
REPRESENTANTIONS FOR FAST

ARITHMETIC

Intensive Computation
Annalisa Massini Lecture 5
2022-2023

REDUNDANT NUMBER SYSTEMS

Intensive Computation - 2022/2023 of 542

Efficient number representations

• Representations other than binary and 2’s complement have
been studied with the aim of obtaining a faster arithmetic

• The most important examples of such representations are:
• Redundant number systems

• Residue number systems

Intensive Computation - 2022/2023 of 543

Efficient number representations

• When a representation other than binary or 2’s complement is
adopted, it is important to consider the impact that the change
of representation has on:
• Standard operations of ALU:

• Zero and overflow recognition

• Sign detection

• Arithmetic comparison

• Conversions:

• Forward conversion from binary to the new representation

• Reverse conversion from the new representation to binary

Intensive Computation - 2022/2023 of 544

Efficient number representations

• Addition is the main arithmetic operation since it is the building
block in implementing other arithmetic operations

• All other operations speed and cost depend on the addition

• Speed and cost of addition mainly depend on the carry
propagation

• The questions are:
• can numbers be represented in such a way that addition limits carry

propagation?

• can numbers be represented in such a way that addition does not involve
carry propagation?

Intensive Computation - 2022/2023 of 545

REDUNDANT NUMBER SYSTEMS
Computer Arithmetic – Algorithms and Hardware Designs – B. Parhami – 2nd Ed

Ch. 3 Redundant Number Systems

Computer Arithmetic Algorithms – I. Koren – 2nd Ed

Ch. 2 Unconventional Fixed-Radix Number Systems

Intensive Computation - 2022/2023 of 546

Redundant number systems

• The most efficient way to execute an addition is avoiding carry
propagation that is executing carry-free addition

• Carry-free addition can be obtained by:

• widening of the digit set

• executing all digit additions simultaneously

Intensive Computation - 2022/2023 of 547

Redundant number systems

• Example - Let us consider radix r=10 and digit set [0, 9]

operands radix-10, digit set [0,9]

result radix-10, digit set [0,18]

• If we allow the digit set [0, 18] for the result, the scheme

works, but only for the first addition, not for the subsequent

additions

Intensive Computation - 2022/2023 of 548

5 7 8 2 4 9
+ 6 2 9 3 8 9

11 9 17 5 12 18

Redundant number systems

• Consider now adding two numbers with r=10 and set [0, 18]

• The sum of digits for each position is in [0, 36]

• It can be decomposed into an interim sum in [0, 16] and a
transfer digit (carry) in [0, 2]  [0, 36] = 10 x [0, 2] + [0, 16]

Operands digit in [0,18]

Result in digit set [0,36]

Intermediate sums [0,16]

Transfer digit set [0,2]

Sum [0,18]

Intensive Computation - 2022/2023 of 54

16121181281

212111

1610016117

362020262117

188109126

18121017911





9

Signed digit representation

• Hence

• we cannot do true carry-free addition

• carry propagates by only one position with r=10 and set [0, 18]

• Anyway, we refer to this scheme as carry-free addition

• Propagation of carries can be eliminated by a lookahead scheme:

• Instead of first computing the transfer into position i based on the
digits xi−1 and yi−1 and then combining it with the interim sum, we

can determine si directly from xi, yi, xi−1, and yi−1

• The key to do carry-free addition is the redundancy introduced
widening the digit set

Intensive Computation - 2022/2023 of 5410

Signed digit representation

• However, we really do not need this much redundancy in a
decimal number system for carry-free addition

• The digit set [0, 11] will work

• Example

Intensive Computation - 2022/2023 of 5411

11 10 7 11 3 8
7 2 9 10 9 8

+ 18 12 16 21 12 16
↓ ↓ ↓ ↓ ↓ ↓
8 2 6 1 2 6

1 1 1 2 1 1
1 9 3 8 2 3 6

Operands digit in [0,11]

Result in digit set [0,22]

Intermediate sums [0,9]

Transfer digit set [0,2]

Sum [0,11]

Redundant number systems
• Conventional radix-r systems use [0, r-1] digit set

radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

radix-2  0, 1

• If the digit set (in radix-r system) contains more than r digits, the
system is redundant
• radix-2 → 0, 1, 2 or -1, 0, 1

• radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

• radix-10 → -6, -5,- 4, -3, -2, -1, 0, 1, 2, 3, 4, 5

• Redundancy may result from adopting the digit set wider than
radix and mantaining the conventional number interpretation

• Redundancy may imply representation of numbers is not unique

Intensive Computation - 2022/2023 of 5412

Signed-digit numbers

• Digit sets of the form [−α, β] were studied for redundant
number representations

• This class is called generalized signed-digit (GSD) representation

• A radix-r redundant signed-digit number system is based on
digit set

S = {- α, -(α - 1), … , -1, 0, 1, … , β}

where

• The digit set S contains α + β + 1 values

• Hence multiple representations for any number in signed digit
format  redundancy

Intensive Computation - 2022/2023 of 54

1-βα,1 r

13

Signed-digit numbers

• Main characteristics:

• All digits have weights rp (p-position, r-radix)

• Digits have signed values

• Any set digit [−α, β] including 0, can be used, and also [−α, α]

• If α+β+1 > r the number system is redundant

• An important parameter of a GSD number system (but can be
applied to any digit set) is its redundancy index: ρ = α+β +1−r

• Examples
[-1,1] radix-2 → 1 -1 0 -1 0 = 6(10) and 0 1 -1 1 0 = 6(10)

[-1,3] radix-4 → 1 -1 2 0 3 = 227(10) and 1 -1 2 1 -1 = 227(10)

1111 (2's compl.) → -1 1 1 1 = -1

Intensive Computation - 2022/2023 of 5414

Signed-digit numbers

• Example
• radix-10 digit set [ത9, 9]

• If n=2 the range is ത9ത9 < 𝑥 < 99 which includes 199 numbers

• With two digits (𝑥1, 𝑥0), each having 19 possibile values, there
are 192=361 representations

• Hence some numbers have more than one representation and
the number system is redundant

• For example 01 = 1ത9 = 1 and 0ത2 = ത18 = −2

• However the representation of 0 is unique and so is that of 10

• 361-199=162 redundant representations 81% redundancy
(162/199)

• redundancy index: ρ = α + β + 1 − r = 9 + 9 + 1 – 10 = 9

Intensive Computation - 2022/2023 of 5415

Signed-digit numbers

• The amount of redundancy can be reduces by restricting the

digit set to the symmetric set [ഥ𝒂, 𝒂] with 𝑟−1

2
≤ 𝑎 ≤ 𝑟 − 1

• Example

• For r=10 the range for 𝑎 is 5 < 𝑎 < 9

• If 𝑎 = 6 for n=2 there are 133 numbers in the range ത6ത6 < 𝑥 < 66

• Each bit has 13 possible values – there are 132=169 representations

• Now 1 has only one representation 01 because 1ത9 is not valid,

• 4 has two representations 04 and 1ത6

• Redundancy is 27% (169-133/133)  36 redundant representations

• redundancy index: ρ = 6 + 6 + 1 – 10 = 3

Intensive Computation - 2022/2023 of 5416

Signed-digit numbers

• The original motivation to introduce SD numbers is to eliminate
carry propagation chains in addition/subtraction so that
execution time is independent of length of operands

• Anyway, SD numbers are useful for multiplication and division

• Addition algorithm
• Consider (xn−1, ..., x0) ± (yn−1, ..., y0) = (sn−1, ..., s0)

• Breaking the carry chains requires an algorithm in which sum digit si

depends only on the four operand digits xi, yi, xi−1, and yi−1

• Step 1: Compute carry digit ci and interim sum ui

𝑐𝑖 = ൞

1 if (𝑥𝑖 + 𝑦𝑖) ≥ 𝑎
ത1 if (𝑥𝑖 + 𝑦𝑖) ≤ ത𝑎

0 if 𝑥𝑖 + 𝑦𝑖 < 𝑎

ui = xi + yi – rci

• Step 2: Calculate the final sum : si = ui + ci – 1

Intensive Computation - 2022/2023 of 5417

Signed-digit numbers

Example
• r=10 𝑎 = 6 𝑥𝑖 ∈ {−6,⋯ , 0,1,⋯ , 6}

• 𝑐𝑖 = ൞

1 if (𝑥𝑖 + 𝑦𝑖) ≥ 6
ത1 if (𝑥𝑖 + 𝑦𝑖) ≤ ത6

0 if 𝑥𝑖 + 𝑦𝑖 < 6

and ui = xi + yi –10ci

• Conventional addition becomes

• Carry bits shifted to left to simplify execution of second step

Intensive Computation - 2022/2023 of 5418

3 6 4 5 x

+ 1 4 5 6 y

0 1 1 1 c

4 0 1 1 u

5 1 0 1 s

3 6 4 5 x

+ 1 4 5 6 y

5 1 0 1 s

Signed-digit numbers

• This addition algorithm can be used for conversion

• Conversion from decimal number to SD
• Consider each digit as the sum xi+yi

• Example - converting decimal 6849 to SD
6849 𝑥𝑖 + 𝑦𝑖
1101 𝑐𝑖 computed using 𝑥𝑖 + 𝑦𝑖
ത4ത24ത1 𝑢𝑖 computed as 𝑥𝑖 + 𝑦𝑖 − 10𝑐𝑖

1ത3ത25ത1 𝑠𝑖 computed as 𝑢𝑖 + 𝑐𝑖−1

• Conversion from SD to decimal
• Subtract digits with negative weight from positive weight digits
• Example - converting 1ത3ത25ത1 to decimal

10050
− 03201

6849

Intensive Computation - 2022/2023 of 5419

Signed-digit numbers

Choice of digit set to guarantee no new carry

• Sum digit 𝑠𝑖 = 𝑢𝑖 + 𝑐𝑖−1 must satisfy 𝑠𝑖 ≤ 𝑎

• Since 𝑐𝑖−1 ≤ 1, the condition 𝑢𝑖 ≤ 𝑎 − 1 must hold for all
𝑥𝑖 and 𝑦𝑖

• Largest 𝑥𝑖 + 𝑦𝑖 is 2𝑎 for which 𝑐𝑖 = 1 and 𝑢𝑖 = 2𝑎 − r

• Since 𝑢𝑖 ≤ 𝑎 − 1 then 2𝑎 − 𝑟 ≤ 𝑎 − 1 holds and 𝑎 ≤ 𝑟 − 1

• Smallest 𝑥𝑖 + 𝑦𝑖 for which 𝑐𝑖 = 1 is 𝑎 and so 𝑢𝑖 = 𝑎 − r < 0
that implies 𝑢𝑖 = 𝑟 − 𝑎

• Substituting 𝑢𝑖 = 𝑟 − 𝑎 into 𝑢𝑖 ≤ 𝑎 − 1 we get 2𝑎 ≥ 𝑟 + 1

• So the digit set must satisfy
𝑟+1

2
≤ 𝑎 ≤ 𝑟 − 1

• For example, to guarantee no new carries in previous
algorithm, SD decimal numbers must satisfy 𝑎 ≥ 6

Intensive Computation - 2022/2023 of 5420

Addition algorithm for the case r=2

• For r=2 we have only 𝑎 = 1 and only one possible digit set 𝑥𝑖 ∈
−1,0,1 = {ത1, 0,1}

• Interim sum and carry in addition algorithm are:

• Summary of rules

• Note that 10, ത10, ത11 are not included since addition is commutative

• Since in the binary case cannot be satisfied,
there is no guarantee a new carry will not be generated in step 2

-
- -

- - - -

Binary Signed-digit numbers

Intensive Computation - 2022/2023 of 5421

If operands do not have ത1 new carries are not generated
• Example

• In conventional representation
a carry propagates from least
to most significant position

• Here no carry propagation chain exists

If operands have ത1 new carries may be generated
• Example

• If xi-1yi-1= 01 and ci =1

and if xiyi= 01 and ui =1

then si = ui +ci =1+1 and
a new carry is generated

• Stars indicate positions where new
carries are generated and must be
allowed to propagate

-
Binary Signed-digit numbers

- 9

29

Intensive Computation - 2022/2023 of 5422

• Combination 𝑐𝑖−1 = 𝑢𝑖 = 1 occurs

when 𝑥𝑖𝑦𝑖 = 0ത1 and 𝑥𝑖−1𝑦𝑖−1 is 11/01

• To avoid setting 𝑢𝑖 = 1 we can set 𝑐𝑖 = 0 and 𝑢𝑖 = ത1

• Similarly, 𝑐𝑖−1 = 𝑢𝑖 = ത1 when 𝑥𝑖𝑦𝑖 = 01 and 𝑥𝑖−1𝑦𝑖−1 is ത1ത1/0ത1
and to avoid setting 𝑢𝑖 = ത1 we can set 𝑐𝑖 = 0 and 𝑢𝑖 = 1

• No new carries are generated if 𝑐𝑖 and 𝑢𝑖 are determined by
examining the two bits 𝑥𝑖−1𝑦𝑖−1

• 𝑐𝑖 and 𝑢𝑖 can still be calculated in parallel for all bit positions

-
- -

- - - -

Binary Signed-digit numbers

Intensive Computation - 2022/2023 of 5423

• Repeating the example before with the new table we obtain

0 ത1 1ഥ1 1 1
+ 1 0 0 ത1 0 1

0 0 0 ത1 1 1
1 ത1 1 0 ത1 0
1 ത1 0 1 0 0

• Note that pair 1ഥ1 is equivalent to pair 01

• Note also that direct summation of the two operands results in
1ത11ത100 that is equivalent to 010100, all representing 20

- 9
29

Binary Signed-digit numbers

Intensive Computation - 2022/2023 of 5424

Multiple number representations

• Minimal SD representations include the minimal number of
nonzero digits and is important for fast multiplication and
division algorithms
• Nonzero digits  add/subtract operations

• Zero digits  shift-only operations

Example

• Among the representations of 7,

100ത1 is the minimal representation

• The canonical Booth recoding algorithm

generates minimal SD representations

of given binary numbers

Binary Signed-digit numbers

Intensive Computation - 2022/2023 of 5425

Encoding

• Any hardware implementation of GSD arithmetic requires the
choice of a binary encoding scheme for the digit values

• In the case of binary SD numbers there are 4x3x2=24 ways to
encode the three values 0, 1 and -1 using 2 bits, xh and xl (high
and low)

• Only nine are distinct encodings under permutation and logical
negation, but only two have been used in practice:

Binary Signed-digit numbers

Intensive Computation - 2022/2023 of 5426

• Encoding 2: the two bits follow the 2’s complement
representation

• Encoding 1: the two bits are associated to the same power of 2
• is sometimes preferable

• Satisfies x=xl-xh and 11 is a valid value of 0

• Simplifies conversion from SD to 2's complement subtracting the sequence
of high bits from the sequence of low bit using 2’s complement arithmetic

• This requires a complete binary adder

• (A simpler conversion algorithm exists)

Binary Signed-digit numbers

Intensive Computation - 2022/2023 of 5427

Signed digit representation
Conversions

• Since input numbers provided from the outside (machine or
human interface) are in standard binary or decimal and outputs
must be presented in the same way, conversions between
binary or decimal and GSD representations are required

• The conversion from redundant representation essentially
involves carry propagation and is thus rather slow

• Conversion is done generally at the input and output, i.e. not
very often

• Thus, if long sequences of computation are performed between
input and output, the conversion overhead can become
negligible

Intensive Computation - 2022/2023 of 5428

Signed digit representation

• Storage overhead (number of bits used to represent a GSD digit
compared to a standard digit in the same radix) can appear as a
disadvantage of redundant representations

• However, with advances in VLSI technology, this is no a major
drawback

• Properties of GSD representations are important for the
implementation of arithmetic support functions, that are:

• zero detection

• sign test

• overflow handling

Intensive Computation - 2022/2023 of 5429

Signed digit representation

Zero detection

• In a GSD number system, the integer 0 may have multiple
representations

• Example in radix 4 and set [-1, 5], the three-digit numbers

0 0 0 and −1 4 0 both represent 0

• Note that in the special case of α < r and β < r, zero is uniquely
represented by the all-0s vector

• So, despite redundancy and multiple representations,
comparison of numbers for equality can be simple in this
common special case, since it involves subtraction and detecting
the all-0s pattern

Intensive Computation - 2022/2023 of 5430

Signed digit representation

Sign test

• Sign test is more difficult and so any relational comparison such
as <, ≤, etc.

• The sign of a GSD number in general depends on all its digits

• Thus, sign test is slow if done through signal propagation (ripple
design) or expensive if done by a fast lookahead circuit (that is
in contrast for it is trivial sign test for 2’s-complement)

• In the special case of α < r and β < r, the sign of a number is
identical to the sign of its most significant nonzero digit

• But even in this special case, determination of sign requires
scanning of all digits, a process that can be as slow as worst-case
carry propagation

Intensive Computation - 2022/2023 of 5431

Signed digit representation

Overflow handling

• Overflow handling is also more difficult in GSD arithmetic

• Consider the addition of two k-digit numbers

• Such an addition produces a transfer-out digit tk

• Since tk is produced using the worst-case assumption about yet
unknown tk−1 , we can get an overflow indication (tk != 0) even
when the result can be represented with k digits

• It is possible to perform a test to see whether the overflow is
real and, if it is not, to obtain a k-digit representation for the
true result

• However, this test and conversion are fairly slow

Intensive Computation - 2022/2023 of 5432

MODIFIED SIGNED DIGIT

REPRESENTATION
A. K. Cherri, M. A. Karim, Modified-signed digit arithmetic using an

efficient symbolic substitution, Appl. Opt. (1988)

Intensive Computation - 2022/2023 of 5433

Modified signed digit representation
• The set of digit is

• The representation is not unique:

• The number of possible representation depends on the length
of the sequence of digits

• To perform the addition, truth table are used

Intensive Computation - 2022/2023 of 54

   1,0,11,0,1 

712481111

7180011

71281011







34

Modified signed digit representation
• Addition can be executed applying Truth tables

• Three steps are needed to obtain the sum
• Left table is applied in step 1 and 3

• Right table is applied in step 2

• Output: lower row  sum – upper row  complemented sum

Intensive Computation - 2022/2023 of 54

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1

-1

0

0

0

0 -1

0

0

0

1

0

1 0

0

1

0

0

1

35

Modified signed digit representation
• Example

Intensive Computation - 2022/2023 of 54

1001111

911011



First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

36

Modified signed digit representation
• Example

Intensive Computation - 2022/2023 of 54

011100

10100

1001111

911011



First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

37

Modified signed digit representation
• Example

Intensive Computation - 2022/2023 of 54

0

0

00100

11010

11100

10100

1001111

911011



First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

38

Modified signed digit representation
• Example

Intensive Computation - 2022/2023 of 54

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

111000

111000

00100

11010

11100

10100

1001111

911011





0

0

39

RB - REDUNDANT BINARY NUMBER

REPRESENTATION

G. A. De Biase, A. Massini “Redundant binary number representation

for an inherently parallel arithmetic on optical computers”,

Appl. Opt., 32 (1993)

Intensive Computation - 2022/2023 of 5440

RB - Redundant Binary Representation

• An integer D obtained by

• This weight sequence characterizes the RB number
representation and is:

• All position weights are doubled: the left digit is called r
(redundant) and the right digit n (normal)

Intensive Computation - 2022/2023 of 54

nrnrnrnr
11224488

 2/
1

0

2
ii

n

i

iaD








41

RB - Redundant Binary Representation

• RB representation of a number can be obtained from its binary
representation by the following recoding rules:

0 00 1 01

• The RB number obtained in this way is in canonical form

• This encoding operation is performable in parallel in constant
time (one elemental logic step)

Intensive Computation - 2022/2023 of 5442

RB - Redundant Binary Representation

• Each RB number has a canonical form and several redundant
representations

• Examples of unsigned RB numbers (canonical and redundant)

Intensive Computation - 2022/2023 of 54

1010101010010101100101011117
0100111010000110000101001106
1000101000010100100100011015
0001110011001000000100001004

0010100010010001010113

0000110010000001000102

0000100000010011

0000000000

43

Table for addition

• Addition is performed using a truth table

Intensive Computation - 2022/2023 of 54

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

44

Table for addition

• Two steps: parallel application of the table on all rn pairs

• Output: sum on the lower row and zero on the upper row

Intensive Computation - 2022/2023 of 54

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

45

RB - Redundant Binary Representation

• Example

Intensive Computation - 2022/2023 of 54

1101101100

811101000

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

46

RB - Redundant Binary Representation

• Example

Intensive Computation - 2022/2023 of 54

00110010

01010100

1101101100

811101000

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

47

RB - Redundant Binary Representation

• Example

Intensive Computation - 2022/2023 of 54

191011101

000000000

0110010

01010100

1101101100

811101000

0

120

7

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

48

RB - Redundant Binary Representation

• In analogy with the 2's complement binary system, a signed RB
number is obtained by

n even

• The same procedure of the addition of two unsigned RB
numbers obtains the algebraic sum of two signed RB numbers

Intensive Computation - 2022/2023 of 54

   2/
3

0

2/
1

2

22
ii

n

i

i

ii
n

ni

i aaD











 

49

RB - Redundant Binary Representation

• The additive inverse of an RB number is obtained by

• following a procedure similar to that used in the 2's
complement number system

• taking into account that the negation of all RB representations
of the number 0 is (-2)10 whereas in the 2's complement binary system

it is (- 1) 10

• Procedure
• Step 1 - all digits of the RB number are complemented

• Step 2 - algebraic sum between the RB canonical form of (2) 10 and the RB
number

• The output is the additive inverse of the considered RB number

Intensive Computation - 2022/2023 of 5450

RB - Redundant Binary Representation

• The decoding of RB numbers, with the correct truncation, can
be performed with the following procedure that derives directly
from the RB number definition

• Procedure

• The input is RBn and RBr

• Binary addition RBn + RBr.

• Only the first n/2 bits are considered

• The output is the corresponding binary or 2's complement
binary number

Intensive Computation - 2022/2023 of 5451

RB - Redundant Binary Representation

• Zero and its detection

• In the case of unsigned RB numbers the (0)10 has only the RB
canonical form and is easily detectable

• In the case of signed RB numbers, (0)10 has many RB
representations

• Example for six-digit signed RB numbers:

(000000) (101011) (101100)

(100111) (010111) (011100)

• The difficulty in detecting the (0) 10 can be overcome by using
the number (- 1) 10

Intensive Computation - 2022/2023 of 5452

RB - Redundant Binary Representation

• Zero and its detection

• In fact, any redundant representation of the number (- 1) 10 is
composed by pairs 01 or 10

• The canonical representation of the (- 1) 10 can be obtained if the
following rules are applied on all the rn pairs

1001 0101

• Then, a RB number is a representation of (0) 10 if the result of an
algebraic sum between an RB number and an RB representation
of (-1) 10 is an RB representation of the number (-1) 10 again,

Intensive Computation - 2022/2023 of 5453

RB - Redundant Binary Representation

• Zero and its detection

• Then the procedure to detect the number (0) 10 is the following

Procedure

• Input - an RB number

• Step 1 - algebraic sum between the RB canonical form of (- 1) 10

and the RB number

• Step 2 - application of rules to the result

• Output - the RB canonical form of (-1) 10 or of another RB
number

Intensive Computation - 2022/2023 of 5454

