
Errors

Annalisa Massini Lecture 8
2020-2021

References

• Scientific Computing: An Introductory Survey - Chapter 1 – M.T. Heath

http://heath.cs.illinois.edu/scicomp/notes/index.html

• Principles of Scientific Computing - Sources of Error

http://www.cs.nyu.edu/courses/spring09/G22.2112-

001/book/SourcesOfError.chapter.pdf

• Error analysis for linear systems

http://homepage.math.uiowa.edu/~atkinson/m171.dir/sec_8-4.pdf

Intensive Computation - 2020/2021 2

http://heath.cs.illinois.edu/scicomp/notes/index.html
http://www.cs.nyu.edu/courses/spring09/G22.2112-001/book/SourcesOfError.chapter.pdf
http://homepage.math.uiowa.edu/~atkinson/m171.dir/sec_8-4.pdf

OVERVIEW

Intensive Computation - 2020/2021 3

Sources of Approximation

• Before computation

• modeling

• empirical measurements

• previous computations

• During computation

• truncation or discretization

• rounding

• Accuracy of final result reflects all these

• Uncertainty in input may be amplified by the problem

• Perturbations during computation may be amplified by

algorithm

Intensive Computation - 2020/2021 4

Approximations: Example

• Computing surface area of Earth using formula A = 4πr2

involves several approximations

Intensive Computation - 2020/2021 5

Approximations: Example

• Computing surface area of Earth using formula A = 4πr2

involves several approximations

• Earth is modeled as sphere, idealizing its true shape

Intensive Computation - 2020/2021 6

Approximations: Example

• Computing surface area of Earth using formula A = 4πr2

involves several approximations

• Earth is modeled as sphere, idealizing its true shape

• Value for radius is based on empirical measurements and

previous computations

Intensive Computation - 2020/2021 7

Approximations: Example

• Computing surface area of Earth using formula A = 4πr2

involves several approximations

• Earth is modeled as sphere, idealizing its true shape

• Value for radius is based on empirical measurements and

previous computations

• Value for π requires truncating infinite process

Intensive Computation - 2020/2021 8

Approximations: Example

• Computing surface area of Earth using formula A = 4πr2

involves several approximations

• Earth is modeled as sphere, idealizing its true shape

• Value for radius is based on empirical measurements and

previous computations

• Value for π requires truncating infinite process

• Values for input data and results of arithmetic operations are

rounded in computer

Intensive Computation - 2020/2021 9

Sources of Error

• Scientific computing usually gives inexact answers

Example

• the code x = sqrt(2) produces something that is not the

mathematical 2

• x differs from 2 by an amount that we call the error

Intensive Computation - 2020/2021 10

Sources of Error

• The goal of a scientific computation is rarely the exact

answer, but a result that is as accurate as needed

• An accurate result has a small error

• We use

• A to denote the exact answer to some problem

• 𝑨 to denote the computed approximation

• The error is 𝑨 − 𝑨

Intensive Computation - 2020/2021 11

Sources of Error

• There are four primary ways in which error is introduced into

a computation:

• Roundoff error from inexact computer arithmetic

• Truncation error from approximate formulas

• Termination of iterations

• Statistical error in Monte Carlo

Intensive Computation - 2020/2021 12

Sources of Error

• It is important:

• To understand the likely relative sizes of the various kinds of
error

• To focus our efforts on reducing the largest sources of error

• This will help:

• To better design computational algorithms

• To understand the various sources of error and to debug
scientific computing software

• Finally, if a result is supposed to be 𝐴 and instead is መ𝐴, it is
important to understand if:

• The difference between 𝐴 and መ𝐴 is the result of a programming mistake

• Or the way of calculating something is simply not accurate enough

Intensive Computation - 2020/2021 13

Error propagation

• A typical computation has several stages, with the results of

one stage being the inputs to the next

• Errors in the output of one stage most likely mean that the

output of the next would be inexact even if the second stage

computations were done exactly

• It is unlikely that the second stage would produce the

exact output from inexact inputs

• On the contrary, it is possible to have error amplification

due to error propagation

Intensive Computation - 2020/2021 14

Error propagation

• If the second stage output is very sensitive to its input,

small errors in the input could result in large errors in the

output that is, the error will be amplified

• A method with large error amplification is unstable

• The condition number of a problem measures the

sensitivity of the answer to small changes in its input data

• The condition number is determined by the problem, not

the method used to solve it

• The accuracy of a solution is limited by the condition number

of the problem

Intensive Computation - 2020/2021 15

Error propagation

• A problem is called ill-conditioned if the condition number is

so large that it is hard/impossible to solve it accurately

enough

• A computational strategy is likely to be unstable if it has an

ill-conditioned subproblem

Example

• Suppose we solve a system of linear differential equations using the

eigenvector basis of the corresponding matrix

• Finding eigenvectors of a matrix can be ill-conditioned

• This makes the eigenvector approach to solving linear differential

equations potentially unstable, even when the differential equations

themselves are well-conditioned

Intensive Computation - 2020/2021 16

COMPUTATIONAL

ERRORS

Intensive Computation - 2020/2021 17

Absolute Error and Relative Error

• absolute error: approximate value - true value

• relative error:
absolute error

true value

• Equivalently: approx value = (true value) x (1 + rel error)

• True value is usually unknown, so we estimate or bound

the error rather than to compute it exactly

• The relative error is often taken relative to approximate

value, rather than (unknown) true value

Intensive Computation - 2020/2021 18

Data Error and Computational Error

Typical problem: compute value of function 𝑓: 𝑅 → 𝑅 for given
argument

• 𝑥 = true value of input

• 𝑓 = exact result and 𝑓(𝑥) is the desired result

• ො𝑥 = approximate (inexact) input

• መ𝑓 = approximate function actually computed

• Total error: መ𝑓 ො𝑥 − 𝑓 𝑥 =

መ𝑓 ො𝑥 − 𝑓 ො𝑥 + 𝑓 ො𝑥 − 𝑓 𝑥

computational error + propagated data error

• Algorithm has no effect on propagated data error

Intensive Computation - 2020/2021 19

Example

• We need to compute value of 𝐬𝐢𝐧(Τ𝝅 𝟖) without a calculator

• We could approximate:

• 𝝅 with 22/7, but it is easier to use 𝝅 = 𝟑

• Also, we can approximate

• sine function by truncating Taylor series after first term

(we are considering a small value of the argument), that

is 𝐬𝐢𝐧 𝒙 = 𝒙

Intensive Computation - 2020/2021 20

Example

• Computational error is obtained by

መ𝑓 ො𝑥 ≈ sin(Τ3 8) ≈ Τ3 8 ≈ 0.3750

𝑓 ො𝑥 = 0.3662 (obtained by using a calculator)

• Hence the computational error is

መ𝑓 ො𝑥 − 𝑓 ො𝑥 = 0.3750 − 0.3662 = 𝟎. 𝟎𝟎𝟖𝟖

• Propagated data error is obtained by

𝑓 𝑥 = 0.3826 (obtained by using a calculator)

• Hence the propagated data error is

𝑓 ො𝑥 − 𝑓 𝑥 = 0.3662 − 0.3826 = −𝟎. 𝟎𝟏𝟔𝟒

• Computational error and propagated data error balance each other

Intensive Computation - 2020/2021 21

Truncation Error and Rounding Error

• Truncation error: difference between true result (for actual

input) and result produced by given algorithm using exact

arithmetic

• Due to approximations such as truncating infinite series or terminating

iterative sequence before convergence

• Rounding error: difference between result produced by

given algorithm using exact arithmetic and result produced

by same algorithm using limited precision arithmetic

• Due to inexact representation of real numbers and arithmetic

operations upon them

• Computational error is the sum of truncation error and

rounding error, but one of these usually dominates

Intensive Computation - 2020/2021 22

Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by
𝑀ℎ

2
, where M bounds

𝑓′′(𝑡) for t near x

Intensive Computation - 2020/2021 23

Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by
𝑀ℎ

2
, where M bounds

𝑓′′(𝑡) for t near x

• Rounding error bounded by
2ε

ℎ
, where error in function

values bounded by ε

Intensive Computation - 2020/2021 24

Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by
𝑀ℎ

2

• Rounding error bounded by
2ε

ℎ

• Computational error is:
𝑀ℎ

2
+

2ε

ℎ
• It increases for smaller h because of rounding error

• It increases for larger h because of truncation error

Intensive Computation - 2020/2021 25

Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by
𝑀ℎ

2

• Rounding error bounded by
2ε

ℎ

• Computational error is:
𝑀ℎ

2
+

2ε

ℎ

• Total error minimized when ℎ ≈ 2 ε/𝑀

Intensive Computation - 2020/2021 26

FORWARD ERRORS AND

BACKWARD ERRORS

Intensive Computation - 2020/2021 27

Forward and Backward Error

• Suppose we want to compute y = f(x) , where f : R → R

• Instead we obtain the approximate value ෝ𝒚

• Forward error: Δ𝑦 = ො𝑦 − 𝑦 - where ො𝑦 = መ𝑓 𝑥

Intensive Computation - 2020/2021 28

Forward and Backward Error

• Suppose we want to compute y = f(x) , where f : R → R

• Instead we obtain the approximate value ෝ𝒚

• Forward error: Δ𝑦 = ො𝑦 − 𝑦 − where ො𝑦 = መ𝑓 𝑥

• Backward error: Δ𝑥 = ො𝑥 − 𝑥

Intensive Computation - 2020/2021 29

Forward and Backward Error

• Suppose we want to compute y = f(x) , where f : R → R

• Instead we obtain the approximate value ෝ𝒚

• Forward error: Δ𝑦 = ො𝑦 − 𝑦 - where ො𝑦 = መ𝑓 𝑥

• Backward error: Δ𝑥 = ො𝑥 − 𝑥 - imposing 𝑓 ො𝑥 = ො𝑦

x

ො𝑥

መ𝑓

f

f

y=f(x)

ො𝑦 = መ𝑓 𝑥 = 𝑓(ො𝑥)

Forward errorBackward error

Intensive Computation - 2020/2021 30

Example: Forward and Backward Error

As approximation to 𝑦 = 2, the value ො𝑦 = 1.4 has:

• absolute forward error

Δ𝑦 = ො𝑦 − 𝑦 = 1.4 − 1.41421… ≈ 0.0142

or relative forward error of about 1%

Intensive Computation - 2020/2021 31

Example: Forward and Backward Error

As approximation to 𝑦 = 2, the value ො𝑦 = 1.4 has:

• absolute forward error

Δ𝑦 = ො𝑦 − 𝑦 = 1.4 − 1.41421… ≈ 0.0142

or relative forward error of about 1% (Δ𝑦 / 𝑦)

• Since 1.96 = 1.4, absolute backward error is

Δ𝑥 = ො𝑥 − 𝑥 = 1.96 − 2 = 0.04

or relative backward error of 2% (Δ𝑥 / 𝑥)

Intensive Computation - 2020/2021 32

Backward Error Analysis

• Idea of the backward error analysis →

approximate solution is exact solution to modified problem

• Backward error analysis describes:

• How the original problem changes to give result actually obtained

• How data error in input explain all the errors in computed result

• Approximate solution is good if it is exact solution to nearby

problem

• Backward error is often easier to estimate than forward error

Intensive Computation - 2020/2021 33

Example: Backward Error Analysis

• Approximating cosine function 𝑓 𝑥 = cos 𝑥, by truncating

Taylor series after two terms gives

ො𝑦 = መ𝑓 𝑥 = 1 − 𝑥2/2

• Forward error is given by

Δ 𝑦 = ො𝑦 − 𝑦 = መ𝑓 𝑥 − 𝑓 𝑥 = 1 − Τ𝑥2 2 − cos 𝑥

• To determine backward error, we need value ො𝑥 such that

𝑓 ො𝑥 = መ𝑓 𝑥

• For cosine function, ො𝑥 = arccos መ𝑓 𝑥 = arccos(ො𝑦)

Intensive Computation - 2020/2021 34

Example continued

• Fixing 𝒙 = 𝟏

𝑦 = 𝑓 1 = cos 1 ≈ 0.5403

ො𝑦 = መ𝑓 1 = 1 −
12

2
= 0.5

ො𝑥 = arccos ො𝑦 = arccos 0.5 = 1.0472

• Forward error: Δ𝑦 = ො𝑦 − 𝑦 ≈ 0.5 − 0.5403 = −0.0403

• Backward error: Δ 𝑥 = ො𝑥 − 𝑥 ≈ 1.0472 − 1 = 0.0472

Intensive Computation - 2020/2021 35

SENSITIVITY AND

CONDITIONING

Intensive Computation - 2020/2021 36

Well-Posed Problems

• Problem is well-posed if solution

• exists

• is unique

• depends continuously on problem data

Otherwise, problem is ill-posed

• Even if problem is well posed, solution may still be sensitive

to input data

• Computational algorithm should not make sensitivity worse

Intensive Computation - 2020/2021 37

Sensitivity and Conditioning

• Problem is insensitive, or well-conditioned, if relative

change in input causes similar relative change in solution

• Problem is sensitive, or ill-conditioned, if relative change in
solution can be much larger than that in input data

• Condition number :

cond =
relative change in solution

relative change in input data

=
(𝑓 ො𝑥 − 𝑓 𝑥)/𝑓(𝑥)

(ො𝑥 − 𝑥)/𝑥
=

Δ𝑦/𝑦

Δ𝑥/𝑥

• Problem is sensitive, or ill-conditioned, if cond ≫ 𝟏

Intensive Computation - 2020/2021 38

Condition number

• Condition number is amplification factor relating relative

forward error to relative backward error

relative forward error = 𝐜𝐨𝐧𝐝 × relative backward error

• Condition number usually is not known exactly and may vary

with input, so rough estimate or upper bound is used for

cond, yielding

relative forward error < cond × relative backward error

Intensive Computation - 2020/2021 39

Example: Evaluating Function

• Evaluating function f for approximate input ො𝑥 = 𝑥 + ∆𝑥 instead of

true input x gives

• Absolute forward error: 𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥) ≈ 𝑓′(𝑥)∆𝑥

• Relative forward error:
𝑓 𝑥+∆𝑥 −𝑓(𝑥)

𝑓(𝑥)
≈

𝑓′(𝑥)∆𝑥

𝑓(𝑥)

• Condition number: cond ≈

𝑓′ 𝑥 ∆𝑥

𝑓 𝑥
∆𝑥

𝑥

=
𝑥𝑓′(𝑥)

𝑓(𝑥)

• Relative error in function value can be much larger or smaller than

that in input, depending on particular f and x

Intensive Computation - 2020/2021 40

Example: Sensitivity

• Tangent function is sensitive for arguments near 𝜋/2

• tan(1.57079) ≈ 1.58058 × 105

• tan(1.57078) ≈ 6.12490 × 104

• Relative change in output is quarter million times greater

than relative change in input

• For 𝑥 = 1.57079, 𝑐𝑜𝑛𝑑 ≈ 2.48275 × 105

Intensive Computation - 2020/2021 41

Stability

• Algorithm is stable if result produced is relatively insensitive

to perturbations during computation

• Stability of algorithms is analogous to conditioning of

problems

• From point of view of backward error analysis, algorithm is

stable if result produced is exact solution to nearby problem

• For stable algorithm, effect of computational error is no

worse than effect of small data error in input

Intensive Computation - 2020/2021 42

Accuracy

• Accuracy: closeness of computed solution to true solution of
problem

• Stability alone does not guarantee accurate results

• Accuracy depends on conditioning of problem as well as
stability of algorithm

• Inaccuracy can result from applying:
• stable algorithm to ill-conditioned problem or

• unstable algorithm to well-conditioned problem

• Applying stable algorithm to well-conditioned problems yields
accurate solution

Intensive Computation - 2020/2021 43

Condition Number for Linear Systems

• Consider the system

• It has solution

• The perturbed system

has the solution

7.075

1 107

=+

=+

yx

yx

1.0 0 == yx

69.0ˆ7ˆ5

01.1 ˆ10ˆ7

=+

=+

yx

yx

22.0ˆ 17.0ˆ =−= yx

Intensive Computation - 2020/2021 44

Condition Number for Linear Systems

• In solving a linear system Ax = b, we need to know the

sensitivity of the solution x to changes in the right side b

• Consider the two linear systems

• What is ?

• We simply solve for

rbxAbAx +== ~

x

xx −~

xx −~

rAbArbAxx 111][~ −−− =−+=− rArAxx 11~ −− =−→

xA

r
AA

x

rA

x

xx
1

1~
−

−

=
−

Intensive Computation - 2020/2021 45

Condition Number for Linear Systems

• Since Ax = b, we have , and then

• The number is the condition number

for the matrix A and for the linear system

xAb

b

r
AA

x

xx
1

~
−

−

AAA 1)(cond −=

b

r
A

x

xx
)(cond

~

−

Intensive Computation - 2020/2021 46

Condition Number for Linear Systems

• We can also prove a lower inequality, obtaining

• In addition, given any nonsingular A, there are vectors b

and r for which either of the above inequalities are actually

equalities

b

r
A

x

xx

b

r

A
)(cond

~

)(cond

1

−

Intensive Computation - 2020/2021 47

Condition Number for Linear Systems

• With

we see that

• if cond(A) ≈ 1, then small ‘relative’ changes in b are

guaranteed to lead to equally small ‘relative’ changes in x

• if cond(A) is very large, then there are values of b and r

for which is small and is large

• In practice, it is very difficult to know whether your choice

of b and r is good or bad

x

xx −~

b

r
A

x

xx

b

r

A
)(cond

~

)(cond

1

−

b

r

Intensive Computation - 2020/2021 48

FLOATING POINT

NUMBERS

Intensive Computation - 2020/2021 49

Floating-Point Numbers

• Floating-point numbers are designated as follows
• Sign

• Exponent

• Mantissa

• Sign, exponent, and mantissa are stored in separate fixed-width fields
of each floating-point word

• IEEE floating-point systems are:
• Almost universal in digital computers and supported by all major CPUs

• IEEE Standard 754 established in 1985 as uniform standard for floating
point arithmetic

• Before that, many idiosyncratic formats

• Two representations

• Single precision (32-bit)

• Double precision (64-bit)

Intensive Computation - 2020/2021 50

• Encoding

• Single precision: 32 bits total
• 8 exp bits,

• 23 mantissa bits

• Double precision: 64 bits total

• 11 exp bits,

• 52 mantissa bits

• Extended precision: 80 bits
• 15 exp bits, 63 frac bits

• 1 bit wasted - only found in Intel-compatible machines

s exp mantissa

Floating-Point Numbers

Intensive Computation - 2020/2021 51

• Encoding

• Mantissa (Significand)

• Is assumed to be 1.xxxxx

• So a mantissa equal to 000…0 is interpreted to be 1.0, and a mantissa

equal to 11…11 is interpreted to be 1.1111

• Always has a leading pre-binary-point 1 bit, so no need to represent it

explicitly (hidden bit then restored)

• This is called a normalized representation

• Special cases are used to represent denormalized mantissas, NaN, etc

• Exponent: excess representation → actual exponent + Bias

– Ensures exponent is unsigned

– Single: Bias = 127 Double: Bias = 1023

s exp mantissa

Floating-Point Numbers

Intensive Computation - 2020/2021 52

Floating-Point Numbers

• Not all real numbers exactly representable

• Represented real numbers are called machine numbers

• Floating-point systems look grainy and unequally spaced

• Example

• 3 bit mantissa

• exponent {-1,0,1}

Intensive Computation - 2020/2021

e = -1 e = 0 e = 1

1.00 X 2 (̂-1) = 1/2 1.00 X 2 0̂ = 1 1.00 X 2 1̂ = 2

1.01 X 2 (̂-1) = 5/8 1.01 X 2 0̂ = 5/4 1.01 X 2 1̂ = 5/2

1.10 X 2 (̂-1) = 3/4 1.10 X 2 0̂ = 3/2 1.10 X 2 1̂= 3

1.11 X 2 (̂-1) = 7/8 1.11 X 2 0̂ = 7/4 1.11 X 2 1̂ = 7/2

0 1 2 3

53

Floating-Point Numbers

• If a real number x is not exactly representable, then it is
approximated by “nearby” floating-point number

• Two commonly used rules:

• chop: truncate x after (p - 1)st digit - also called round
toward zero

• round to nearest: fl(x) is nearest floating-point number
to x, using floating-point number whose last stored digit
is even in case of tie; also called round to even

• This process is called rounding
• Error introduced is called rounding error

• Round to nearest is most accurate, and is default rounding rule in
IEEE systems

Intensive Computation - 2020/2021 54

Floating-Point Numbers

• Accuracy of floating-point system characterized by unit

roundoff or machine precision (or machine epsilon) εmach

• Maximum relative error in representing real number x

within range of floating-point system is given by

𝑓𝑙 𝑥 − 𝑥

𝑥
≤ εmach

• For IEEE floating-point systems

• εmach = 2-24 ≈ 10-7 in single precision

• εmach = 2-53 ≈ 10-16 in double precision

• So IEEE single and double precision systems have about 7 and 16

decimal digits of precision, respectively

Intensive Computation - 2020/2021 55

• Operands
(–1)s1 M1 2E1 (–1)s2 M2 2E2

• Exact Result
(–1)s M 2E

• Sign s: s1 xor s2

• Significand M: M1 * M2

• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E

• Overflow if E out of range,

• Round M to fit precision

FP Multiplication

Intensive Computation - 2020/2021 56

• Operands
(–1)s1 M1 2E1

(–1)s2 M2 2E2

• Assume E1 > E2

• Exact Result
(–1)s M 2E

• Sign s, significand M:

• Result of signed align & add

• Exponent E: E1

• Fixing
• If M ≥ 2, shift M right, increment E

• if M < 1, shift M left k positions, decrement E by k

• Overflow if E out of range

• Round M to fit precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

FP Addition

Intensive Computation - 2020/2021 57

Floating-Point Arithmetic

• Addition or subtraction: Shifting of mantissa to make

exponents match may cause loss of some digits of smaller

number, possibly all of them

• Multiplication: Product of two p-digit mantissas contains up

to 2p digits, so result may not be representable

• Division: Quotient of two p-digit mantissas may contain

more than p digits

• Result of floating-point arithmetic operation may differ from

result of corresponding real arithmetic operation on same

operands

Intensive Computation - 2020/2021 58

Floating-Point Arithmetic

Example: cancellation

• Subtraction between two p-digit numbers having same sign

and similar magnitudes yields result with fewer than p digits

• Reason is that leading digits of two numbers cancel

• Example: 1.92403x102 – 1.92275x102 = 1.28000x10-1

• Result is correct, and exactly representable but has only

three significant digits

• Despite exactness of result, cancellation often implies

serious loss of information

Intensive Computation - 2020/2021 59

Floating-Point Arithmetic

Cancellation

• Operands are often uncertain due to rounding or other

previous errors, so relative uncertainty in difference may be

large

• Example

• if ε is positive floating-point number slightly smaller than εmach, then (1

+ ε) - (1 - ε) = 1 - 1 = 0 in floating-point arithmetic

• it is correct for actual operands of final subtraction, but true result of

overall computation, 2 ε, has been completely lost

• Subtraction itself is not at fault: it merely signals loss of

information that had already occurred

Intensive Computation - 2020/2021 60

Floating-Point Arithmetic

Cancellation

• Digits lost to cancellation are most significant, leading digits

• Digits lost in rounding are least significant

• Because of this effect, it is generally bad idea to compute

any small quantity as difference of large quantities, since

rounding error is likely to dominate result

• For example, summing alternating series, such as

ex = 1 + x + x2/2! + x3/3! + …

for x < 0, may give disastrous results due to catastrophic

cancellation

Intensive Computation - 2020/2021 61

MEASUREMENT ERRORS

Averaging, Errors and Uncertainty - Upenn - Lab Manual - Physics & Astronomy Dept

https://www.physics.upenn.edu/sites/www.physics.upenn.edu/files/Managing%20Err

ors%20and%20Uncertainty.pdf

Intensive Computation - 2020/2021 62

https://www.physics.upenn.edu/sites/www.physics.upenn.edu/files/Managing%20Errors%20and%20Uncertainty.pdf

Measurements Errors

There are three types of limitations to measurements:

1) Instrumental limitations

• Any measuring device can only be used to measure to with

a certain degree of fineness

• Our measurements are no better than the instruments we

use to make them

Intensive Computation - 2020/2021 63

Measurements Errors

There are three types of limitations to measurements:

2) Systematic errors and blunders

• These are caused by a mistake which does not change
during the measurement.

• For example, if the platform balance you used to weigh
something was not correctly set to zero with no weight on
the pan, all your subsequent measurements of mass
would be too large.

• Systematic errors do not enter into the uncertainty.
They are either identified and eliminated or lurk in the
background producing a shift from the true value.

Intensive Computation - 2020/2021 64

Measurements Errors

There are three types of limitations to measurements:

3) Random errors

• These arise from unnoticed variations in measurement

technique, tiny changes in the experimental environment,

etc.

• Random variations affect precision. Truly random effects

average out if the results of a large number of trials are

combined.

Intensive Computation - 2020/2021 65

Precision and Accuracy

• A precise measurement is one where independent

measurements of the same quantity closely cluster about a

single value that may or may not be the correct value

• An accurate measurement is one where independent

measurements cluster about the true value of the measured

quantity

Systematic errors:

• are not random and therefore can never cancel out

• affect the accuracy but not the precision of a measurement

Intensive Computation - 2020/2021 66

Precision and Accuracy

• A. Low‐precision, Low‐accuracy:

The average (the X) is not close to the center

• B. Low‐precision, High‐accuracy:

The average is close to the true value

• C. High‐precision, Low‐accuracy:

The average is not close to the true value

Intensive Computation - 2020/2021 67

Uncertainty of Measurements

• Errors are quantified by associating an uncertainty with

each measurement

• Example

• The best estimate of a length L is 2.59 cm,

• Due to uncertainty, the length might be:

• as small as 2.57cm

• or as large as 2.61cm

Intensive Computation - 2020/2021 68

Uncertainty of Measurements

• Length L can be expressed with its uncertainty in two

different ways:

1. Absolute Uncertainty

Expressed in the units of the measured quantity:

2. Percentage Uncertainty

Expressed as a percentage independent of the units

above, since

we would write

Intensive Computation - 2020/2021

cm 02.059.2 =L

%159.2/02.0

%1cm59.2 =L

69

Significant Digits

Experimental numbers must be written in a way consistent

with the precision to which they are known: significant digits

(or figures) that have physical meaning

1. All definite digits and the first doubtful digit are considered

significant

2. Leading zeros are not significant digits

Example: L=2.31 cm has 3 significant figures.

For L=0.0231 m, the zeros serve to move the decimal point to

the correct position

3. Trailing zeros are significant digits: they indicate the number’s

precision

4. One significant digit should be used to report the uncertainty or

occasionally two, especially if the second digit is a five

Intensive Computation - 2020/2021 70

Rounding Numbers

• To keep the correct number of significant figures, numbers

must be rounded off

• The discarded digit is called the remainder

• There are three rules for rounding:

• Rule 1: If the remainder is less than 5, drop the last digits

Rounding to one decimal place: 5.346 → 5.3

• Rule 2: If the remainder is greater than 5, increase the final digit by 1

Rounding to one decimal place: 5.798 → 5.8

• Rule 3: If the remainder is exactly 5 then round the last digit to the

closest even number

This is to prevent rounding bias. Remainders from 1 to 5 are rounded

down half the time and remainders from 6 to 10 are rounded up the

other half.

Rounding to one decimal place: 3.55 → 3.6, also 3.65 → 3.6

Intensive Computation - 2020/2021 71

Examples

Example The period of a pendulum is given by

Here, is the pendulum length and is

the acceleration due to gravity

WRONG:

✓ RIGHT:

Note You can obtain the first number by a calculator but there

is no way you know T to that level of precision

When no uncertainties are given, report your value with the

same number of significant digits as the value with the

smallest number of significant digits

Intensive Computation - 2020/2021

glT 2=

m24.0=l
2sm81.9=g

s 0.98=T

s 59220.98326923=T

72

Examples

Example The mass of an object was found to be with an

uncertainty of

WRONG:

✓ RIGHT:

Note The first way is wrong because the uncertainty should be

reported with one significant digit

Example The length of an object was found to be with

an uncertainty of

WRONG:

✓ RIGHT:

Note The first way is wrong because it is impossible for the third

decimal point to be meaningful

Intensive Computation - 2020/2021

g032.0

g 0.0356.3 =m

g 0.03256.3 =m

g56.3

cm 593.2
cm 03.0

0.03cm 59.2 =L

0.03cm 593.2 =L

73

Examples

Example The velocity was found to be with an uncertainty

of

WRONG:

✓ RIGHT:

Note The first way is wrong because the first discarded digit is a 5

In this case, the final digit is rounded to the closest even number, 4

Example The distance was found to be 45600 m with an uncertainty

of 1m

WRONG:

✓ RIGHT:

Note The first way is wrong because it tells us nothing about the

uncertainty. Scientific notation shows we know the value to within 1m

Intensive Computation - 2020/2021

m/s 6.0

m/s 0.64.2 =v

m/s 0.65.2 =v

m/s .452

mx105600.4 4=d

m 45600=d

74

Statistical Analysis of Small Data Sets

Repeated measurements allow you:

• To obtain a better idea of the actual value

• To characterize the uncertainty of your measurement

There are a number of quantities that are very useful in data

analysis, that exploits:

• The value obtained from a particular measurement, x

• The times a measurement is repeated, N

Intensive Computation - 2020/2021 75

Statistical Analysis of Small Data Sets

Oftentimes (e.g. in lab) N is small, usually no more than 5 to 10

For small data sets we use the following formulas:

• Mean - xavg The average of all values of x (the “best” value of x)

• Range - R The “spread” of the data set. This is the difference between the

maximum and minimum values of x

Intensive Computation - 2020/2021

N

xxx
x N+++

=
21

avg

minmax xxR −=

76

Statistical Analysis of Small Data Sets

• Uncertainty in a measurement - Δx

Determine this uncertainty by making multiple measurements.

From data you know that x lies somewhere between xmax and xmin

• Uncertainty in the Mean - Δ xavg

The actual value of x will be somewhere in a neighborhood around xavg.

This neighborhood of values is the uncertainty in the mean.

• Measured value - xm The final reported value of a measurement of x

contains both the average value and the uncertainty in the mean

Intensive Computation - 2020/2021

avgavgm xxx =

22

minmax xxR
x

−
==

N

R

N

x
x

2
avg =

=

77

Statistical Analysis of Large Data Sets

• If only random errors affect a measurement, it can be shown

mathematically that in the limit of an infinite number of

measurements (), the distribution of values follows a

normal distribution (i.e. the bell curve)

• This distribution has a peak at the mean value and a

width given by the standard deviation σ

Intensive Computation - 2020/2021

→N

avgx

78

Statistical Analysis of Large Data Sets

• We never take an infinite number of measurements

• However, for a large number of measurements, N~10-102

or more, measurements may be approximately normally

distributed

Intensive Computation - 2020/2021 79

Statistical Analysis of Large Data Sets

For large data sets we use the following formulas:

• Mean - xavg The average of all values of x (the “best” value of x)

This is the same as for small data sets

• Uncertainty in a measurement - Δx The vast majority of your data lies in

the range

Intensive Computation - 2020/2021

N

x

x

N

i

i
== 1

avg

avgx

N

xx
x

N

i avgi =
−

== 1

2)(

80

Statistical Analysis of Large Data Sets

For large data sets we use the following formulas:

• Uncertainty in the Mean - Δxavg The actual value of x will be somewhere

in a neighborhood around xavg. This neighborhood of values is the

uncertainty in the mean

• Measured Value - xm The final reported value of a measurement of x

contains both the average value and the uncertainty in the mean

Intensive Computation - 2020/2021

N
x

= avg

avgavgm xxx =

81

Propagation of Uncertainties

• Oftentimes we combine multiple values, each of which has an

uncertainty, into a single equation

• The way these uncertainties combine depends on how the

measured quantity is related to each value

• Rules for how uncertainties propagate are:

• Addition/Subtraction

• Multiplication

• Division

Intensive Computation - 2020/2021

22)()(yxz +=yxz +=

xyz =

22

+

=

y

y

x

x
xyz

xyz =

22

+

=

y

y

x

x

y

x
z

82

Examples

• Addition The sides of a fence are measured with a tape measure

to be 124.2cm, 222.5cm, 151.1cm and 164.2cm

• Each measurement has an uncertainty of 0.07cm

• Calculate the measured perimeter Pm including its uncertainty

0.14cm)07.0()07.0()07.0()07.0(2222 =+++=P

cm1.00662m = . P

662.0cm 164.2cm 151.1cm 222.5cm cm2124 =+++= . P

Intensive Computation - 2020/2021 83

Examples

• Multiplication The sides of a rectangle are measured to be

15.3cm and 9.6cm

• Each length has an uncertainty of 0.07cm

• Calculate the measured area Am including its uncertainty

2

m cm 1147 = A

2146.88cm 9.6cm cm3.15 == A

2

22

1.3cm
6.9

07.0

3.15

07.0
9.6cm cm3.15 =

+

=A

Intensive Computation - 2020/2021 84

