog>>>(. . .);

Advanced Architectures/Intensive Computation - 2023/2024 51 of 114

Execution Configuration Examples
Assuming we have

dim3 b(3,3,3);

dim3 g(20,100);

Different grid-block combination are possible

• foo<<<g,b>>>(); // Run a 20x100 grid made of 3x3x3 blocks

• foo<<<10,b>>>(); // Run a 10-block grid, each block made by
3x3x3 threads

• foo<<<g,256>>>(); // Run a 20x100 grid, made of 256 threads

• foo<<<g,2048>>>(); // An invalid example: maximum block size is
1024 threads even for compute capability 5.x

• foo<<<5,g>>>(); // Another invalid example, that specifies a block
size of 20x100=2000 threads

• foo<<<10,256>>>; // Simplified configuration for a 1D grid of 1D
blocks

Advanced Architectures/Intensive Computation - 2023/2024 52 of 114

Synchronization

• CUDA allows threads in the same block to coordinate

their activities using a barrier synchronization function,
__syncthreads()

• The thread that executes the function call will be held at the calling

location until every thread in the block reaches the location

• This process ensures that all threads in a block have completed a

phase of their execution of the kernel before any of them can

proceed to the next phase

• A __syncthreads() statement must be executed by all

threads in a block of the kernel before any moves on to

the next phase

Advanced Architectures/Intensive Computation - 2023/2024 53 of 114

Thread and Block Assignment

• Once a kernel is launched, the CUDA runtime system

generates the corresponding grid of threads

• threads are assigned to execution resources on a block-by-block basis

• The execution resources are organized into streaming

multiprocessors (SMs)

• Each device has a limit on

the number of blocks that

can be assigned to each SM

Advanced Architectures/Intensive Computation - 2023/2024

t0 t1 t2 …
tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 …
tm

Blocks

SM 1SM 0

54 of 114

Thread and Block Assignment
• When an insufficient amount of any one or more types of

resources needed for the simultaneous execution of

blocks, the CUDA runtime automatically reduces the

number of blocks assigned to each SM

• The runtime system maintains a list of blocks that need to

execute and assigns new blocks to SMs as they complete

the execution of blocks previously assigned to them

Advanced Architectures/Intensive Computation - 2023/2024

t0 t1 t2 …
tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 …
tm

Blocks

SM 1SM 0

55 of 114

Thread Scheduling

• Once a block is assigned to a streaming multiprocessor, it is

further divided into 32-thread units called warps

• The warp is the unit of thread scheduling in SMs

• Each warp consists of 32 threads of consecutive threadIdx

values:

• threads 0 through 31 form the first warp

• threads 32 through 63 the second warp, and so on

• We can calculate the number of warps that reside in an SM

for a given block size and a given number of blocks assigned

to each SM

Advanced Architectures/Intensive Computation - 2023/2024 56 of 114

Thread Scheduling
• So, each Block is executed as

32-thread Warps

– Warps are scheduling units in SM

• Example If 3 blocks are

assigned to an SM and each

block has 256 threads, how

many warps are there in an

SM?

Advanced Architectures/Intensive Computation - 2023/2024

…
t0 t1 t2 …

t31

…

…
t0 t1 t2 …

t31

…

Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 …

t31

…

Block 3 Warps

57 of 114

Thread Scheduling
• So, each Block is executed as

32-thread Warps

– Warps are scheduling units in SM

• Example If 3 blocks are
assigned to an SM and each
block has 256 threads, how
many warps are there in an
SM?

• each block has 256 threads

• each block is divided into
256/32 = 8 warps

• having 3 blocks in each SM, we
have 8 x 3 = 24 warps in each SM

Advanced Architectures/Intensive Computation - 2023/2024

…
t0 t1 t2 …

t31

…

…
t0 t1 t2 …

t31

…

Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 …

t31

…

Block 3 Warps

58 of 114

Thread Scheduling
• Why do we need to have so many warps in an SM if there

are only 8 SPs in an SM?

• The answer is for efficiently executing long-latency operations

such as global memory accesses

• When an instruction executed by the threads in a warp needs to

wait for the result of a previously initiated long-latency operation,

the warp is not selected for execution

• Another resident warp (that is no waiting for results) is selected for

execution

• If more than one warp is ready for execution, a priority mechanism

is used to select one for execution

• This mechanism of filling the latency of expensive operations with

work from other threads is often referred to as latency hiding

Advanced Architectures/Intensive Computation - 2023/2024 59 of 114

Thread Scheduling
• Note that warp scheduling is also used for tolerating other

types of long latency operations such as pipelined floating-

point arithmetic and branch instructions

• With enough warps around

• the hardware will likely find a warp to execute at any point in time

• full use of the execution hardware in spite of long-latency

operations

• The selection of ready warps for execution

• does not introduce any idle time into the execution timeline

• zero-overhead thread scheduling

• With warp scheduling, the long waiting time of warp

instructions is hidden by executing instructions from other

warps

Advanced Architectures/Intensive Computation - 2023/2024 60 of 114

SM Warp Scheduling
• SM hardware implements zero-overhead

warp scheduling
• Warps whose next instruction has its

operands ready for consumption are
eligible for execution

• Eligible warps are selected for
execution on a prioritized scheduling
policy

• All threads in a warp execute the
same instruction when selected

• Example - In G80, 4 clock cycles are
needed to dispatch the same instruction
for all threads in a warp

• If one global memory access is needed
for every 4 instructions

• A minimum of 13 Warps are needed to
fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96
Advanced Architectures/Intensive Computation -

2023/2024

Intensive Computation - 2022/2023 of 114

61

Thread Scheduling

List of GPU chips and their SM capabilty

Advanced Architectures/Intensive Computation - 2023/2024 62 of 114

Exercise
Simple exercise (register and shared memory not considered)

• Assume a CUDA device allowing 8 blocks, 1024 threads per

SM and 512 thread in each block

• For matrix multiplication, should we use 8x8, 16x16, or 32x32

thread blocks?

• Analyze the pros and cons of each choice

Advanced Architectures/Intensive Computation - 2023/2024 63 of 114

Exercise
Simple exercise (register and shared memory not considered)

• Assume a CUDA device allowing 8 blocks, 1024 threads per

SM and 512 thread in each block

• For matrix multiplication, should we use 8x8, 16x16, or 32x32

thread blocks?

• Analyze the pros and cons of each choice

• If we use 8x8 blocks, each block would have only 64 threads, and we

will need 1024/64 = 12 blocks to fully occupy an SM

• We are limited to 8 blocks in each SM, we will end up with only 64 x 8 =

512 threads in each SM

• Then the SM execution resources will likely be underutilized because

there will be fewer warps to schedule around long-latency operations

Advanced Architectures/Intensive Computation - 2023/2024 64 of 114

Exercise
Simple exercise (register and shared memory not considered)

• Assume a CUDA device allowing 8 blocks, 1024 threads per
SM and 512 thread in each block

• For matrix multiplication, should we use 8x8, 16x16, or 32x32
thread blocks?

• Analyze the pros and cons of each choice

• The 16x16 blocks give 256 threads per block

• This means that each SM can take 1024/256 = 4 blocks

• This is within the 8-block limitation

• Good configuration:

• full thread capacity in each SM and the

• maximal number of warps for scheduling around the long-latency oper.

• The 32x32 blocks exceed the limitation of up to 512 threads per block

Advanced Architectures/Intensive Computation - 2023/2024 65 of 114

Programmer View of CUDA Memories

• At the bottom of the figure, we

see global memory and

constant memory

• These types of memory can

be written (W) and read (R)

by the host by calling API

functions

• The constant memory

supports short-latency, high-

bandwidth, read-only access

by the device when all

threads simultaneously

access the same location

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced Architectures/Intensive Computation - 2023/2024 66 of 114

Programmer View of CUDA Memories
Device code can:

• R/W per-thread registers

• R/W per-thread local
memory

• R/W per-block shared
memory

• R/W per-grid global memory

• Read-only per-grid constant
memory

Host code can:

• Transfer data to/from per-grid

global and constant memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced Architectures/Intensive Computation - 2023/2024 67 of 114

Programmer View of CUDA Memories

• Registers and shared

memory are on-chip memories

• Variables on these memories

can be accessed at very high

speed in a highly parallel

manner

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced Architectures/Intensive Computation - 2023/2024 68 of 114

Programmer View of CUDA Memories

• Registers are allocated to

individual threads and each

thread can only access its

own registers

• A kernel function uses registers

to hold frequently accessed

variables private to each thread

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced Architectures/Intensive Computation - 2023/2024 69 of 114

Programmer View of CUDA Memories

Shared memory is allocated

to thread blocks

• All threads in a block can

access variables in the

shared memory locations

allocated to the block

• Shared memory is used by

threads to cooperate by

sharing their input data and

the intermediate results

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced Architectures/Intensive Computation - 2023/2024 70 of 114

Variables
• In the Table we see the CUDA syntax for declaring program

variables into the various types of device memory

• Each declaration gives to CUDA variable scope and lifetime

• A scope identifies the range of threads that can access the variable:

single thread only, all threads of a block, or all threads of all grids

• A lifetime specifies the portion of the program’s execution duration

when the variable is available for use: either within a kernel’s

invocation or throughout the entire application

Advanced Architectures/Intensive Computation - 2023/2024

Variable declaration Memory Scope Lifetime

Automatic Variables register thread kernel

__device__ __shared__ int SharedVar; shared block kernel

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

71 of 114

A motivating example
Example on grid and block size and performance

• Let us assume that:

• We have a kernel that requires 48 registers per thread

• Target platform is a GTX 580 card (CC 2.0, 16SMs, 32k registers/SM)

• Execution configuration is a grid of 4x5x3 blocks, each 100 threads

• Each block requires 100*48=4800 registers

• The grid is made of 4*5*3 = 60 blocks that need to be
distributed to the 16 SMs of the card

Advanced Architectures/Intensive Computation - 2023/2024 72 of 114

A motivating example
• There will be 12 SMs that will receive 4 blocks and 4 SMs that will

receive 3 blocks Inefficient because during the time the 12

SMs process the last four blocks the remaining SMs are idle

• Additionally, each of the 100-thread blocks would be split

into warps

• The first three warps would have 32 threads and the last would

have 4 threads!

• So during the execution of the last warp of each block

of the SPs will be idle

Advanced Architectures/Intensive Computation - 2023/2024 73 of 114

A motivating example
• These issues indicate the kernel design and deployment are

critical for extracting the maximum performance from a GPU

• To gain in performance the programmer needs to

understand how threads and warps are executed

• Threads in a warp may execute as one, but they operate on

different data

• Note that a conditional operation can create a stall

• For example, if the result of a conditional operation leads

threads to different paths, the divergent paths are evaluated

in sequence until the paths merge again

Advanced Architectures/Intensive Computation - 2023/2024 74 of 114

MATRIX MULTIPLICATION EXAMPLE

Advanced Architectures/Intensive Computation - 2023/2024 75 of 114

Matrix multiplication
• Each element of the product matrix P is

generated by performing a dot product

between a row of input matrix M and a column

of input matrix N: P = M x N

• The dot product operations for computing

different matrix P elements can be

simultaneously performed

• None of these dot products will affect the

results of each other
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

i

k

k

j

Advanced Architectures/Intensive Computation - 2023/2024 76 of 114

Matrix multiplication
• For large matrices, the number of dot products

can be very large

• Example, a 1000 x 1000 matrix multiplication

has 1,000,000 independent dot products,

each involving 1000 multiply and 1000

accumulate arithmetic operations

• Matrix multiplication of large dimensions can

have very large amount of data parallelism

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

i

k

k

j

Advanced Architectures/Intensive Computation - 2023/2024 77 of 114

Matrix multiplication
• The entire matrix multiplication computation

can be implemented as a kernel

• Each thread is used to compute one element

of output matrix P

• The number of threads used by the kernel is

a function of the matrix dimension

• For a 1000 x 1000 matrix multiplication, the

kernel would generate 1,000,000 threads

when it is invoked
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

i

k

k

j

Advanced Architectures/Intensive Computation - 2023/2024 78 of 114

Matrix multiplication
• Assume that the matrices are square in

shape, and the dimension of each matrix is

specified by the parameter WIDTH

• The main program first allocates the M, N,

and P matrices in the host memory and then

performs I/O to read in M and N

• After completing the multiplication, the main

function performs I/O to write the product

matrix P and to free memory
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

i

k

k

j

Advanced Architectures/Intensive Computation - 2023/2024 79 of 114

Matrix multiplication
CPU-only matrix multiplication function
• void MatrixMulOnHost(float* M, float* N,

float* P, int Width)

{

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

float sum = 0;

for (int k = 0; k < Width; ++k) {

float a = M[i * Width + k];

float b = N[k * Width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

i

k

k

j

Advanced Architectures/Intensive Computation - 2023/2024 80 of 114

Matrix multiplication
• The index used for accessing the M matrix in the innermost

loop is i * Width + k

• The M matrix elements are placed into the system memory

according to the row-major convention:

• All elements of a row are placed into consecutive memory locations

• The rows are then placed one after another

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3 M3,1M3,0 M3,2 M3,3

M

Advanced Architectures/Intensive Computation - 2023/2024 81 of 114

Matrix multiplication
• To port the matrix multiplication function into CUDA, we can

modify the MatrixMultiplication() function to move the bulk of

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}

Advanced Architectures/Intensive Computation - 2023/2024 82 of 114

Matrix multiplication
• To port the matrix multiplication function into CUDA, we can

modify the MatrixMultiplication() function to move the bulk of

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}

Part 1

- allocates device (GPU)

memory to hold copies of

the M, N, and P matrices,

- copies these matrices

over to the device memory

Advanced Architectures/Intensive Computation - 2023/2024 83 of 114

Matrix multiplication
• To port the matrix multiplication function into CUDA, we can

modify the MatrixMultiplication() function to move the bulk of

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}

Part 2

- invokes a kernel that

launches parallel

execution of the actual

matrix multiplication on

the device

Advanced Architectures/Intensive Computation - 2023/2024 84 of 114

Matrix multiplication
• To port the matrix multiplication function into CUDA, we can

modify the MatrixMultiplication() function to move the bulk of

the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

float* Md, Nd, Pd;

…

1.// Allocate device memory for M, N, P and

// load M, N to device memory

2.// Kernel invocation code to have the device to perform

// the actual matrix multiplication

3.// copy P from the device

// Free device matrices

}

Part 3

- copies the product

matrix P from the

device memory back

to the host memory

Advanced Architectures/Intensive Computation - 2023/2024 85 of 114

Matrix multiplication
Assume M, N and P are on the host and

Md, Nd and Pd on device
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

float* Md, Nd, Pd;

…

1. // Allocate and Load M, N to device memory

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

Advanced Architectures/Intensive Computation - 2023/2024 86 of 114

Matrix multiplication
Assume M, N and P are on the host and Md, Nd and Pd on

device
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

float* Md, Nd, Pd;

…

1. // Allocate and Load M, N to device memory

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

The two symbolic constants,
cudaMemcpyHostToDevice

and
cudaMemcpyDeviceToHost

are predefined constants of

the CUDA programming

environment, recognized by
cudaMemcpy

Advanced Architectures/Intensive Computation - 2023/2024 87 of 114

Matrix multiplication
2. // Kernel invocation code – to be shown later

…

3. // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md);

cudaFree(Nd);

cudaFree(Pd);

}

-The product data is

copied from device

memory to host memory

so the value will be

available to main() by a
call to the cudaMemcpy()

function

- Then Md, Nd, and Pd

are freed from the device

memory by calls to the
cudaFree() functions

Advanced Architectures/Intensive Computation - 2023/2024 88 of 114

Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Width + k];

float Ndelement = Nd[k * Width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

Advanced Architectures/Intensive Computation - 2023/2024 89 of 114

Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Width + k];

float Ndelement = Nd[k * Width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

Advanced Architectures/Intensive Computation - 2023/2024

The CUDA-specific
keyword __global__ in

front of the declaration
of MatrixMulKernel()

indicates that:

- the function is a kernel

- it can be called from a

host functions to

generate a grid of

threads on a device

90 of 114

Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Width + k];

float Ndelement = Nd[k * Width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

Advanced Architectures/Intensive Computation - 2023/2024

• The keywords threadIdx.x and

threadIdx.y refer to the thread

indices of a thread

• The original loop variables i and

j are now replaced with

threadIdx.x and threadIdx.y

• The CUDA threading hardware

generates all of the threadIdx.x

and threadIdx.y values for each

thread (instead of the loop

increment the values of i and j for

loop iteration)

91 of 114

Matrix multiplication
• Limitation of this simple code is the size of matrices: 16x16

• Infact the kernel function does not use blockIdx

• Then, we are limited to using only one block of threads

• Even if we used more blocks, threads from different blocks

would calculate the same Pd element if they have the same

threadIdx value

• The code can only calculate a product matrix of up to 512

elements infact a thread block can have only up to 512

threads and each thread calculates one element of the matrix

Advanced Architectures/Intensive Computation - 2023/2024 92 of 114

Matrix multiplication
• For square matrices, 32x32 requires more than 512 threads

per block then we are limited to 16x16

• This is obviously not acceptable

• The product matrix must have millions of elements in order

to have a sufficient amount of data parallelism to benefit from

execution on a device

• Now we revise the matrix multiplication kernel function using

multiple blocks

Advanced Architectures/Intensive Computation - 2023/2024 93 of 114

Matrix multiplication
• In order to accommodate larger matrices, we need to use

multiple thread blocks

• Conceptually, we break Pd into square tiles

• All the Pd elements of a tile are computed by a block of

threads

• By keeping the dimensions of these Pd tiles small, we

keep the total number of threads in each block under 512,

the maximal allowable block size

• In the following, we abbreviate:

• threadIdx.x and threadIdx.y as tx and ty

• blockIdx.x and blockIdx.y as bx and by

Advanced Architectures/Intensive Computation - 2023/2024 94 of 114

Matrix multiplication
• Consider a very small matrix - 4x4 - and a very small

TILE_WIDTH value - 2 - and divide the matrix into 4 tiles

• We create blocks organized into 2x2 arrays of threads

• Each block calculates 4 Pd elements

Pd1,0Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Block(0,0)

Block(1,1)Block(0,1)

Block(1,0)

Advanced Architectures/Intensive Computation - 2023/2024 95 of 114

Matrix multiplication
• thread (0, 0) of block (0, 0) calculates Pd0,0

• thread (0, 0) of block (1, 0) calculates Pd2,0

The Pd element calculated by thread (0, 0) of block (1, 0) can

be computed by:

Pd[bx* TILE_WIDTH + tx] [by* TILE_WIDTH + ty] =

=Pd[1*2 + 0][0*2 + 0] = Pd[2][0]

Pd1,0Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Block(0,0)

Block(1,1)Block(0,1)

Block(1,0)

Advanced Architectures/Intensive Computation - 2023/2024 96 of 114

Matrix multiplication
• We also need the row index y of Md and the column index

x of Nd for input values

• The row index of Md used by thread (tx, ty) of block (bx, by)

is (by*TILE_WIDTH + ty)

• The column index of Nd used by the same thread is

(bx*TILE_WIDTH + tx)

Pd1,0Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Block(0,0)

Block(1,1)Block(0,1)

Block(1,0)

Advanced Architectures/Intensive Computation - 2023/2024 97 of 114

Matrix multiplication
• Threads in block (0, 0) produce four dot

products:

• Thread (0, 0) generates Pd0,0 by calculating

the dot product of row 0 of Md and column 0

of Nd

• Thread (1, 0) generates Pd1,0 by calculating

the dot product of row 0 of Md and column 1

of Nd

• …

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3

Advanced Architectures/Intensive Computation - 2023/2024

• The arrows of Pd0,0,

and Pd1,0 shows the

row and column

used for generating

their result value

98 of 114

Matrix multiplication
Revised matrix multiplication kernel function with blocks
__global__ void MatrixMulKernel(float* Md, float* Nd,

float* Pd, int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-
matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

Each thread uses
its blockIdx and

threadIdx values

to identify the row

index - Row - and

the column index -

Col - of the Pd

element

Advanced Architectures/Intensive Computation - 2023/2024 99 of 114

Matrix multiplication
• Revised matrix multiplication kernel function with blocks
__global__ void MatrixMulKernel(float* Md, float*

Nd, float* Pd, int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block
sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

Each thread performs:

- a dot product on the

row of Md and column

of Nd to generate the

value of the Pd element

- eventually writes the

Pd value to the

appropriate global

memory location

Advanced Architectures/Intensive Computation - 2023/2024 100 of 114

Matrix multiplication
• This kernel can handle matrices of up to 16 x 65,535

elements in each dimension

• In the situation where matrices larger than this new limit are

to be multiplied, one can divide the Pd matrix into

submatrices of a size permitted by the kernel

• All blocks can run in parallel with each other and will fully

utilize parallel execution resources

Advanced Architectures/Intensive Computation - 2023/2024 101 of 114

Matrix multiplication
• Revised host code to be used in the MatrixMultiplication()

to launch the revised kernel MatrixMulKernel() with

multiple blocks

• Note that the dimGrid is Width/TILE_WIDTH for both the x

dimension and the y dimension

// Set up the execution configuration

dim3 dimGrid(Width/TILE_WIDTH,Width/TILE_WIDTH)

dim3 dimBlock(TILE_WIDTH,TILE_WIDTH)

// launch the device computation thread

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,Width);

Advanced Architectures/Intensive Computation - 2023/2024 102 of 114

Matrix multiplication
Memory access: global vs shared

• The table shows the global memory accesses done by all

threads in block(0,0)

• The threads are listed in the horizontal direction, with the time

of access increasing downward in the vertical direction

Advanced Architectures/Intensive Computation - 2023/2024

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order

103 of 114

Matrix multiplication
• Each thread accesses 4 elements of Md and 4 elements

of Nd during its execution

• there is a significant overlap of the Md and Nd accesses:

• thread(0,0) and thread(1,0) both access Md1,0 as well as the rest of

row 0 of Md

• thread(1,0) and thread(1,1) both access Nd1,0 as well as the rest of

column 1 of Nd

Advanced Architectures/Intensive Computation - 2023/2024

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order

104 of 114

Matrix multiplication
• The kernel is written so both thread(0,0) and thread(1,0)

access these Md row 0 elements from the global memory

• In general, every Md and Nd element is accessed exactly

twice during the execution of block(0,0)

• If thread(0,0) and thread(1,0) collaborate so that Md

elements are only loaded from global memory once, the

total number of accesses to the global memory reduced by

half

• The potential reduction in global memory traffic in the

matrix multiplication example is proportional to the

dimension of the blocks used

• NxN blocks potential reduction of global memory is N

Advanced Architectures/Intensive Computation - 2023/2024 105 of 114

Matrix multiplication
• The kernel is written so both thread(0,0) and thread(1,0)

access these Md row 0 elements from the global memory

• In general, every Md and Nd element is accessed exactly

twice during the execution of block(0,0)

• If thread(0,0) and thread(1,0) collaborate so that Md

elements are only loaded from global memory once, the

total number of accesses to the global memory by half

• The potential reduction in global memory traffic in the

matrix multiplication example is proportional to the

dimension of the blocks used

• NxN blocks potential reduction of global memory is N

Advanced Architectures/Intensive Computation - 2023/2024

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

106 of 114

Matrix multiplication
• The multiplication algorithm where threads collaborate to

reduce the traffic to the global memory exploits the

shared memory

• Threads collaboratively load Md and Nd elements into the

shared memory before they individually use these

elements in their dot product calculation

• The size of the shared memory is quite small

• To no exceed the capacity of the shared memory when

loading Md and Nd elements we consider Md and Nd

matrices divided into tiles

Advanced Architectures/Intensive Computation - 2023/2024 107 of 114

Matrix multiplication
• Md and Nd divided into 2x2 tiles

• The dot product calculations performed by

each thread are now divided into phases

• In each phase, all threads in a block

collaborate to load a tile of Md and a tile of

Nd into the shared memory:

• every thread in a block loads one Md element

and one Nd element

Advanced Architectures/Intensive Computation - 2023/2024

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

108 of 114

Matrix multiplication
• Activities of threads in block(0,0) (other

blocks are the same)

• At the beginning of Phase 1, the four

threads of block(0,0) load a tile of Md

into shared memory

• thread(0,0) loads Md0,0 into Mds0,0

• thread(1,0) loads Md1,0 into Mds1,0

• thread(0,1) loads Md0,1 into Mds0,1

• thread(1,1) loads Md1,1 into Mds1,1

Advanced Architectures/Intensive Computation - 2023/2024

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

• The shared memory array

for the Md elements is

Mds, and for the Nd

elements is Nds

109 of 114

• The shared memory array for the Md elements is Mds, and for the Nd

elements is Nds

Phase 1 Phase 2

T0,0 Md0,0

↓

Mds0,0

Nd0,0

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

Md2,0

↓

Mds0,0

Nd0,2

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md1,0

↓

Mds1,0

Nd1,0

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

Md3,0

↓

Mds1,0

Nd1,2

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md0,1

↓

Mds0,1

Nd0,1

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

Md2,1

↓

Mds0,1

Nd0,3

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md1,1

↓

Mds1,1

Nd1,1

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Md3,1

↓

Mds1,1

Nd1,3

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

time

Matrix multiplication

Advanced Architectures/Intensive Computation - 2023/2024 110

• At the beginning of Phase 1,
the four threads of block(0,0)
load a tile of Md into the
shared memory and a tile of
Nd

• These values are used in the
calculation of the dot product

• Note that each value in the
shared memory is used twice

Example

• Md0,1 is loaded by thread0,1 into
Mds0,1 and is used once by
thread0,1 and once by thread1,1

• Nd1,0 is loaded by thread1,0 into
Nds1,0 and is used once by
thread1,0 and once by thread1,1

Phase 1

T0,0 Md0,0

↓

Mds0,0

Nd0,0

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md1,0

↓

Mds1,0

Nd1,0

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md0,1

↓

Mds0,1

Nd0,1

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md1,1

↓

Mds1,1

Nd1,1

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Matrix multiplication

Advanced Architectures/Intensive Computation - 2023/2024 111

• Phase 2 is similar and it allow to

complete the computation

• Note that the two phases use the

same Mds e Nds.

Phase2

T0,0 Md2,0

↓

Mds0,0

Nd0,2

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md3,0

↓

Mds1,0

Nd1,2

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md2,1

↓

Mds0,1

Nd0,3

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md3,1

↓

Mds1,1

Nd1,3

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3

Advanced Architectures/Intensive Computation - 2023/2024

Matrix multiplication

112

Tiled matrix multiplication kernel using shared memories

__global__ void MatrixMulKernel(float* Md, float* Nd, float*
Pd, int Width)

{

1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

Matrix multiplication

Advanced Architectures/Intensive Computation - 2023/2024 113

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute
the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared
memory

9. Mds[ty][tx] = Md[Row*Width+(m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd[Col+(m*TILE_WIDTH + ty)*Width];

11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[ty][k] * Nds[k][tx];

14. synchthreads();

}

15. Pd[Row*Width+Col] = Pvalue;

}

Matrix multiplication

Advanced Architectures/Intensive Computation - 2023/2024 114

