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Efficient number representations

• Representations other than binary and 2’s complement have 
been  studied with the aim of obtaining a faster arithmetic

• The most important examples of such representations are:
• Redundant number systems

• Residue number systems
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Efficient number representations

• When a representation other than binary or 2’s complement is 
adopted, it is important to consider the impact that the change 
of representation has on:
• Standard operations of ALU:

• Zero and overflow recognition

• Sign detection

• Arithmetic comparison

• Conversions:

• Forward conversion from binary to the new representation

• Reverse conversion from the new representation to binary
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Efficient number representations

• Addition is the main arithmetic operation since it is the building 
block in implementing other arithmetic operations

• All other operations speed and cost depend on the addition

• Speed and cost of addition mainly depend on the carry 
propagation

• The questions are: 
• can numbers be represented in such a way that addition limits carry 

propagation?

• can numbers be represented in such a way that addition does not involve 
carry propagation?
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REDUNDANT NUMBER SYSTEMS
Computer Arithmetic – Algorithms and Hardware Designs – B. Parhami – 2nd Ed

Ch. 3 Redundant Number Systems

Computer Arithmetic Algorithms – I. Koren – 2nd Ed

Ch. 2 Unconventional Fixed-Radix Number Systems 
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Redundant number systems

• The most efficient way to execute an addition is avoiding carry 
propagation that is executing carry-free addition

• Carry-free addition can be obtained by:

• widening of the digit set

• executing all digit additions  simultaneously
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Redundant number systems

• Example - Let us consider radix r=10 and digit set [0, 9]

operands radix-10, digit set [0,9]

result radix-10, digit set [0,18]

• If we allow the digit set [0, 18] for the result, the scheme 

works, but only for the first addition, not for the subsequent 

additions
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Redundant number systems

• Consider now adding two numbers with  r=10 and set [0, 18]

• The sum of digits for each position is in [0, 36]

• It can be decomposed into an interim sum in [0, 16] and a 
transfer digit (carry) in [0, 2]  [0, 36] = 10 x [0, 2] + [0, 16]

Operands digit in [0,18]

Result in digit set [0,36]

Intermediate sums [0,16]

Transfer digit set [0,2]

Sum [0,18]
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Signed digit representation

• Hence 

• we cannot do true carry-free addition 

• carry propagates by only one position with r=10 and set [0, 18] 

• Anyway, we refer to this scheme as carry-free addition

• Propagation of carries can be eliminated by a lookahead scheme:

• Instead of first computing the transfer into position i based on the 
digits xi−1 and yi−1 and then combining it with the interim sum, we 

can determine si directly from xi, yi, xi−1, and yi−1

• The key to do carry-free addition is the redundancy introduced 
widening the digit set 
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Signed digit representation

• However, we really do not need this much redundancy in a 
decimal number system for carry-free addition

• The digit set [0, 11] will work

• Example
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11 10 7 11 3 8
7 2 9 10 9 8

+ 18 12 16 21 12 16
↓ ↓ ↓ ↓ ↓ ↓
8 2 6 1 2 6

1 1 1 2 1 1
1 9 3 8 2 3 6

Operands digit in [0,11]

Result in digit set [0,22]

Intermediate sums [0,9]

Transfer digit set [0,2]

Sum [0,11]



Redundant number systems
• Conventional radix-r systems use [0, r-1] digit set

radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

radix-2    0, 1

• If the digit set (in radix-r system) contains more than r digits, the 
system is redundant
• radix-2   →  0, 1, 2  or  -1, 0, 1

• radix-10 →  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

• radix-10 → -6, -5,- 4, -3, -2, -1, 0, 1, 2, 3, 4, 5 

• Redundancy may result from adopting the digit set wider than 
radix and mantaining the conventional number interpretation

• Redundancy may imply representation of numbers is not unique
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Signed-digit numbers

• Digit sets of the form [−α, β] were studied for redundant 
number representations

• This class is called generalized signed-digit (GSD) representation

• A radix-r redundant signed-digit number system is based on 
digit set 

S = {- α, -(α - 1), … , -1, 0, 1, … , β}

where

• The digit set S contains α + β + 1 values 

• Hence multiple representations for any number in signed digit 
format  redundancy
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Signed-digit numbers

• Main characteristics:

• All digits have weights rp (p-position, r-radix)

• Digits have signed values

• Any set digit [−α, β] including 0, can be used, and also [−α, α] 

• If α+β+1 > r the number system is redundant

• An important parameter of a GSD number system (but can be 
applied to any digit set) is its redundancy index: ρ = α+β +1−r

• Examples
[-1,1] radix-2 → 1 -1 0 -1 0 = 6(10) and  0 1 -1 1 0 = 6(10)

[-1,3] radix-4 → 1 -1 2 0 3 = 227(10)    and  1 -1 2 1 -1 = 227(10)

1111 (2's compl.) → -1 1 1 1 = -1
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Signed-digit numbers

• Example
• radix-10 digit set [ത9, 9]

• If n=2 the range is ത9ത9 < 𝑥 < 99 which includes 199 numbers

• With two digits (𝑥1, 𝑥0), each having 19 possibile values, there
are 192=361 representations

• Hence some numbers have more than one representation and 
the number system is redundant

• For example 01 = 1ത9 = 1 and 0ത2 = ത18 = −2

• However the representation of 0 is unique and so is that of 10

• 361-199=162 redundant representations 81% redundancy
(162/199)

• redundancy index: ρ = α + β + 1 − r = 9 + 9 + 1 – 10 = 9
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Signed-digit numbers

• The amount of redundancy can be reduces by restricting the 

digit set to the symmetric set [ഥ𝒂, 𝒂] with 𝑟−1

2
≤ 𝑎 ≤ 𝑟 − 1

• Example

• For r=10 the range for 𝑎 is   5 < 𝑎 < 9

• If 𝑎 = 6 for n=2 there are 133 numbers in the range ത6ത6 < 𝑥 < 66

• Each bit has 13 possible values – there are 132=169 representations

• Now 1 has only one representation 01 because 1ത9 is not valid, 

• 4 has two representations 04 and 1ത6

• Redundancy is 27% (169-133/133)  36 redundant representations

• redundancy index: ρ = 6 + 6 + 1 – 10 = 3
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Signed-digit numbers

• The original motivation to introduce SD numbers is to eliminate
carry propagation chains in addition/subtraction so that 
execution time is independent of length of operands

• Anyway, SD numbers are useful for multiplication and division

• Addition algorithm
• Consider  (xn−1, ..., x0) ± (yn−1, ..., y0) = (sn−1, ..., s0)

• Breaking the carry chains requires an algorithm in which sum digit si

depends only on the four operand digits xi, yi, xi−1, and yi−1

• Step 1: Compute carry digit ci and interim sum ui

𝑐𝑖 = ൞

1 if (𝑥𝑖 + 𝑦𝑖) ≥ 𝑎
ത1 if (𝑥𝑖 + 𝑦𝑖) ≤ ത𝑎

0 if 𝑥𝑖 + 𝑦𝑖 < 𝑎

ui = xi + yi – rci

• Step 2: Calculate the final sum :     si = ui + ci – 1
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Signed-digit numbers

Example
• r=10   𝑎 = 6 𝑥𝑖 ∈ {−6,⋯ , 0,1,⋯ , 6}

• 𝑐𝑖 = ൞

1 if (𝑥𝑖 + 𝑦𝑖) ≥ 6
ത1 if (𝑥𝑖 + 𝑦𝑖) ≤ ത6

0 if 𝑥𝑖 + 𝑦𝑖 < 6

and ui = xi + yi –10ci

• Conventional addition becomes

• Carry bits shifted to left to simplify execution of second step 
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3 6 4 5  x

+ 1 4 5 6  y

0 1 1 1  c

4 0 1 1  u

5 1 0 1  s

3 6 4 5  x

+ 1 4 5 6  y

5 1 0 1  s



Signed-digit numbers

• This addition algorithm can be used for conversion

• Conversion from decimal number to SD
• Consider each digit as the sum xi+yi

• Example - converting decimal 6849 to SD       
6849 𝑥𝑖 + 𝑦𝑖
1101 𝑐𝑖 computed using 𝑥𝑖 + 𝑦𝑖
ത4ത24ത1 𝑢𝑖 computed as 𝑥𝑖 + 𝑦𝑖 − 10𝑐𝑖

1ത3ത25ത1 𝑠𝑖 computed as 𝑢𝑖 + 𝑐𝑖−1

• Conversion from SD to decimal 
• Subtract digits with negative weight from positive weight digits
• Example - converting 1ത3ത25ത1 to decimal  

10050
− 03201

6849
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Signed-digit numbers

Choice of digit set to guarantee no new carry 

• Sum digit 𝑠𝑖 = 𝑢𝑖 + 𝑐𝑖−1 must satisfy 𝑠𝑖 ≤ 𝑎

• Since 𝑐𝑖−1 ≤ 1, the condition 𝑢𝑖 ≤ 𝑎 − 1 must hold for all
𝑥𝑖 and 𝑦𝑖

• Largest 𝑥𝑖 + 𝑦𝑖 is 2𝑎 for which 𝑐𝑖 = 1 and 𝑢𝑖 = 2𝑎 − r

• Since 𝑢𝑖 ≤ 𝑎 − 1 then 2𝑎 − 𝑟 ≤ 𝑎 − 1 holds and 𝑎 ≤ 𝑟 − 1

• Smallest 𝑥𝑖 + 𝑦𝑖 for which 𝑐𝑖 = 1 is 𝑎 and so 𝑢𝑖 = 𝑎 − r < 0
that implies 𝑢𝑖 = 𝑟 − 𝑎

• Substituting 𝑢𝑖 = 𝑟 − 𝑎 into 𝑢𝑖 ≤ 𝑎 − 1 we get 2𝑎 ≥ 𝑟 + 1

• So the digit set must satisfy 
𝑟+1

2
≤ 𝑎 ≤ 𝑟 − 1

• For example, to guarantee no new carries in previous 
algorithm, SD decimal numbers must satisfy 𝑎 ≥ 6
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Addition algorithm for the case r=2

• For r=2 we have only 𝑎 = 1 and only one possible digit set 𝑥𝑖 ∈
−1,0,1 = {ത1, 0,1}

• Interim sum and carry in addition algorithm are:

• Summary of rules 

• Note that 10, ത10, ത11 are not included since addition is commutative

• Since in the binary case                                 cannot  be satisfied, 
there is no guarantee a new carry will not be generated in step 2 

-
- -

- - - -

Binary Signed-digit numbers
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If operands do not have ത1 new carries are not generated  
• Example

• In conventional representation                                       
a carry propagates from least                                       
to most significant position 

• Here no carry propagation chain exists

If operands have ത1 new carries may be generated
• Example

• If xi-1yi-1= 01 and ci =1

and if xiyi= 01 and ui =1

then si = ui +ci =1+1 and 
a new carry is generated

• Stars indicate positions where new 
carries are generated and must be 
allowed to propagate

-
Binary Signed-digit numbers

- 9 

29
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• Combination 𝑐𝑖−1 = 𝑢𝑖 = 1 occurs

when 𝑥𝑖𝑦𝑖 = 0ത1 and 𝑥𝑖−1𝑦𝑖−1 is 11/01

• To avoid setting 𝑢𝑖 = 1 we can set 𝑐𝑖 = 0 and 𝑢𝑖 = ത1

• Similarly, 𝑐𝑖−1 = 𝑢𝑖 = ത1 when 𝑥𝑖𝑦𝑖 = 01 and 𝑥𝑖−1𝑦𝑖−1 is ത1ത1/0ത1
and to avoid setting 𝑢𝑖 = ത1 we can set 𝑐𝑖 = 0 and 𝑢𝑖 = 1

• No new carries are generated if 𝑐𝑖 and 𝑢𝑖 are determined by 
examining the two bits 𝑥𝑖−1𝑦𝑖−1

• 𝑐𝑖 and 𝑢𝑖 can still be calculated in parallel for all bit positions 

-
- -

- - - -

Binary Signed-digit numbers
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• Repeating the example before with the new table we obtain

0 ത1 1ഥ1 1 1
+ 1 0 0 ത1 0 1

0 0 0 ത1 1 1
1 ത1 1 0 ത1 0
1 ത1 0 1 0 0

• Note that pair 1ഥ1 is equivalent to pair 01

• Note also that direct summation of the two operands results in 
1ത11ത100 that is  equivalent to 010100, all representing 20

- 9 
29

Binary Signed-digit numbers
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Multiple number representations 

• Minimal SD representations include the minimal number of 
nonzero digits and is important for fast multiplication and 
division algorithms
• Nonzero digits  add/subtract operations

• Zero digits  shift-only operations

Example

• Among the representations of 7,

100ത1 is the minimal representation

• The canonical Booth recoding algorithm

generates minimal SD representations

of given binary numbers 

Binary Signed-digit numbers
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Encoding

• Any hardware implementation of GSD arithmetic requires the 
choice of a binary encoding scheme for the digit values 

• In the case of binary SD numbers there are 4x3x2=24 ways to 
encode the three values 0, 1 and -1 using 2 bits, xh and xl (high 
and low)

• Only nine are distinct encodings under permutation and logical                      
negation, but only two have been used in practice:

Binary Signed-digit numbers
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• Encoding 2: the two bits follow the 2’s complement 
representation

• Encoding 1: the two bits are associated to the same power of 2
• is sometimes preferable 

• Satisfies x=xl-xh and 11 is a valid value of 0 

• Simplifies conversion from SD to 2's complement subtracting the sequence 
of high bits from the sequence of low bit using 2’s complement arithmetic

• This requires a complete binary adder

• (A simpler conversion algorithm exists)

Binary Signed-digit numbers
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Signed digit representation
Conversions

• Since input numbers provided from the outside (machine or 
human interface) are in standard binary or decimal and outputs 
must be presented in the same way, conversions between 
binary or decimal and GSD representations are required

• The conversion from redundant representation essentially 
involves carry propagation and is thus rather slow

• Conversion is done generally at the input and output, i.e. not 
very often

• Thus, if long sequences of computation are performed between 
input and output, the conversion overhead can become
negligible
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Signed digit representation

• Storage overhead (number of bits used to represent a GSD digit 
compared to a standard digit in the same radix) can appear as a 
disadvantage of redundant representations

• However, with advances in VLSI technology, this is no a major 
drawback

• Properties of GSD representations are important for the 
implementation of arithmetic support functions, that are: 

• zero detection

• sign test

• overflow handling
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Signed digit representation

Zero detection

• In a GSD number system, the integer 0 may have multiple 
representations

• Example in radix 4 and set [-1, 5], the three-digit numbers 

0 0 0  and  −1 4 0   both represent 0 

• Note that in the special case of α < r and β < r, zero is uniquely 
represented by the all-0s vector

• So, despite redundancy and multiple representations, 
comparison of numbers for equality can be simple in this 
common special case, since it involves subtraction and detecting 
the all-0s pattern
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Signed digit representation

Sign test

• Sign test is more difficult and so any relational comparison such 
as <, ≤, etc.

• The sign of a GSD number in general depends on all its digits

• Thus, sign test is slow if done through signal propagation (ripple 
design) or expensive if done by a fast lookahead circuit (that is 
in contrast for it is trivial sign test for 2’s-complement)

• In the special case of α < r and β < r, the sign of a number is 
identical to the sign of its most significant nonzero digit

• But even in this special case, determination of sign requires 
scanning of all digits, a process that can be as slow as worst-case 
carry propagation
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Signed digit representation

Overflow handling

• Overflow handling is also more difficult in GSD arithmetic

• Consider the addition of two k-digit numbers

• Such an addition produces a transfer-out digit tk

• Since tk is produced using the worst-case assumption about yet 
unknown tk−1 , we can get an overflow indication (tk != 0) even 
when the result can be represented with k digits

• It is possible to perform a test to see whether the overflow is 
real and, if it is not, to obtain a k-digit representation for the 
true result

• However, this test and conversion are fairly slow
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MODIFIED SIGNED DIGIT

REPRESENTATION
A. K. Cherri, M. A. Karim, Modified-signed digit arithmetic using an 

efficient symbolic substitution, Appl. Opt. (1988)
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Modified signed digit representation
• The set of digit is 

• The representation is not unique:

• The number of possible representation depends on the length 
of the sequence of digits

• To perform the addition, truth table are used
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Modified signed digit representation
• Addition can be executed applying Truth tables 

• Three steps are needed to obtain the sum
• Left table is applied in step 1 and 3

• Right table is applied in step 2

• Output: lower row  sum – upper row  complemented sum
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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RB - REDUNDANT BINARY NUMBER 

REPRESENTATION

G. A. De Biase, A. Massini “Redundant binary number representation 

for an inherently parallel arithmetic on optical computers”, 

Appl. Opt., 32 (1993)
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RB - Redundant Binary Representation

• An integer D obtained by

• This weight sequence characterizes the RB number 
representation and is:

• All position weights are doubled: the left digit is called r
(redundant) and the right digit n (normal)
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RB - Redundant Binary Representation

• RB representation of a number can be obtained from its binary 
representation by the following recoding rules:  

0 00 1 01

• The RB number obtained in this way is in canonical form

• This encoding operation is performable in parallel in constant 
time (one elemental logic step)
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RB - Redundant Binary Representation

• Each RB number has a canonical form and several redundant 
representations

• Examples of unsigned RB numbers (canonical and redundant)
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1010101010010101100101011117
0100111010000110000101001106
1000101000010100100100011015
0001110011001000000100001004

0010100010010001010113

0000110010000001000102

0000100000010011

0000000000
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Table for addition

• Addition is performed using a truth table
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Table for addition

• Two steps: parallel application of the table on all rn pairs

• Output: sum on the lower row and zero on the upper row
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• In analogy with the 2's complement binary system, a signed RB 
number is obtained by

n even

• The same procedure of the addition of two unsigned RB 
numbers obtains the algebraic sum of two signed RB numbers 
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RB - Redundant Binary Representation

• The additive inverse of an RB number is obtained by

• following a procedure similar to that used in the 2's 
complement number system

• taking into account that the negation of all RB representations 
of the number 0 is (-2)10 whereas in the 2's complement binary system 

it is (- 1) 10

• Procedure
• Step 1 - all digits of the RB number are complemented

• Step 2 - algebraic sum between the RB canonical form of (2) 10 and the RB 
number

• The output is the additive inverse of the considered RB number

Intensive Computation - 2022/2023                                             of 5450



RB - Redundant Binary Representation

• The decoding of RB numbers, with the correct truncation, can 
be performed with the following procedure that derives directly 
from the RB number definition

• Procedure

• The input is RBn and RBr

• Binary addition RBn + RBr.

• Only the first n/2 bits are considered

• The output is the corresponding binary or 2's complement
binary number
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RB - Redundant Binary Representation

• Zero and its detection

• In the case of unsigned RB numbers the (0)10 has only the RB 
canonical form and is easily detectable

• In the case of signed RB numbers, (0)10 has many RB 
representations

• Example for six-digit signed RB numbers: 

(000000) (101011) (101100)

(100111) (010111) (011100)

• The difficulty in detecting the (0) 10 can be overcome by using 
the number (- 1) 10
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RB - Redundant Binary Representation

• Zero and its detection

• In fact, any redundant representation of the number (- 1) 10 is 
composed by pairs 01 or 10

• The canonical representation of the (- 1) 10 can be obtained if the 
following rules are applied on all the rn pairs 

1001        0101 

• Then, a RB number is a representation of (0) 10 if the result of an 
algebraic sum between an RB number and an RB representation 
of (-1) 10 is an RB representation of the number (-1) 10  again, 
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RB - Redundant Binary Representation

• Zero and its detection

• Then the procedure to detect the number (0) 10 is the following

Procedure

• Input - an RB number

• Step 1 - algebraic sum between the RB canonical form of (- 1) 10

and the RB number

• Step 2 - application of rules  to the result

• Output - the RB canonical form of (-1) 10  or of another RB 
number
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