
PIPELINING

Intensive Computation
Annalisa Massini Lecture 3
2022-2023

Hennessy, Patterson

Computer architecture A quantitive approach 5th Ed

Appendix C – Sections C.1, C.2

Intensive Computation - 2022/2023 of 852

Pipelining

• Pipelining is an implementation technique whereby multiple
instructions are overlapped in execution

• Pipelining takes advantage of parallelism that exists among the
actions needed to execute an instruction

Intensive Computation - 2022/2023 of 853

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Pipelining

• In a computer pipeline:

• Each step in the pipeline completes a part of an instruction

• Different steps are completing different parts of different
instructions in parallel.

• Each of these steps is called a pipe stage or a pipe segment

• The stages are connected one to the next to form a pipe →
instructions enter at one end, progress through the stages,
and exit at the other end, as cars in an assembly line

Intensive Computation - 2022/2023 of 854

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

Pipelining

• The throughput of an instruction pipeline is determined by
how often an instruction exits the pipeline

• Because the pipe stages are hooked together, all the stages
must be ready to proceed at the same time, just as we would
require in an assembly line

• The time required between moving an instruction one step
down the pipeline is a processor cycle

• The length of a processor cycle is determined by the time
required for the slowest pipe stage

• In a computer, this processor cycle is usually 1 clock cycle

Intensive Computation - 2022/2023 of 855

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

Pipelining

• The goal is to balance the length of each pipeline stage

• If the stages are perfectly balanced, assuming ideal conditions:

• The time per instruction , on the pipelined processor is

• The ideal speedup due to pipelining is equal to the number
of pipeline stages

Intensive Computation - 2022/2023 of 856

stages pipelineof number

 processor dunpipeline the on ninstructio per time

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

Pipelining

• Usually, however, the stages will not be perfectly balanced

• Thus, the time per instruction on the pipelined processor will not
have its minimum possible value (it can be close)

• Pipelining yields a reduction in the average execution time per
instruction

• The reduction can be viewed as:
• decreasing the number of clock cycles per instruction (CPI)

• decreasing the clock cycle time

• a combination

Intensive Computation - 2022/2023 of 857

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

Pipelining

• Pipelining:
• is an implementation technique that exploits parallelism among the

instructions in a sequential instruction stream

• is not visible to the programmer

• Here, we use a RISC architecture characterized by a few key
properties, which simplify its implementation:

• All operations on data apply to data in registers

• The only operations that affect memory are load (move data from
memory to a register) and store (to memory from a register) ops

• The instruction formats are few in number

Intensive Computation - 2022/2023 of 858

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

Pipelining

• Most RISC architectures have three classes of instructions:

• ALU instructions—These instructions take either two registers
or a register and a sign-extended immediate, operate on them,
and store the result into a third register

• Load and store instructions—These instructions take a register
source, called the base register and an offset, to compute
effective address, as well as a second register operand

• Branches and jumps—Branches are conditional transfers of
control. Unconditional jumps are provided in many RISC
architectures

Intensive Computation - 2022/2023 of 859

Pipelining

• Every instruction in this RISC subset can be implemented in at
most 5 clock cycles:

1. Instruction fetch cycle (IF)

2. Instruction decode/register fetch cycle (ID) - Decode the
instruction and read the registers; do the equality test on
the registers as they are read, for a possible branch;
compute the possible branch target address by adding the
sign-extended offset to the incremented PC

Intensive Computation - 2022/2023 of 8510

Pipelining

3. Execution/effective address cycle (EX) - The ALU operates on
the operands prepared in the prior cycle, performing one of
three functions depending on the instruction type:

• Memory reference—The ALU adds the base register and the
offset to form the effective address

• Register-Register ALU instruction—The ALU performs the
operation (ALU opcode) on the values read from the register file

• Register-Immediate ALU instruction—The ALU performs the
operation (ALU opcode) on the first value read from the register
file and the sign-extended immediate

Intensive Computation - 2022/2023 of 8511

Pipelining

4. Memory access (MEM): If the instruction is a load, the
memory does a read using the effective address. If it is a
store, then the memory writes the data from the second
register using the effective address

5. Write-back cycle (WB): Register-Register ALU instruction or
load instruction: Write the result into the register file,
whether it comes from the memory system (for a load) or
from the ALU (for an ALU instruction)

• In the implementation taken as example, branch instructions
require 2 cycles, store instructions require 4 cycles, and all other
instructions require 5 cycles

Intensive Computation - 2022/2023 of 8512

Pipelining

• Each of the clock cycles from the previous section becomes a
pipe stage—a cycle in the pipeline

• This results in the execution pattern above, which is the typical
way a pipeline structure is drawn

Intensive Computation - 2022/2023 of 8513

Clock number

1 2 3 4 5 6 7 8 9

Instruction

number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

• Each instruction takes 5 clock cycles to complete

• During each clock cycle the hardware:
• will initiate a new instruction

• will be executing some part of the five different instructions

Intensive Computation - 2022/2023 of 8514

Clock number

1 2 3 4 5 6 7 8 9

Instruction

number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

• Pipelining seems simple, but it is not
• two different operations cannot be performed with the same data path

resource on the same clock cycle

• for example, a single ALU cannot be asked to compute an effective address
and perform a subtract operation at the same time

Intensive Computation - 2022/2023 of 8515

Clock number

1 2 3 4 5 6 7 8 9

Instruction

number

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Pipelining

Observations about conflicts

• The use of separate caches eliminates a conflict for a single
memory that would arise between instruction fetch and data
memory access

• The register file is used in the two stages: one for reading in ID
and one for writing in WB and these uses are distinct (register
write in the first half of the clock cycle, read in the second half)

• To start a new instruction every clock, we must increment and
store the PC every clock (IF stage). Furthermore, we must also
have an adder to compute the potential branch target during ID.
One further problem is that a branch does not change the PC
until the ID stage

Intensive Computation - 2022/2023 of 8516

Pipelining

• To ensure that instructions in different stages of the pipeline do
not interfere with one another, pipeline registers are introduced
between successive stages of the pipeline:

• at the end of a clock cycle all the results from a given stage are
stored into a register that is used as the input to the next stage on
the next clock cycle

• It is useful to name the pipeline registers the pipeline stages they
connect: IF/ID, ID/EX, EX/MEM, MEM/WB (and also WB)

Intensive Computation - 2022/2023 of 8517

Performance Issues in Pipelining

• Pipelining increases the CPU instruction throughput — the
number of instructions completed per unit of time — but it does
not reduce the execution time of a single instruction

• The increase in instruction throughput means that:

• A program runs faster and has lower total execution time

• But no single instruction runs faster

Intensive Computation - 2022/2023 of 8518

Performance Issues in Pipelining

• In fact, the execution time of each instruction is slightly
increased due to:

• imbalance among the pipe stages

• overhead in the control of the pipeline

• Imbalance among the pipe stages reduces performance since the
clock can run no faster than the time needed for the slowest
pipeline stage

• Pipeline overhead arises from the combination of pipeline
register delay and clock skew

Intensive Computation - 2022/2023 of 8519

Example

• Assume that an unpipelined processor has a 1 ns clock cycle and
that it uses 4 cycles for ALU operations and branches and 5 cycles
for memory operations

• Assume that the relative frequencies of these operations are
40%, 20%, and 40%, respectively

• Suppose that due to clock skew and setup, pipelining the
processor adds 0.2 ns of overhead to the clock

• How much speedup in the instruction execution rate will we gain
from a pipeline?

Intensive Computation - 2022/2023 of 8520

Example

• The average instruction execution time on the unpipelined
processor is:

Average instruction execution time =

= Clock cycle × Average CPI =

= 1 ns × [(40% + 20%) × 4 + 40% × 5] =

=1 ns × 4.4 = 4.4 ns

Intensive Computation - 2022/2023 of 8521

Example

• In the pipelined implementation, the clock must run at the speed
of the slowest stage plus overhead

• Average instruction execution time is (1 + 0.2)ns = 1.2 ns

• Thus, the speedup from pipelining is

Speedup from pipelining=
=Average instruction time unpipelined/Average instruction time pipelined

=(4.4 ns)/(1.2 ns)=3.7 times

• The 0.2 ns overhead establishes a limit on the effectiveness of
pipelining

Intensive Computation - 2022/2023 of 8522

Sequential vs Pipelining Execution

Intensive Computation - 2022/2023 of 8523

• Time pipe stage = 2 ns

• Time 6 pipelined instruction = Time 1 unpipelined instruction + 5 x Time pipe stage
= 10 ns + 10 ns = 20 ns

• Time N pipelined instruction = Time 1 unpip. instruction + (N-1) x Time pipe stage

10 ns

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

2 ns

2 ns

2 ns

2 ns

2 ns IF ID EX MEM WB

2 ns

 Time 1 unpipelined instruction = 10 ns

 Time 6 unpipelined instructions = 60 ns

 Time N unpipelined instructions = N x 10 ns

Pipeline Hazards

• A hazard (conflict) is created whenever there is a dependence
between instructions, and instructions are close enough that the
overlap caused by pipelining would change the order of access to
the operands involved in the dependence

• Hazards:

• prevent the next instruction from executing during its clock
cycle

• reduce the performance from the ideal speedup

Intensive Computation - 2022/2023 of 8524

Pipeline Hazards

• There are three classes of hazards:

• Structural hazards
Attempt to use the same resource from different instructions
simultaneously - arise when the hardware cannot support that
instructions overlap their execution

• Example: Single memory for instructions and data

• Data hazards
Attempt to use a result before it is ready - arise when an instruction
depends on the results of a previous instruction still in the pipeline

• Control hazards
Attempt to make a decision on the next instruction to execute before
the condition is evaluated

• Example: conditional branch execution (change the PC)

Intensive Computation - 2022/2023 of 8525

Pipeline Hazards

• Hazards in pipelines can make it necessary to stall the pipeline

• Some instructions in the pipeline be allowed to proceed while
others are delayed

• When an instruction is stalled:
• all instructions issued later than the stalled instruction — and hence not as

far along in the pipeline — are also stalled

• Instructions issued earlier than the stalled instruction — and hence farther
along in the pipeline — must continue

• As a result, no new instructions are fetched during the stall

Intensive Computation - 2022/2023 of 8526

Performance of Pipelines with Stalls

Intensive Computation - 2022/2023 of 8527

• A stall causes the pipeline performance to degrade from the
ideal performance

• The actual speedup from pipelining, starting with the formula
seen before, can be calculated as:

speedup from pipelining =

=
average instruction time unpipelined

average instruction time pipelined
=

=
CPI unpipelined x Clock cycle unpipelined

CPI pipelined x Clock cycle pipelined
=

=
CPI unpipelined

CPI pipelined
x
Clock cycle unpipelined

Clock cycle pipelined

Intensive Computation - 2022/2023 of 8528

•

Performance of Pipelines with Stalls

Performance of Pipelines with Stalls
•

Intensive Computation - 2022/2023 of 8529

Performance of Pipelines with Stalls
•

Intensive Computation - 2022/2023 of 8530

•

Performance of Pipelines with Stalls

Intensive Computation - 2022/2023 of 8531

Performance of Pipelines with Stalls
•

Intensive Computation - 2022/2023 of 8532

Thus, if there are no stalls, the speedup is equal to the number of
pipeline stages, matching the intuition for the ideal case

Structural Hazards

• When a processor is pipelined, the overlapped execution of
instructions requires:

• pipelining of functional units

• duplication of resources

to allow all possible combinations of instructions in the
pipeline

• If some combination of instructions cannot be accommodated
because of resource conflicts, the processor is said to have a
structural hazard

Intensive Computation - 2022/2023 of 8533

Structural Hazards

Examples:

• Some functional unit is not fully pipelined

• a sequence of instructions using that unpipelined unit cannot proceed
at the rate of one per clock cycle

• Some resource has not been duplicated enough to allow all
combinations of instructions in the pipeline to execute

• a processor may have only one register-file write port, but under
certain circumstances, the pipeline might want to perform two writes
in a clock cycle → stalls

• Some pipelined processors have shared a single-memory pipeline
for data and instructions

• when an instruction contains a data memory reference, it will conflict
with the instruction reference for a later instruction → stalls

Intensive Computation - 2022/2023 of 8534

Structural Hazards - single-memory

Intensive Computation - 2022/2023 of 8535

To resolve this hazard, we stall the pipeline for 1 clock cycle when the
data memory access occurs

Structural Hazards

Example - Cost of the load structural hazard

• Suppose that:

• data references constitute 40% of the mix

• the ideal CPI of the pipelined processor is 1

• Assume that:
• the processor with the structural hazard has a clock rate that is 1.05

times higher than the clock rate of the processor without the hazard

• Which is the fastest pipelined processor, the one with or
without structural risk, and by how much? (Disregarding any
other performance losses)

Intensive Computation - 2022/2023 of 8536

Structural Hazards

Example - Cost of the load structural hazard

A way to solve this problem is to compute the average instruction
time on the two processors

• The average instruction time for the ideal processor (without
hazard) is simply the Clock cycle timeideal

• The average instruction time for the processor with the structural
hazard is

• Clearly, the processor without the structural hazard is 1.3 times
faster

Intensive Computation - 2022/2023 of 8537

ideal

ideal

time cycle Clock1.3

1.05

time cycle Clock
1) 0.4 (1

 time cycle Clock CPI time ninstructio Average

=

=+=

==

Structural Hazards

• The designer could provide a separate memory access for
instructions, either by splitting the cache into separate
instruction and data caches or by using a set of buffers, usually
called instruction buffers, to hold instructions

• A processor without structural hazards has always a lower CPI
→ why would a designer allow structural hazards?

• Pipelining all the functional units, or duplicating them, may be
too costly
• For example, processors that support both an instruction and a data

cache access every cycle require twice as much total memory bandwidth
and often have higher bandwidth at the pins

Intensive Computation - 2022/2023 of 8538

Data Hazards

• Overlapping the execution of instructions introduces data and
control hazards

• Data hazards occur when the pipeline changes the order of
read/write accesses to operands so that the order differs from
the order seen by sequentially executing instructions on an
unpipelined processor

Intensive Computation - 2022/2023 of 8539

Data Hazards

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

• All the instructions after the ADD use the
result of the ADD instruction

• The ADD instruction writes the value of R1
in the WB pipe stage

• For example, the SUB instruction reads the
value during its ID stage

• This problem is called a data hazard

• Unless precautions are taken to prevent it,
the SUB instruction will read the wrong
value and try to use it

Intensive Computation - 2022/2023 of 8540

Data Hazards

Intensive Computation - 2022/2023 of 8541

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Data Hazards

Intensive Computation - 2022/2023 of 8542

 In fact, the value used by the SUB
instruction is not even deterministic

 If an interrupt should occur between the
ADD and SUB instructions, the WB stage
of the ADD will complete, and the value
of R1 at that point will be the result of
the ADD

 This unpredictable behavior is
unacceptable

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Data Hazards

Intensive Computation - 2022/2023 of 8543

AND instruction is affected by this hazard: the write of R1 does not
complete until the end of clock cycle 5 → the AND instruction that
reads the registers during clock cycle 4 will receive the wrong results

Data Hazards

Intensive Computation - 2022/2023 of 8544

The OR instruction operates without incurring a hazard because we
perform the register file reads in the second half of the cycle and the
writes in the first half

Data Hazards

Intensive Computation - 2022/2023 of 8545

The XOR instruction operates properly because its register read occurs
in clock cycle 6, after the register write

Data Hazards: Possible Solutions

• Compilation Techniques

• Insertion of nop (no operation) instructions

• Instructions scheduling to avoid that correlating instructions
are too close
• The compiler tries to insert independent instructions among

correlating instructions

• When the compiler does not find independent instructions, it insert
nops

• Hardware Techniques

• Insertion of stalls or “bubbles” in the pipeline

• Data forwarding or bypassing

Intensive Computation - 2022/2023 of 8546

Insertion of nop

Intensive Computation - 2022/2023 of 8547

ADD R1,R2,R3

nop

nop

nop

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

IF ID

IF

sub $2, $1, $3

add $4, $10, $11

and $7, $8, $9

lw $16, 100($18)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15,100($2)

Scheduling

Intensive Computation - 2022/2023 of 8548

Example

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15,100($2)

add $4, $10, $11

and $7, $8, $9

lw $16, 100($18)

Forwarding

• The idea behind data forwarding (also called bypassing or
short-circuiting) is:

• Temporary results are stored in the pipeline registers before
the write back of results in the RF (register file)

• So, a result in a pipeline register (output of one unit) can be
forwarded to the input of another unit

Intensive Computation - 2022/2023 of 8549

Forwarding

• Forwarding usually involves ALU and works as follows:

• The ALU result from both the EX/MEM and MEM/WB
pipeline registers is always fed back to the ALU inputs

• If the forwarding hardware detects that the previous ALU
operation has written the register of a source for the current
ALU operation, control logic selects the forwarded result as
the ALU input

Intensive Computation - 2022/2023 of 8550

Forwarding

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15,100($2)

Intensive Computation - 2022/2023 of 8551

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

EX/EX
path

MEM/ID
path

MEM/EX
path

• This example shows that we can need to forward results not
only from the immediately previous instruction, but also from
an instruction that started 2 cycles earlier

• Using bypass paths, this code can be executed without stalls

Minimizing Data Hazard Stalls by Forwarding

Intensive Computation - 2022/2023 of 8552

Data Hazards Requiring Stalls

• To handle cases where forwarding alone is not enough, new
hardware is added, pipeline interlock, to:

• preserve the correct execution pattern

• detect a hazard

• stall the pipeline until the hazard is cleared

• The interlock stalls the pipeline:

• beginning with the instruction that wants to use the data

• until the source instruction produces the data required

• introducing a stall or bubble, as for the structural hazard

• The CPI for the stalled instruction increases by the length of the stall

Intensive Computation - 2022/2023 of 8553

Data Hazards Requiring Stalls

• Example Consider the following sequence of instructions:

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

• LD instruction does not have the data until the end of clock
cycle 4 (its MEM cycle)

• But SUB instruction needs to have the data by the beginning of
clock cycle 4

• The data hazard from using the result of a load instruction
cannot be completely eliminated with simple hardware

Intensive Computation - 2022/2023 of 8554

Data Hazards Requiring Stalls

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

Intensive Computation - 2022/2023 of 8555

Data Hazards Requiring Stalls

Before stall insertion

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

After stall insertion

LD R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

Intensive Computation - 2022/2023 of 8556

IF ID EX MEM WB

EX MEM WB

IF

stall

stall

stall

IF ID

ID EX MEM WB

IF ID EX MEM

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Data Hazards Requiring Stalls

Intensive Computation - 2022/2023 of 8557

Example

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

IF ID EX MEM WB

ID EX MEM

IF ID EX

IF ID

IF

IF stall stall stall

stall stall stall

Type of Data Hazards

• RAW (READ AFTER WRITE) hazard

• instruction n+1 tries to read a source register before the previous
instruction n has written it in the RF

• Example

ADD $R1, $R2, $R3

SUB $R4, $R1, $R5

• By using forwarding, it is always possible to solve this conflict
without introducing stalls, except for the load/use hazards
where it is necessary to add one stall

Intensive Computation - 2022/2023 of 8558

Type of Data Hazards

• WAW (WRITE AFTER WRITE) hazard

• Instruction n+1 tries to write a destination operand before it has
been written by the previous instruction n → write operations
executed in the wrong order (out-of-order)

• Example

LW $R1, 0($R2)

ADD $R1,$R2,$R3

Intensive Computation - 2022/2023 of 8559

Type of Data Hazards

• WAR (WRITE AFTER READ) hazard

• Instruction n+1 tries to write a destination operand before it has
been read from the previous instruction n → instruction n reads
the wrong value

• Example

• SW $R1, 0($R2X) # sw has to read $R2

• ADDI $R2, $R2, 4 # addi writes SR2

• If we assume the register write in the ALU instructions occurs in
the fourth stage and that we need two stages to access the
data memory, some instructions could read operands too late
in the pipeline

Intensive Computation - 2022/2023 of 8560

Control hazards

• Control hazards can cause a greater performance loss for our
MIPS pipeline than do data hazards

• When a branch is executed, it may change the PC to something
other than next address (in our case PC plus 4)

• The branch decision (to change or not change the PC) is taken
during the MEM stage:

• if a branch changes the PC to its target address, it is a taken
branch

• if it falls through, it is not taken, or untaken

• If there is taken branch, then the PC is not changed until the
end of ID, after the address calculation and comparison

Intensive Computation - 2022/2023 of 8561

Control hazards

• Examples of branches (MIPS processor):

• beq (branch on equal) and bne (branch on not equal)

• beq $s1, $s2, L1 # go to L1 if ($s1 == $s2)

• bne $s1, $s2, L1 # go to L1 if ($s1 != $s2)

• Branch Outcome and Branch Target Address are ready at the
end of the EX stage (3th stage)

• Conditional branches are solved when PC is updated at the end
of the MEM stage (4th stage)

Intensive Computation - 2022/2023 of 8562

Control hazards

Observations

• Control hazards arise from the pipelining of conditional
branches and other instructions changing the PC

• Control hazards reduce the performance from the ideal
speedup gained by the pipelining since they can make it
necessary to stall the pipeline

• It can be useful to attempt to make a decision on the next
instruction to fetch before the branch condition is evaluated

Intensive Computation - 2022/2023 of 8563

Example

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

L1: lw $4, 50($7)

• The branch instruction may or may not change the PC (MEM
stage)

• The next 3 instructions are fetched and their execution is
started

Intensive Computation - 2022/2023 of 8564

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

Example

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

L1: lw $4, 50($7)

• If the branch is not taken, the pipeline execution is OK

• If the branch is taken, it is necessary to flush the next 3
instructions in the pipeline and fetch the lw instruction at the
branch target address (L1)

Intensive Computation - 2022/2023 of 8565

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

Solutions

• Stalling until resolution: To stall the pipeline until the branch
decision is taken and then fetch the correct instruction flow

• Without forwarding: for three clock cycles (end MEM stage)

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

• Each branch costs three stalls to fetch the correct instruction
flow: (PC+4) or Branch Target Address

Intensive Computation - 2022/2023 of 8566

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

IF ID

stall stall stall

Solutions

• Stalling until resolution: To stall the pipeline until the branch
decision is taken and then fetch the correct instruction flow

• With forwarding: for two clock cycles (end EX stage)

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

• Each branch costs two stalls to fetch the correct instruction
flow: (PC+4) or Branch Target Address

Intensive Computation - 2022/2023 of 8567

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

stall stall IF ID EX MEM WB

Solutions

• Early Evaluation of the PC: To improve performance in case of
branch hazards, additional hardware resources can be used to:

• Compare registers to derive the Branch Outcome

• Compute the Branch Target Address

• Update the PC register as soon as possible

• MIPS processor compares registers, computes branch target
address and updates PC during ID stage

Intensive Computation - 2022/2023 of 8568

Solutions

• Stalling until resolution at the end of the ID stage

beq $1, $3, L1

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

• Each branch costs one stalls to fetch the correct instruction
flow: (PC+4) or Branch Target Address

Intensive Computation - 2022/2023 of 8569

IF ID EX MEM WB

IF ID EX MEM

stall

IF ID EX MEM WB

IF ID EX MEM WB

Solutions

Consequence of early evaluation of branch decision in ID stage

• Case of add instruction followed by a branch testing the result:

• We need to introduce one stall before ID stage of branch to
enable the forwarding (EX-ID) of the result from EX stage of
previous instruction

• We also need one stall after the branch for branch resolution

addi $1, $1, 4

beq $1, $6, L1

and $12, $2, $5

Intensive Computation - 2022/2023 of 8570

IF ID EX MEM WB

IF ID EX MEM

stallIF ID EX MEM WB

stall

Solutions

Consequence of early evaluation of the branch decision in ID stage:

• Case of load instruction followed by a branch testing the result:

• we need to introduce two stalls before ID stage of branch to
enable the forwarding (ME-ID) of the result from EX stage of
previous instruction

• We also need one stall after the branch for branch resolution

lw $1, BASE($2)

beq $1, $6, L1

and $12, $2, $5

Intensive Computation - 2022/2023 of 8571

IF ID EX MEM WB

IF ID EX MEM

stallIF ID EX MEM WB

stall

stall

Reducing the Cost of Branches: Predictions

• With branch decisions made during ID stage, there is a reduction
of the cost associated with each branch (branch penalty)

• But, as pipelines get deeper and the potential penalty of branches
increases, the techniques considered before becomes insufficient

• So, we need aggressive schemes for predicting branches

• Branch prediction techniques try to predict ASAP the outcome of
a branch instruction

• Prediction schemes fall into two classes:
• low-cost static schemes that rely on information available at compile time

• strategies that predict branches dynamically based on program behavior

Intensive Computation - 2022/2023 of 8572

Reducing the Cost of Branches: Predictions

Static Branch Prediction Techniques

• The actions for a branch are fixed for each branch during the
entire execution

• The actions are fixed at compile time

• Branch Always Not Taken (Predicted-Not-Taken)

• Branch Always Taken (Predicted-Taken)

• Backward Taken Forward Not Taken (BTFNT)

• Profile-Driven Prediction

• Delayed Branch

Intensive Computation - 2022/2023 of 8573

Reducing the Cost of Branches: Predictions

Dynamic Branch Prediction Techniques

• The decision causing the branch prediction can dynamically
change during the program execution

• Basic Idea: To use the past branch behavior to predict

• We use hardware to dynamically predict the outcome of a
branch

• The prediction will depend on the behavior of the branch at
run time and will change if the branch changes its behavior
during execution

Intensive Computation - 2022/2023 of 8574

EXERCISE
From Midterm 2014/2015

Course Advanced architectures

Intensive Computation - 2022/2023 of 8575

Exercise

• Consider the following loop
in a high level language

for (i =0; i < N; i ++)

vectA[i] = vectB[i]

vectB[i] = vectB[i] + 4;

• The program in MIPS assembly
code is:

FOR: beq $t6,$t7,END

lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

• Registers $t6 and $t7 are
initialized with 0 and 4N

• VECTB is a 16-bit constant

Intensive Computation - 2022/2023 of 8576

Exercise

• Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:
• Identify the Hazard Type (Data Hazard or Control Hazard)

• Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

• For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

Intensive Computation - 2022/2023 of 8577

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

lw $t2,VECTB($t6) IF ID EX ME WB

sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

• Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:
• Identify the Hazard Type (Data Hazard or Control Hazard)

• Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

• For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

Intensive Computation - 2022/2023 of 8578

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

• Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:
• Identify the Hazard Type (Data Hazard or Control Hazard)

• Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

• For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

Intensive Computation - 2022/2023 of 8579

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

• Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:
• Identify the Hazard Type (Data Hazard or Control Hazard)

• Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

• For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

Intensive Computation - 2022/2023 of 8580

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

blt $t6,$t7, FOR IF ID EX ME WB

Exercise

• Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:
• Identify the Hazard Type (Data Hazard or Control Hazard)

• Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

• For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

Intensive Computation - 2022/2023 of 8581

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

Exercise

• Let us consider the loop executed by 5-stage pipelined MIPS
processor WITHOUT any optimisation in the pipeline:
• Identify the Hazard Type (Data Hazard or Control Hazard)

• Identify the number of stalls to be inserted before each instruction (or
between stages IF and ID of each instruction) to solve the hazards

• For each hazard, add an ARROW to indicate the pipeline stages involved
in the hazard

Intensive Computation - 2022/2023 of 8582

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

Exercise

• For each instruction
• Write the phases and insert the stalls to solve the hazards identified →

take into account that solving some hazards can help to solve those that
follow

• Specify the number of stalls actually inserted

83

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END

lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

Intensive Computation - 2022/2023 of 85

Exercise

84

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6)

sw $t2,VECTA($t6)

addi $t2,$t2,4

sw $t2,VECTB($t6)

addi $t6,$t6,4

blt $t6,$t7, FOR

Intensive Computation - 2022/2023 of 85

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

Exercise

85

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

FOR: beq $t6,$t7,END IF ID EX ME WB

3 lw $t2,VECTB($t6) IF ID EX ME WB

3 sw $t2,VECTA($t6) IF ID EX ME WB

addi $t2,$t2,4 IF ID EX ME WB

3 sw $t2,VECTB($t6) IF ID EX ME WB

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB

3 IF ID

Num.

Stalls
INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11

Hazard

Type

3 FOR: beq $t6,$t7,END IF ID EX ME WB CNTR

3 lw $t2,VECTB($t6) IF ID EX ME WB CNTR

3 sw $t2,VECTA($t6) IF ID EX ME WB DATA

2 addi $t2,$t2,4 IF ID EX ME WB DATA

3 sw $t2,VECTB($t6) IF ID EX ME WB DATA

addi $t6,$t6,4 IF ID EX ME WB

3 blt $t6,$t7, FOR IF ID EX ME WB DATA

Intensive Computation - 2022/2023 of 85

	Diapositiva 1: Pipelining
	Diapositiva 2
	Diapositiva 3: Pipelining
	Diapositiva 4: Pipelining
	Diapositiva 5: Pipelining
	Diapositiva 6: Pipelining
	Diapositiva 7: Pipelining
	Diapositiva 8: Pipelining
	Diapositiva 9: Pipelining
	Diapositiva 10: Pipelining
	Diapositiva 11: Pipelining
	Diapositiva 12: Pipelining
	Diapositiva 13: Pipelining
	Diapositiva 14: Pipelining
	Diapositiva 15: Pipelining
	Diapositiva 16: Pipelining
	Diapositiva 17: Pipelining
	Diapositiva 18: Performance Issues in Pipelining
	Diapositiva 19: Performance Issues in Pipelining
	Diapositiva 20: Example
	Diapositiva 21: Example
	Diapositiva 22: Example
	Diapositiva 23: Sequential vs Pipelining Execution
	Diapositiva 24: Pipeline Hazards
	Diapositiva 25: Pipeline Hazards
	Diapositiva 26: Pipeline Hazards
	Diapositiva 27: Performance of Pipelines with Stalls
	Diapositiva 28: Performance of Pipelines with Stalls
	Diapositiva 29: Performance of Pipelines with Stalls
	Diapositiva 30: Performance of Pipelines with Stalls
	Diapositiva 31: Performance of Pipelines with Stalls
	Diapositiva 32: Performance of Pipelines with Stalls
	Diapositiva 33: Structural Hazards
	Diapositiva 34: Structural Hazards
	Diapositiva 35: Structural Hazards - single-memory
	Diapositiva 36: Structural Hazards
	Diapositiva 37: Structural Hazards
	Diapositiva 38: Structural Hazards
	Diapositiva 39: Data Hazards
	Diapositiva 40: Data Hazards
	Diapositiva 41: Data Hazards
	Diapositiva 42: Data Hazards
	Diapositiva 43: Data Hazards
	Diapositiva 44: Data Hazards
	Diapositiva 45: Data Hazards
	Diapositiva 46: Data Hazards: Possible Solutions
	Diapositiva 47: Insertion of nop
	Diapositiva 48: Scheduling
	Diapositiva 49: Forwarding
	Diapositiva 50: Forwarding
	Diapositiva 51: Forwarding
	Diapositiva 52: Minimizing Data Hazard Stalls by Forwarding
	Diapositiva 53: Data Hazards Requiring Stalls
	Diapositiva 54: Data Hazards Requiring Stalls
	Diapositiva 55: Data Hazards Requiring Stalls
	Diapositiva 56: Data Hazards Requiring Stalls
	Diapositiva 57: Data Hazards Requiring Stalls
	Diapositiva 58: Type of Data Hazards
	Diapositiva 59: Type of Data Hazards
	Diapositiva 60: Type of Data Hazards
	Diapositiva 61: Control hazards
	Diapositiva 62: Control hazards
	Diapositiva 63: Control hazards
	Diapositiva 64: Example
	Diapositiva 65: Example
	Diapositiva 66: Solutions
	Diapositiva 67: Solutions
	Diapositiva 68: Solutions
	Diapositiva 69: Solutions
	Diapositiva 70: Solutions
	Diapositiva 71: Solutions
	Diapositiva 72: Reducing the Cost of Branches: Predictions
	Diapositiva 73: Reducing the Cost of Branches: Predictions
	Diapositiva 74: Reducing the Cost of Branches: Predictions
	Diapositiva 75: Exercise
	Diapositiva 76: Exercise
	Diapositiva 77: Exercise
	Diapositiva 78: Exercise
	Diapositiva 79: Exercise
	Diapositiva 80: Exercise
	Diapositiva 81: Exercise
	Diapositiva 82: Exercise
	Diapositiva 83: Exercise
	Diapositiva 84: Exercise
	Diapositiva 85: Exercise

