
SIMD CLASS AND
VECTOR ARCHITECTURES

Intensive Computation
Annalisa Massini Lecture 8

2022-2023

SIMD

ARCHITECTURES

Intensive Computation - 2022/2023 of 702

Computer Architecture - A Quantitative Approach, Fifth Edition

J.L. Hennessy, D. A. Patterson
• Chapter 4 - Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Parallel Computer Architecture: A Hardware/Software Approach
D.E. Culler, J. P. Singh, A. Gupta
• Chapter 1.3.5 Data Parallel Processing

Introduction to High Performance Computing for Scientists and
Engineers G. Hager G. Wellein
• Chapter 1.6 Vector processors

Intensive Computation - 2022/2023 of 703

SIMD architectures

• SIMD (Single Instruction Multiple Data) architectures are
effective for applications having a significant data-level
parallelism (DLP):
• matrix-oriented computations of scientific computing

• media oriented image

• sound processing

• Since a single instruction can launch many data operations,
SIMD is potentially more energy efficient than MIMD (Multiple
Instruction Multiple Data), which needs to fetch and execute
one instruction per data operation

Intensive Computation - 2022/2023 of 704

SIMD architectures

• Perhaps the biggest advantage of SIMD versus MIMD is that the
programmer continues to think sequentially yet achieves
parallel speedup by having parallel data operations

• For problems with lots of data parallelism, all SIMD variations
share the advantage of being easier for the programmer than
classic parallel MIMD programming

• We will consider two variations of SIMD:
• vector architectures (developed for more than 40 year)

• graphics processing units (GPUs)

• We do not consider SIMD extension of instruction set, that is common in
architectures that support multimedia applications

Intensive Computation - 2022/2023 of 705

SIMD architectures

• Vector architectures means essentially pipelined execution of
many data operations

• Vector architectures are easier to understand and compile than
other SIMD variations, but they were considered too expensive
for microprocessors until recently

• Part of that expense was in transistors and part was in the cost
of sufficient DRAM bandwidth, given the widespread
dependence on caches to meet memory performance
demands on conventional microprocessors

Intensive Computation - 2022/2023 of 706

SIMD architectures

GPUs

• Represent a variation on SIMD offering higher potential
performance than is found in traditional multicore
computers today

• Share features with vector architectures, but they have their
own distinguishing characteristics, in part due to the context
in which they evolved

• The GPU and its graphics memory are associated with a
system processor and system memory, and the architecture
is referred to as heterogeneous, and indeed, the system
processor is called host and the GPU is called device

Intensive Computation - 2022/2023 of 707

SIMD architectures

• For problems with lots of data parallelism, all SIMD variations
share the advantage of being easier for the programmer than
classic parallel MIMD programming

• In 2011, Hennessy and Patterson wrote in their book that:
“Over the next decade the potential speedup from SIMD
parallelism is twice that of MIMD parallelism. Hence, it’s as
least as important to understand SIMD parallelism as MIMD
parallelism, although the latter has received much more
fanfare recently.”

• The goal is to understand vector architectures, as well as the
similarities and differences between vector and GPU
architectures

Intensive Computation - 2022/2023 of 708

VECTOR PROCESSORS:

HYSTORY

Intensive Computation - 2022/2023 of 709

Vector processors

• Development of vector processors was in the mid ’70s

• Vector processors follow the SIMD paradigm which demands
that a single machine instruction is automatically applied to a
– presumably large – number of arguments of the same type,
i.e., a vector, rather than individual scalar data

• Vector operations permit more parallelism to be obtained
within a single thread of control

• Vector supercomputers were implemented in very fast,
expensive, high power circuit technologies

Intensive Computation - 2022/2023 of 7010

Vector processors

• In vector processors, a scalar processor is integrated with a
collection of function units that operate on vectors of data
out of one memory in a pipelined fashion

• The ability to operate on vectors anywhere in memory:

• eliminates the need to map application data structures onto a
rigid interconnection structure

• greatly simplifies the problem of getting data aligned so that local
operations can be performed

• Most modern cache-based microprocessors have adopted
some of vector architecture ideas in the form of SIMD
instruction set extensions

Intensive Computation - 2022/2023 of 7011

Vector processors

• The first vector processor was the CDC Star 100 designed,
manufactured, and marketed by Control Data Corporation
(CDC) in 1974

• The name STAR comes from the words STrings of binary digits
that made up ARrays, referring to the vector concept

• The 100 came from 100 million floating point operations per
second (100 MFLOPS), the speed at which the machine was
designed to operate

• The STAR had a 64-bit architecture, consisting of 195
instructions and its main innovation was the inclusion of 65
vector instructions for vector processing

Intensive Computation - 2022/2023 of 7012

Vector processors

• The vector operations provided in the instruction set
combined two source vectors from memory and produced a
result vector in memory

• The machine only operated at full speed if the vectors were
contiguous and a large fraction of the execution time was
spent simply transposing matrices

Intensive Computation - 2022/2023 of 7013

CDC STAR 100

• CDC's approach in the Star architecture used what is today known
as a memory-memory architecture

• This is referred to the way the machine gathered data

• It set up its pipeline to read from and write to memory directly

• This allowed the Star to use vectors of any length making it
highly flexible

• BUT, as a drawback:

• The pipeline had to be very long in order to allow it to have
enough instructions in flight to make up for the slow memory

Intensive Computation - 2022/2023 of 7014

CDC STAR 100

Other drawbacks

• The machine incurred a high cost when switching from
processing vectors to performing operations on individual
randomly located operands (scalar operations)

• The low scalar performance of the machine meant that after
the switch had taken place and the machine was running
scalar instructions, the performance was quite poor

Intensive Computation - 2022/2023 of 7015

Cray-1

• A dramatic change in 1976 with the introduction of the Cray-1
designed, manufactured and marketed by Cray Research in 1976

• Seymour Cray worked at CDC from 1968 to 1972, on CDC 6600,
7600 and 8600, then decided to left CDC for the finance
difficulties in CDC due to the STAR project

• He started the Cray research with the idea of designing a new
supercomputer

• Cray was able to look at the failure of the STAR and learn from it

• The over 100 Cray-1s sold, makes it one of the most successful
supercomputers in history

Intensive Computation - 2022/2023 of 7016

Cray-1

• The Cray-1 was the first supercomputer to successfully
implement the vector processor design

• The concept of a load-store architecture employed in the CDC
architectures is extended to apply to vectors (then
rediscovered in modern RISC machines)

• Cray decided that in addition to fast vector processing, his
design would also require:

• Excellent all-around scalar performance when the machine
switched modes, it would still provide superior performance

• Also, the workloads could be dramatically improved in most
cases through the use of registers

Intensive Computation - 2022/2023 of 7017

Cray-1

• Registers are significantly more expensive in terms of circuitry,
so only a limited number could be provided

• Cray's design has less flexibility in terms of vector sizes

• Instead of reading any sized vector several times as in the STAR,
the Cray-1 reads only a portion of the vector at a time, but it
could then run several operations on that data prior to writing
the results back to memory

• Vectors in memory, of any fixed stride, were transferred to or
from contiguous vector registers by vector load and store
instructions

Intensive Computation - 2022/2023 of 7018

Cray-1

• The vector system of the new design had its own separate
pipeline

• Arithmetic was performed on the vector registers

• The multiplication and addition units were implemented as
separate hardware, so the results of one could be internally
pipelined into the next

• The use of a very fast scalar processor (operating at the
unprecedented rate of 80 MHz) tightly integrated with the
vector operations utilizing a large semiconductor memory
determined the beginning of supercomputing

Intensive Computation - 2022/2023 of 7019

Cray-1

• Cray-1 was the first Cray design to use integrated circuits (ICs)

• ICs were mounted on large five-layer printed circuit boards,
with up to 144 ICs per board

• Boards were mounted back to back for cooling and placed in
24 racks (of size 28-inch-high - 71 cm) containing 72 double-
boards

• The typical module (distinct processing unit) required one or
two boards

• In all, the machine contained 1662 modules in 113 varieties

Intensive Computation - 2022/2023 of 7020

Cray-1

• The high-performance circuitry generated considerable heat
and much effort on the design of the refrigeration system

• Each circuit board was paired with a second, placed back to
back with a sheet of copper between them, and liquid Freon
running in stainless steel pipes was used for the cooling unit
below the machine

Intensive Computation - 2022/2023 of 70

• In order to bring maximum speed out of the
machine, the entire chassis was bent into a
large C-shape

• Speed-dependent portions of the system were
placed on the inside edge of the chassis, where
the wire-lengths were shorter

21

Cray 1

Intensive Computation - 2022/2023 of 70

Over the next twenty years
Cray Research led the
supercomputing market by:
• increasing the bandwidth

for vector memory
transfers

• increasing the number of
processors, the number
of vector pipelines, and
the length of the vector
registers

22

Cray 1

Intensive Computation - 2022/2023 of 70

Cray-1 features

• 64-bit system

• Addressing was 24-bit, with
a maximum of 1,048,576
64-bit words (1 megaword)
of main memory

• Each word also had 8 parity
bits for a total of 72 bits per
word (64 data bits and 8
check bits)

The Cray-1 had 12
pipelined functional units

23

Cray 1

Intensive Computation - 2022/2023 of 70

• Memory was spread across 16
interleaved memory banks, each
with a 50 ns cycle time, allowing up
to four words to be read per cycle

• The main register set consisted of:

• 8 64-bit scalar (S) registers

• 8 24-bit address (A) registers

• 8 64-element by 64-bit vector
registers (V)

• A vector length (VL) register

• A vector mask (VM) register

• A 64-bit real-time clock register

• 4 64-bit instruction buffers that
held sixty-four 16-bit instructions

24

VECTOR ARCHITECTURES

Computer Architecture - A Quantitative Approach, Fifth Edition
Hennessy Patterson

Chapter 4 - Data-Level Parallelism in Vector, SIMD, and GPU Architectures
Section 4.2 - Vector Architecture

Intensive Computation - 2022/2023 of 7025

Vector Architectures

• Vector processors were successfully commercialized long
before instruction level parallel machines and take an
alternative approach to controlling multiple functional units
with deep pipelines

• Vector processors provide high-level operations that work on
vectors linear arrays of numbers

• Example A typical vector operation might add two 64-element,
floating-point vectors to obtain a single 64-element vector
result

• The vector instruction is equivalent to an entire loop, with
each iteration computing one of the N elements of the result,
updating the indices, and branching back to the beginning

Intensive Computation - 2022/2023 of 7026

Vector Architectures

Vector instructions have several important characteristics:

1. A single vector instruction is equivalent to executing a loop:
• Each instruction represents tens or hundreds of operations

• So the instruction fetch and decode bandwidth needed to keep multiple
deeply pipelined functional units busy is dramatically reduced

Intensive Computation - 2022/2023 of 7027

Vector Architectures

Vector instructions have several important characteristics:

2. By using a vector instruction
• the compiler or programmer indicates that the computation of each

result in the vector is independent of the computation of other results in
the same vector

• so hardware does not have to check for data hazards within a vector
instruction

• The elements in the vector can be computed using an array of parallel
functional units, or a single very deeply pipelined functional unit, or any
intermediate configuration of parallel and pipelined functional units

Intensive Computation - 2022/2023 of 7028

Vector Architectures

Vector instructions have several important characteristics (cont.):

3. Hardware need only check for data hazards between two

vector instructions once per vector operand, not once for

every element within the vectors

• Then the dependency checking logic for two vector instructions is approximately

the same as that for two scalar instructions, but many more elemental operations

can be in flight at the same cost

Intensive Computation - 2022/2023 of 7029

Vector Architectures

Vector instructions have several important characteristics (cont.):

4. Vector instructions that access memory have a known

access pattern

• If the vector’s elements are all adjacent, then fetching the vector from a set of

heavily interleaved memory banks works very well

• The high latency of initiating a main memory access versus accessing a cache is

amortized, because a single access is initiated for the entire vector rather than to

a single word

• The cost of the latency to main memory is seen only once for the entire vector,

rather than once for each word of the vector

Intensive Computation - 2022/2023 of 7030

Vector Architectures

• Vector processors pipeline and parallelize the operations on the

individual elements of a vector

• The operations include not only the arithmetic operations

(multiplication, addition, and so on), but also memory accesses and

effective address calculations

• In addition, most high-end vector processors allow multiple vector

instructions to be in progress at the same time, creating further

parallelism among the operations on different vectors

• Vector processors are particularly useful for large scientific and

engineering applications (e.g., car crash simulations, weather

forecasting), for which a typical job might take dozens of hours

of supercomputer time running over multigigabyte data sets

Intensive Computation - 2022/2023 of 7031

Vector Architectures

• A vector processor typically consists of an ordinary pipelined

scalar unit plus a vector unit

• All functional units within the vector unit have a latency of

several clock cycles

• This allows a shorter clock cycle time and is compatible with

long-running vector operations that can be deeply pipelined

without generating hazards

• Most vector processors allow the vectors to be dealt with as

floating-point numbers, as integers, or as logical data

• The scalar unit is basically no different from the type of

advanced pipelined CPU

Intensive Computation - 2022/2023 of 7032

Vector Architectures

• Basic idea:
• Read sets of data elements scattered about memory

• Place them into vector registers

• Operate on those registers

• Disperse the results back into memory

• There are two primary types of architectures for vector
processors: vector-register processors and memory-memory
vector processors (that have not been successful)

• In a vector-register processor, all vector operation – except load
and store – are among the vector registers

• Since vector loads and stores are deeply pipelined, the program
pays the long memory latency only once per vector load or
store versus once per element, thus amortizing the latency

Intensive Computation - 2022/2023 of 7033

VMIPS

• We now consider a vector
processor as an example

• We will call this instruction
set architecture VMIPS
• Its scalar portion is MIPS

• Its vector portion is the logical
vector extension of MIPS

• It is loosely based on Cray-1

Intensive Computation - 2022/2023 of 7034

VMIPS

Primary components of VMIPS

• Vector registers

• Each vector register is a fixed-

length bank holding a single

vector

• VMIPS has eight vector registers

• Each vector register holds a 64-

element, 64 bits/element vector

• Register file has up to 16 read

ports and 8 write ports

connected to the functional unit

inputs or outputs by a pair of

crossbars

Intensive Computation - 2022/2023 of 7035

VMIPS

Primary components of VMIPS

• Vector functional units
• Each unit is fully pipelined and

can start a new operation on
every clock cycle

• A control unit detects hazards,
for the functional units
(structural hazards) and for
register accesses (data hazards)

• Depending on the vector
processor, scalar operations
either use the vector functional
units or use a dedicated set

Intensive Computation - 2022/2023 of 7036

VMIPS

Primary components of VMIPS

• Vector load-store unit
• vector memory unit that loads

or stores a vector to or from
memory

• Fully pipelined

• One word per clock cycle after
initial latency

• Scalar registers
• Scalar registers can provide data

as input to the vector functional
units, as well as compute
addresses to pass to the vector
load-store unit

• 32 general-purpose registers

• 32 floating-point registers

Intensive Computation - 2022/2023 of 7037

VMIPS

VMIPS in summary
• scalar architecture just like MIPS
• eight 64-element vector
• all the functional units are vector

functional units
• vector units for logical and integer

operations
• the vector and scalar registers have

a significant number of read and
write ports to allow multiple
simultaneous vector operations

• a set of crossbar switches (thick
gray lines) connects these ports to
the inputs and outputs of the
vector functional units

Intensive Computation - 2022/2023 of 7038

Vector Architectures

• In VMIPS, vector operations use the same names as MIPS

operations, but with the letter V appended

• ADDV.D is an add of two double-precision vectors

• The vector instructions take as their input:

• either a pair of vector registers (ADDV.D)

• or a vector register and a scalar register, designated by

appending VS (ADDVS.D)

• Most vector operations have a vector destination register,

although a few produce a scalar value, stored to a scalar register

Intensive Computation - 2022/2023 of 7039

Vector Architectures

• The names LV and SV denote vector load and vector store, and

they load or store an entire vector of double-precision data

• One operand is the vector register to be loaded or stored, the other

operand, which is a MIPS general-purpose register, is the starting

address of the vector in memory

• In addition to the vector registers, we need two additional

special-purpose registers: the vector-length VL and vector-mask

VM registers

Intensive Computation - 2022/2023 of 7040

Intensive Computation - 2022/2023 of 70

VMIPS Instructions

41

DAXPY in MIPS Instructions

Example: DAXPY (double precision a*X+Y)

• MIPS code requires the execution of almost 600 MIPS instructions

L.D F0,a; load scalar a

DADDIU R4,Rx,#512; last address to load

Loop: L.D F2,0(Rx); load X[i]

MUL.D F2,F2,F0; a * X[i]

L.D F4,0(Ry); load Y[i]

ADD.D F4,F2,F2; a * X[i] + Y[i]

S.D F4,9(Ry); store into Y[i]

DADDIU Rx,Rx,#8; increment index to X

DADDIU Ry,Ry,#8; increment index to Y

SUBBU R20,R4,Rx; compute bound

BNEZ R20,Loop; check if done

Intensive Computation - 2022/2023 of 7042

DAXPY in VMIPS Instructions

Example: DAXPY (double precision a*X+Y)

• VMIPS code requires the execution of 6 VMIPS instructions
• ADDVV.D adds two vectors and ADDVS.D adds vector to a scalar
• LV/SV: vector load and vector store from address

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV.D V4,V2,V3 ; add

SV V4,Ry ; store the result

• The reduction occurs because
• the vector operations work on 64 elements
• the overhead instructions that constitute nearly half the loop on MIPS

are not present in the VMIPS code

Intensive Computation - 2022/2023 of 7043

Vector Execution Time

• Execution time depends on three factors:
• Length of operand vectors

• Structural hazards

• Data dependences

• We can compute the time for a single vector instruction given
• The vector length

• The initiation rate, rate at which a vector unit consumes new operands
and produces new results

• Assuming initiation rate of one element per clock cycle for
individual operations we obtain that the execution time is
approximately the vector length

Intensive Computation - 2022/2023 of 7044

Vector Execution Time - Convoy

• To discuss vector execution and vector performance, the notion
of convoy is used
• Set of vector instructions that could potentially execute together

• We can estimate performance of a section of code by counting
the number of convoys

• the instructions in a convoy must not contain any structural
hazards

• if such hazards were present, the instructions would need to be
serialized and initiated in different convoys

• to simplify, we assume that a convoy of instructions must
complete execution before any other instructions (scalar or vector)
can begin execution

Intensive Computation - 2022/2023 of 7045

Vector Execution Time - Convoy

• Example Division of the following code sequence in convoys,
assuming a single copy of each vector functional unit

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDV.D V4,V2,V3 ;add

SV Ry,V4 ;store the result

Intensive Computation - 2022/2023 of 7046

Vector Execution Time - Convoy

• Example Division of the following code sequence in convoys,
assuming a single copy of each vector functional unit

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDV.D V4,V2,V3 ;add

SV Ry,V4 ;store the result

• Answer
• The first convoy is occupied by the first LV instruction

• The MULVS.D is dependent on the first LV, cannot be in the same convoy.
The second LV instruction can be in the same convoy as the MULVS.D

• The ADDV.D is dependent on the second LV, so it must be in a third convoy

• Finally the SV depends on the ADDV.D, so it must go in a following convoy

• The four convoys are: 1. LV 2. MULVS.D LV 3. ADDV.D 4. SV

Intensive Computation - 2022/2023 of 7047

Vector Execution Time - Chaining

• Sequences with read-after-write dependency hazards can be in
the same convoy via chaining

• Chaining
• Allows a vector operation to start as soon as the individual elements of

its vector source operand become available

• The results from the first functional unit in the chain are forwarded to
the second functional unit

• Early implementations of chaining worked just like forwarding in scalar
pipelining

• Recent implementations use flexible chaining, which allows a vector
instruction to chain to any other active vector instruction, assuming we
do not generate any structural hazard

Intensive Computation - 2022/2023 of 7048

Vector Execution Time - Chime

• To turn convoys into execution time we need a timing metric
for estimating the performance of a vector sequence consisting
of convoys

• chime is the unit of time to execute one convoy
• A vector sequence that consists of m convoys executes in m

chimes

• For vector length of n, requires approximately m x n clock cycles

• The chime approximation ignores some processor-specific
overheads, many of which are dependent on vector length

• Measuring time in chimes is a better approximation for long
vectors than for short ones

• If we know the number of convoys in a vector sequence, we know
the execution time in chimes

Intensive Computation - 2022/2023 of 7049

Vector Execution Time - Chime

• The most important source of overhead ignored by the chime
model is vector start-up time

• Start-up time is determined by the pipelining latency of vector
functional unit and by how deep the pipeline is for the
functional unit used

• The start-up time increases the effective time to execute a
convoy to more than one chime
• For VMIPS we assume the same pipeline depths as Cray-1

• Floating-point add => 6 clock cycles

• Floating-point multiply => 7 clock cycles

• Floating-point divide => 20 clock cycles

• Vector load => 12 clock cycles

Intensive Computation - 2022/2023 of 7050

Optimizations

• Given these vector basics, there are several optimizations that
improve the performance on vector architectures

• Multiple Lanes: > 1 element per clock cycle

• Vector Length Registers: Non-64 wide vectors

• Vector Mask Registers: IF statements in vector code

• Memory Banks: Memory system optimizations to support
vector processors

• Stride: Multiple dimensional matrices

• Scatter-Gather: Sparse matrices

• Programming Vector Architectures: Program structures
affecting performance

Intensive Computation - 2022/2023 of 7051

Multiple Lanes

• The advantage of a vector instruction set is that it allows
software to pass a large amount of parallel work to hardware
using only a single short instruction

• The parallel semantics of a vector instruction allow an
implementation to execute these elemental operations using:

• a deeply pipelined functional unit

• an array of parallel functional units

• a combination of parallel and pipelined functional units

Intensive Computation - 2022/2023 of 7052

Multiple Lanes

• A parallel vector unit can be build by multiple parallel lanes

• As with a traffic highway, we can increase the peak
throughput of a vector unit by adding more lanes

Intensive Computation - 2022/2023 of 7053

Multiple Lanes

Structure of a vector unit containing four lanes

• The vector register storage is divided across the lanes, with each lane
holding every fourth element of each vector register

• Three vector functional units: FP add, FP multiply, load-store unit

Intensive Computation - 2022/2023 of 7054

Multiple Lanes

• Figure illustrates how to improve vector performance by using
parallel pipelines to execute a vector add instruction

Intensive Computation - 2022/2023 of 70

Using multiple functional units improves

the performance of a single vector add

instruction C = A + B

Figure(a) The vector processor has a

single add pipeline and can complete

one addition per cycle

Figure (b) The vector processor has

four add pipelines and can complete

four additions per cycle. The elements

within a single vector add instruction are

interleaved across the four pipelines.

The set of elements moving through the

pipelines together is an element group

55

Vector Length Registers Handling Loops Not Equal to 64

• What can you do when the vector length in a program is not
exactly 64?

• Real vector length n in a program is unlikely to match the
vector length of a register, which in VMIPS is 64

• Moreover, the vector length is not known at compile time

• For example, consider the code for DAXPY:
for (i=0; i <n; i=i+1)

Y[i] = a ∗ X[i] + Y[i];

• The size of all the vector operations depends on n, which may
not even be known until run time

• n might also be a parameter to a procedure containing the
above loop and subject to change during execution

Intensive Computation - 2022/2023 of 7056

Vector Length Registers Handling Loops Not Equal to 64

• The solution is to create a vector-length register (VLR) that:

• controls the length of any vector operation, including a vector load
or store

• but the value in the VLR cannot be greater than the length of the
vector registers

• Then also the maximum vector length (MVL) is used

• MVL determines the number of data elements in a vector of an
architecture

• MVL parameter means the length of vector registers can grow in
later computer generations without changing the instruction set

Intensive Computation - 2022/2023 of 7057

Vector Length Registers Handling Loops Not Equal to 64

• If the value of n is not known at compile time and is greater
than the MVL, a technique called strip mining is used

• Generation of code such that each vector operation is done for a size
less than or equal to the MVL

• It consists in creating:

• one loop that handles any number of iterations that is a multiple of the MVL

• another loop that handles any remaining iterations and must be less than the
MVL

• In practice, compilers usually create a single strip-mined loop
that is parameterized to handle both portions by changing the
length

Intensive Computation - 2022/2023 of 7058

Vector Length Registers Handling Loops Not Equal to 64

• The strip-mined version of the DAXPY loop in C:

low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to max vector length*/

}

• The length of the first segment is (n % MVL), and all subsequent
segments are of length MVL

Intensive Computation - 2022/2023 of 7059

Vector Mask Registers IF Statements in Vector Loops

• The presence of conditionals (IF statements) inside loops
introduce control dependences into the loop

• Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

• This loop cannot normally be vectorized because of the
conditional execution of the body

• If the inner loop could be run for the iterations for which
X[i]≠0, then the subtraction could be vectorized

Intensive Computation - 2022/2023 of 7060

Vector Mask Registers IF Statements in Vector Loops

• The solution is vector-mask control

• Mask registers provide conditional execution of vector instruction
using a Boolean vector

• When the vector-mask register is enabled, any vector instructions
operate only on the vector elements whose corresponding entries
in the vector-mask register are 1

• Use vector mask register to “disable” elements (if conversion):
LV V1,Rx; load vector X into V1

LV V2,Ry; load vector Y

L.D F0,#0; load FP zero into F0

SNEVS.D V1,F0; sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2; subtract under vector mask

SV Rx,V1; store the result in X

• GFLOPS rate decreases

Intensive Computation - 2022/2023 of 7061

Memory Banks Bandwidth for Vector Load/Store Units

• Memory systems must be designed to support high bandwidth
for vector loads and stores

• Spreading accesses across multiple independent memory
banks usually delivers the desired rate

• Vector processors use memory banks for the following reasons:

• To support simultaneous accesses from multiple loads or stores,
the memory system needs multiple banks and to be able to control
the addresses to the banks independently

• Independent bank addressing allows to load or store data words
that are not sequential

• In a multiple processor system with shared memory, each
processor generates its own independent stream of addresses

Intensive Computation - 2022/2023 of 7062

Stride Handling MultidimensionalArrays in Vector Architectures

• The position in memory of adjacent elements in a vector may
not be sequential

• Consider this code for matrix multiply in C :
for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

• Must vectorize multiplication of rows of B with columns of D

• An array in memory is linearized in either row-major (as in C) or

column-major (as in Fortran) order, then either the elements in

the row or in the column are not adjacent in memory

Intensive Computation - 2022/2023 of 7063

Stride Handling MultidimensionalArrays in Vector Architectures

• The distance separating elements to be gathered into a single
register is called the stride

• In our example, matrix D has a stride of 100 double words (800
bytes), and matrix B has a stride of 1 double word (8 bytes)

• For column-major order, the strides would be reversed

• A vector processor can handle strides greater than one (non-
unit strides) using only vector load and vector store operations
with stride capability

• This ability to access nonsequential memory locations and to
reshape them into a dense structure is one of the major
advantages of a vector processor

Intensive Computation - 2022/2023 of 7064

Stride Handling MultidimensionalArrays in Vector Architectures

Example

• 8 memory banks with a bank busy time of 6 cycles and a total
memory latency of 12 cycles

• How long will it take to complete a 64-element vector load with
a stride of 1? With a stride of 32?

Intensive Computation - 2022/2023 of 7065

Stride Handling MultidimensionalArrays in Vector Architectures

Example

• 8 memory banks with a bank busy time of 6 cycles and a total
memory latency of 12 cycles

• How long will it take to complete a 64-element vector load with a
stride of 1? With a stride of 32?

• Answer

• Stride of 1: number of banks is greater than the bank busy time, so
it takes 12+64 = 76 clock cycles 1.2 cycle per element

• Stride of 32: the worst case is when the stride value is a multiple of
the number of banks, as in this case. Every access to memory will
collide with the previous one. Thus, the total time will be:

12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element

Intensive Computation - 2022/2023 of 7066

Scatter-Gather Handling Sparse Matrices

• It is important to have techniques to allow programs with
sparse matrices to execute in vector mode

• In a sparse matrix, the elements of a vector are usually stored in
some compacted form and then accessed indirectly

• Consider sparse vectors A and C, and index vectors K and M,
where A and C have the same number (n) of non-zeros:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

• The primary mechanism for supporting sparse matrices is
gather-scatter operations using index vectors

• Such operations support moving between a compressed
representation and normal representation of a sparse matrix

Intensive Computation - 2022/2023 of 7067

Scatter-Gather Handling Sparse Matrices

• A gather operation takes an index vector and fetches the vector
whose elements are at the addresses given by adding a base
address to the offsets given in the index vector, generating a
dense vector in a vector register

• After these elements are operated on in dense form, the sparse
vector can be stored in expanded form by a scatter store, using
the same index vector

• This technique allows code with sparse matrices to run in
vector mode

• Hardware support for such operations is called gather-scatter

• The VMIPS instructions are LVI (load vector indexed or gather)
and SVI (store vector indexed or scatter)

Intensive Computation - 2022/2023 of 7068

Scatter-Gather Handling Sparse Matrices

• Example:
for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

• Inner loop with VMIPS instructions LVI and SVI

• Ra, Rc, Rk and Rm contain the starting addresses of vectors

LV Vk, Rk ; load K

LVI Va, (Ra+Vk); load A[K[]]

LV Vm, Rm; load M

LVI Vc, (Rc+Vm); load C[M[]]

ADDVV.D Va, Va, Vc; add them

SVI (Ra+Vk), Va; store A[K[]]

Intensive Computation - 2022/2023 of 7069

• Compilers can provide feedback to programmers

• Programmers can provide hints to compiler

Intensive Computation - 2022/2023 of 70

Level of vectorization among

the Perfect Club benchmarks

executed on the Cray Y-MP

[Vajapeyam 1991]

The first column shows the

vectorization level obtained

with the compiler without

hints

The second column shows

the results after the codes

have been improved with

hints from a team of Cray

Research programmers

Programming Vector Architectures

70

