COMPUTER ARITHMETIC

Intensive Computation
Annalisa Massini
Lecture 3-4
2022-2023

References

Computer Architecture - A Quantitative Approach Hennessy Patterson - Fifth Edition

Appendix J - Computer arithmetic - David Goldberg

ADDITION AND ADDERS

Half adder and Full adder

- Adders are usually implemented by combining multiple copies of simple components
- The natural components for addition are half adders and full adders
- The half adder takes two bits a and b as input and produces a sum bit s and a carry bit $c_{\text {out }}$ as output
- Logic equations: $s=a \bar{b}+\bar{a} b=a \oplus b$ and $c_{\text {out }}=a b$

Half adder and Full adder

- The full adder takes three bits a, b and c as input and produces a sum bit s and a carry bit $c_{\text {out }}$ as output
- Logic equations:

$$
s=a \bar{b} \bar{c}+\bar{a} b \bar{c}+\bar{a} \bar{b} c+a b c=(a \oplus b) \oplus c
$$

and

$$
c_{\text {out }}=(a \oplus b) c+a b
$$

Half adder and Full adder

- The half adder is a $(2,2)$ adder:
- it takes two inputs and produces two outputs
- The full adder is a $(3,2)$ adder:
- it takes three inputs and produces two outputs

Ripple-Carry Addition

- The principal problem in constructing an adder for n-bit numbers out of smaller pieces is propagating the carries from one piece to the next
- The most obvious way to solve this is with a ripple-carry adder, consisting of n full adders

Ripple-Carry Addition

- Note that the low-order carry-in could be wired to 0 , hence the low-order adder could be a half adder
- However, setting the low-order carry-in bit to 1 is useful for performing subtraction

Ripple-Carry Addition

- The time a circuit takes to produce an output is proportional to the maximum number of logic levels through which a signal travels
- Determining the exact relationship between logic levels and timings is highly technology dependent

Ripple-Carry Addition

- When comparing adders we simply compare the number of logic levels in each one
- A ripple-carry adder takes:
- two levels to compute c_{1} from a_{0} and b_{0}
- two more levels to compute c_{2} from c_{1}, a_{1}, b_{1} - and so on, up to c_{n}
- So, there are a total of $2 n$ levels

Ripple-Carry Addition

- Typical values of n are 32 for integer arithmetic and 53 for double-precision floating point
- The ripple-carry adder is the slowest adder, but also the cheapest
- It can be built with only n simple cells, connected in a simple, regular way

Ripple-Carry Addition

- The ripple-carry adder is relatively slow \rightarrow it takes time $\mathrm{O}(n)$
- But it is used because in technologies like CMOS, the constant factor is very small
- Short ripple adders are often used as building blocks in larger adders

Ripple-Carry Addition for Signed Numbers

- The most widely used system for representing integers is the two's complement, where the MSB is considered associated with a negative weight
- The value of a two's complement number $a_{n-1} a_{n-2} \cdots a_{1} a_{0}$ is:

$$
-a_{n-1} 2^{n-1}+a_{n-2} 2^{n-2}+\cdots+a_{1} 2^{1}+a_{0} 2^{0}
$$

Ripple-Carry Addition for Signed Numbers

- The reasons for the popularity of two's complement are:
- It makes signed addition easy \rightarrow simply discard the carryout from the high order bit
- Subtraction is executed as an addition:
- $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$, recalling that $-X=\bar{X}+1$

Ripple-Carry Addition for Signed Numbers

- The Ripple-Carry adder is used for subtraction acting on second operand B and on c_{0}
- If line complement is 1 then operand B is complemented bit wise and $\mathrm{c}_{0}=1$

MULTIPLICATION AND MULTIPLIERS

Unsigned Multiplication

- The simplest mulliplier computes the product of two unsigned numbers, $a_{n-1} a_{n-2} \cdots a_{0}$ and $b_{n-1} b_{n-2} \cdots b_{0}$ one bit at a time
- Register Product is initially 0

Unsigned Multiplication

- Each multiply step has two parts:
(i) Partial product and accumulation:
- If the Isb of A is 1 , then register $\mathrm{B}\left(b_{n-1} b_{n-2} \cdots b_{0}\right)$ is added to P ; else $0 \cdots 00$ is added to P
- The sum is placed back into P

Unsigned Multiplication

(ii) Registers P and A are shifted right:

- the carry-out of the sum is moved into the high-order bit of P
- the low-order bit of P is moved into register A,
- the rightmost bit of A (not used any more) is shifted out

Unsigned Multiplication

- In summary, each multiplication step consists of: adding the contents of P to either B or 0 (depending on the low-order bit of $A)$, replace P with the sum, then shift both P and A one bit right
- After n steps, the product appears in registers P and A, with A holding the lower-order bits

Signed Multiplication

- To multiply two's complement numbers, the obvious approach is to convert operands to be nonnegative, do an unsigned multiplication, and then (if the original operands were of opposite signs) negate the result
- This requires extra time and hardware

Signed Multiplication

- A better approach to multiply A and B using the hardware below:
- If A is nonnegative and B is potentially negative, to convert the unsigned multiplication algorithm into a two's complement one we need that when P is shifted, it is shifted arithmetically
- Our adder will now be adding n-bit two's complement numbers between -2^{n-1} and $2^{n-1}-1$

Signed Multiplication

- If A is negative, the method of Booth recoding is used
- It is based on the fact that any sequence of 1 s in a binary number can be written as: 011... $11=100 . . .00-000 . . .01$
- Example If a = $7=0111_{2}$, then step (i) will successively
- add B, add B, add B, and add 0
- Booth recoding "recodes" the number 7 as $8-1=1000_{2}-0001_{2}$

	0010		Multiplication	
\mathbf{x}	0111			
$\mathbf{+}$	0010	shift	(0 in multiplier)	
+	0010	add	(1 in multiplier)	
+	0010	add	(1 in multiplier)	
+	0000	shift	$(0$ in multiplier $)$	
	00001110			

Signed Multiplication

- The idea is that:
- we subtract when we first see a 1 to replace a string of 1 s in multiplier
- then later we add for the bit after the last one

| | 0010 | | |
| :---: | :---: | :--- | :--- | :--- |
| \mathbf{x} | 0111 | | |
| $\mathbf{+}$ | 0010 | shift | $(0$ in multiplier $)$ |
| + | 0010 | add | $(1$ in multiplier $)$ |
| + | 0010 | add | $(1$ in multiplier $)$ |
| + | 0000 | shift | $(0$ in multiplier $)$ |
| | 00001110 | | |

Signed Multiplication

- The idea is that:
- we subtract when we first see a 1 to replace a string of 1 s in multiplier
- then later we add for the bit after the last one

Signed Multiplication

- The idea is that:
- we subtract when we first see a 1 to replace a string of 1 s in multiplier
- then later we add for the bit after the last one

	0010 \mathbf{x} 0111 + 0010 + 0010 + 0010 + 0000 00001110	shift (0 in multiplier) add (1 in multiplier) add (1 in multiplier) shift (0 in multiplier)
0010		
x 0111		
+ 11111110	sub(first 1 in multpl)	
+ 0000	shift (0 in multiplier)	
+ 0000	shift (0 in multiplier)	
+ 0010	add (prior step had last	
00001110		

Signed Multiplication

- Hence, to deal with negative values of A, all that is required is to sometimes subtract B from P, instead of adding either B or 0 to P
- Rules: If the initial content of A is $a_{n-1} \cdots a_{0}$, then step (i) in the multiplication algorithm becomes:
- If $a_{i}=0$ and $a_{i-1}=0$, then add 0 to P
- If $a_{i}=0$ and $a_{i-1}=1$, then add B to P
- If $a_{i}=1$ and $a_{i-1}=0$, then subtract B from P
- If $a_{i}=1$ and $a_{i-1}=1$, then add 0 to P

For the first step, when $i=0$, take a_{i-1} to be 0

SPEEDING UP OPERATIONS

Speeding Up Operations

- Integer addition is the simplest operation and the most important
- Even for programs that do not do explicit arithmetic, addition must be performed to increment the program counter and to calculate addresses
- The delay of an N -bit ripple-carry adder is:

$$
t_{\text {ripple }}=N t_{F A}
$$

where $\boldsymbol{t}_{F A}$ is the delay of a full adder

- There are different techniques to increase the speed of integer operations (that lead to faster floating point), as the Carry Look-ahead Adder (CLA)

Carry-Select Adder

- The carry-select adder improves speed dividing operands bits in blocks
- A carry-select adder consists of:
- short ripple carry adders acting on blocks of bits
- multiplexers
- The two blocks of bits is added with two ripple-carry adders, one with the carry-in equal to 0 and the other with the carry-in equal to 1

Carry-Select Adder

- In the figure below two 4-bit ripple-carry adders are multiplexed together
- The resulting carry and sum bits are selected by the carry-in
- The correct result is selected by the actual carry-in which selects which adder had the correct assumption

Carry-Select Adder

Uniform-sized adder

A 16-bit carry-select adder with a uniform block size of 4 has:

- three of these blocks
- a 4-bit ripple-carry adder

A carry select block is not needed for the four LSBs
The delay of this adder will be four full adder delays plus three 2-to-1 MUX delays

Carry-Select Adder

Variable-sized adder

A 16-bit carry-select adder with variable size can be created using block sizes of 2-2-3-4-5

- This break-up is ideal when the full-adder delay is equal to the MUX delay
- The total delay is two full adder delays plus four mux delays

Carry-Lookahead Adder

- A carry-lookahead adder improves speed by reducing the amount of time required to determine carry bits
- The carry-lookahead adder calculates one or more carry bits before the sum, which reduces the wait time to calculate the result of the larger-value bits of the adder
- Remember that:

$$
\begin{aligned}
& c_{i+1}=a_{i} b_{i}+\left(a_{i} \oplus b_{i}\right) c_{i} \\
& s_{i}=a_{i} \bar{b}_{i} \bar{c}_{i}+\bar{a}_{i} b_{i} \bar{c}_{i}+\bar{a}_{i} \bar{b}_{i} c_{i}+a_{i} b_{i} c_{i}=\left(a_{i} \oplus b_{i}\right) \oplus c_{i}
\end{aligned}
$$

Carry-Lookahead Adder

We define:

- Carry Generate $g_{i}=a_{i} b_{i}$
- Carry propagate $p_{i}=a_{i} \oplus b_{i}$ or $p_{i}=a_{i}+b_{i}$

Then the expression of the carry is:

$$
c_{i+1}=a_{i} b_{i}+\left(a_{i} \oplus b_{i}\right) c_{i}=g_{i}+p_{i} c_{i}
$$

and the expression of the sum is:

$$
s_{i}=\left(a_{i} \oplus b_{i}\right) \oplus c_{i}=p_{i} \oplus c_{i}
$$

Carry-Lookahead Adder

If we consider 4 bits, we have $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$, depend only on c_{0} :

$$
\begin{aligned}
& c_{1}=a_{0} b_{0}+\left(a_{0}+b_{0}\right) c_{0}=g_{0}+p_{0} c_{0} \\
& c_{2}=a_{1} b_{1}+\left(a_{1}+b_{1}\right) c_{1}=g_{1}+p_{1} c_{1}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
& c_{3}=a_{2} b_{2}+\left(a_{2}+b_{2}\right) c_{2}=g_{2}+p_{2} c_{2}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
& c_{4}=a_{3} b_{3}+\left(a_{3}+b_{3}\right) c_{3}=g_{3}+p_{3} c_{3}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

\mathbf{c}_{0}

Carry-Lookahead Adder

- So, a carry-lookahead adder on n bits requires a fan-in of $n+1$ at the OR gate as well as at the rightmost AND gate
- The irregular structure and long wires make it impractical to build a full carry-lookahead adder when n is large

Carry-Lookahead Addition

- Structure of a 4-bit CLA

$$
s_{i}=\left(a_{i} \oplus b_{i}\right) \oplus c_{i}=p_{i} \oplus c_{i}
$$

- A CLA requires:
- one logic level to form p and g
- two levels to form the carries
- two for the sum
- for a total of five logic levels
- Improvement over the $2 n$ levels required for the ripplecarry adder

Carry-Lookahead Addition

- A 16-bit adder can be built from four 4-bit CLAs and a 4-bit Look-ahead Carry Unit (LCU) at the second level

- A 64-bit adder can be built from four 16-bit adder shown above, and an additional LCU that accepts bits from each LCU above and generates carry bits fed back to
- https://en.wikipedia.org/wiki/Lookahead carry unit

Carry-Lookahead Addition

We can use the carrylookahead idea to build an adder that has about $\log _{2} n$ logic levels

Starting from

- $G_{01}=g_{1}+p_{1} g_{0}$
- $P_{01}=p_{1} p_{0}$

In general, for any j with $i<j$ and $j+1<k$, we have the recursive relations:

- $c_{k+1}=G_{i k}+P_{i k} c_{i}$
- $G_{i k}=G_{j+1, k}+P_{j+1, k} G_{i j}$
- $P_{i k}=P_{i j} P_{j+1, k}$

Carry-Lookahead Addition

First part of carry-lookahead tree:

- signals flow from the top to the bottom,
- various values of P and G are computed
Second part of carrylookahead tree:

- signals flow from the bottom to the top, combining with P and G to form the carries

Carry-Lookahead Addition

- Using the recursive relations, we can design practical CLAs combining cells in a binary tree structure
- Complete tree adder The numbers to be added flow into the top and downward through the tree, combining with cO at the bottom and flowing back up the tree to form the carries

Carry-Lookahead Addition

- The bits in a CLA pass through about $\log _{2} n$ logic levels, compared with $2 n$ for a ripple-carry adder
- But the ripple-carry adder has n cells and the CLA has $2 n$ cells, even if they will take n $\log n$ space
- Speed improvement especially for a large n

Speeding Up Multiplications

- Methods that increase the speed of multiplication can be divided into two classes:
- single adder
- multiple adders
- In the simple multiplier we described, each multiplication step passes through the single adder
- The amount of computation in each step depends on the used adder (consider the difference between an RCA and a CLA)
- If the space for many adders is available, then multiplication speed can be increased thanks to the replication of resources

PIPELINED ARITHMETIC OPERATIONS

Pipelined arithmetic

- Consider the instruction pipelining:
- The processor goes through a repetitive cycle of fetching and processing instructions
- In the absence of hazards:
- the processor is continuously fetching instructions from their locations
- the pipeline is kept full
- a savings in time is achieved
- Similarly, a pipelined ALU will save time if it is fed a stream of data from sequential locations
- A single, isolated operation is not speeded up by pipeline
- The speedup is achieved when a vector of operands is presented to the units in the ALU

Pipelined arithmetic

- The relative simplicity of two-operand adders usually does not justify their implementation as pipelines
- In special-purpose design, when many successive additions are needed, such implementations are justifiable
- Some adders can be implemented as pipeline, such as the conditional-sum adder or the carry-save adder (for multiple operands)
- But, for example, some design of the carry look-ahead adder cannot be pipelined because some carry signals propagate backward
- There are very simple schemes for the pipelined adders and multipliers along the lines of the ripple-carry adder

Pipelined Addition

- For n bits operands, a pipeline adder consists of n stages of half adders
- Registers (FF D) are inserted at each stage to synchronize the computation
- At each clock cycle a new pair of operands is applied to the inputs of the adder

Pipelined Addition

- After n clock cycles, the sum of the first pair of operands is obtained
- The computing time for a single sum is the same of the carryripple adder
- A new sum is obtained at each clock cycle starting from the ($n+1$)-th clock cycle

Pipelined Addition

- The number of HA is $O\left(n^{2}\right)$, whereas the circuit complexity of the carry-ripple adder is $\mathrm{O}(n)$
- The added circuit complexity pays off if long sequences of numbers are being added

Pipelined Unsigned Multiplication

Pipelined Unsigned Multiplication

Pipelined Unsigned Multiplication

- After stage (n-1) all bit products (AND) are added
- Last (n-1) stages represent a pipelined adder
- Bit $p_{2 n-1}$ of the result is obtained as OR among the carries generated by the most left HA of each stage

Pipelined Unsigned Multiplication

- After 2(n-1) clock cycles, the product of the first pair of operands is obtained
- A new result is obtained at each clock cycle starting from the (2n-1)-th clock cycle

Pipelined Signed Multiplication

- Signed numbers are arithmetically extended to the length $2 n$ of the product
- Example with 3-bit operands

Pipelined Signed Multiplication

- Partial products of length $2 n$ are considered (the remaining part is ignored)
- All stages except the first consist of FAs
- Example with 3-bit operands

CIRCUIT AREA AND TIME EVALUATION

Circuit area and time

- To discuss about the time and area, it is useful the analytical model called unit-gate model presented in
- A. Tyagi, A reduced-area scheme for carry-select adders, IEEE Trans. Comput., 1993
is commonly used
- They propose a simplistic model for gate-count and gate-delay:
- Each gate except EX-OR counts as one elementary gate
- An EX-OR gate is counted as two elementary gates, because in static CMOS, an EX-OR gate is implemented as two elementary gates (NAND)
- The delay through an elementary gate is counted as one gatedelay unit, but an EX-OR gate is two gate-delay units

Circuit area and time

- If the fan-in and fan-out of the gates are ignored, unfair comparisons are produced for circuits containing gates with a large difference in fan-in or fan-out
- For example, gates in the CLA adder have different fan-in
- A carry-ripple adder has no gates with fan-in and fan-out greater than 2
- The gate-count and gate-delay comparisons may not always be consistent with the area-time comparisons if the fan-in of gates is not taken into account
- The best comparison for a VLSI implementation is actual area and time

Circuit area and time

- In summary, we consider:
- Any gate (but the EX-OR) counts as one gate for both area and delay $\rightarrow A_{\text {gate }}$ and $\mathrm{T}_{\text {gate }}$
- An exclusive-OR gate counts as two elementary gates for both area and delay $\rightarrow A_{E X-O R}=2 A_{\text {gate }}$ and $T_{E X-O R}=2 T_{\text {gate }}$
- To take into account the fan-in and fan-out, we consider that an m-input gate counts as:
- \boldsymbol{m} - 1 gates for area $\rightarrow A_{m \text {-gate }}=(m-1) A_{\text {gate }}$
- $\log _{2} m$ gates for delay $\rightarrow T_{m \text {-gate }}=\log _{2} m T_{\text {gate }}$

Circuit area and time

- A half adder (HA) has:
- Delay: 2 unit gates $-T_{H A}=2 T_{\text {gate }}$
- Area: 3 unit gates $-A_{H A}=3 A_{\text {gate }}$

Circuit area and time

- A half adder (HA) has:
- Delay: 2 unit gates $-T_{H A}=2 T_{\text {gate }}$
- Area: 3 unit gates $-A_{H A}=3 A_{\text {gate }}$
- A full adder (FA) has:
- Delay: 4 unit gates $-\mathrm{T}_{\mathrm{FA}}=4 \mathrm{~T}_{\text {gate }}$
- Area: 7 unit gates $-\mathrm{A}_{\text {FA }}=7 \mathrm{~A}_{\text {gate }}$

Circuit area and time

- A half adder (HA) has:
- Delay: 2 unit gates $-T_{H A}=2 T_{\text {gate }}$
- Area: 3 unit gates $-A_{H A}=3 A_{\text {gate }}$
- A full adder (FA) has:
- Delay: 4 unit gates $-T_{F A}=4 T_{\text {gate }}=2 T_{H A}$
- Area: 7 unit gates $-A_{F A}=7 A_{\text {gate }}=2 A_{H A}+A_{\text {gate }}$

Circuit area and time

- A ripple-carry adder for n -bits operands has:
- Delay: $\mathrm{T}_{\mathrm{RC} \text {-adder }} \rightarrow \mathrm{T}_{\mathrm{RC} \text {-adder }}=\mathrm{nT}_{\mathrm{FA}}=2 \mathrm{nT}_{\mathrm{HA}}=4 \mathrm{n} \mathrm{T}_{\text {gate }}$
- Area: $A_{\text {RC-adder }} \rightarrow A_{\text {RC-adder }}=n A_{\text {FA }}=2 n A_{H A}+n A_{\text {gate }}=7 n A_{\text {gate }}$

Circuit area and time

Exercise

Compute the time (propagation delay) and area required by the 4-bits Carry-Save-Adder, that is an adder for three values A, B and C, shown here below.
Compute the speedup of 4-bits Carry-Save-Adder with respect to the standard binary ripple-carry adder.

Delay and Area for the Ripple-carry adder

$$
\begin{aligned}
& -T_{R C \text {-adder }}=n T_{F A}=2 n T_{H A}=4 n T_{\text {gate }} \\
& \text { - } A_{R C \text {-adder }}=n A_{F A}=2 n A_{H A}+n A_{\text {gate }}=7 n A_{\text {gate }}
\end{aligned}
$$

