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Eigenvalue Problems

• Solving linear systems Ax = b is one part of numerical linear 

algebra, and involves manipulating the rows of a matrix

• The second main part of numerical linear algebra is about 

find eigenvalues and eigenvectors 

• This is done by transforming a matrix to leave its 

eigenvalues unchanged
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Eigenvalue Problems

• The standard algebraic eigenvalue problem is: 

Given an n x n matrix A, find a scalar λ and a nonzero          

vector x such that Ax = λx

where:    λ is an eigenvalue of A 

x (non-zero) is the corresponding eigenvector

Example

Av =
1 2
8 1

1
2

= 5
1
2

= λ𝑣

v=(1,2) is an eigenvector

λ = 5 an eigenvalue
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Eigenvalue Problems

Eigenvalue problems occur in many areas of science and 

engineering:

• The natural modes and frequencies of vibration of a 

structure are determined by the eigenvectors and 

eigenvalues of an appropriate matrix

• The stability of the structure is determined by the locations 

of the eigenvalues

• Eigenvalues are useful in analyzing numerical methods

(the convergence analysis of iterative methods for solving 

systems of algebraic equations, and the stability analysis 

of methods for solving systems of differential equations)

• Graph theory
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Eigenvalue Problems

• An eigenvector of a matrix determines a direction in which 

the effect of the matrix is particularly simple: 

• The matrix expands or shrinks any vector lying in that 

direction by a scalar multiple, and 

• the expansion or contraction factor is given by the 

corresponding eigenvalue

• Thus, eigenvalues and eigenvectors provide a means of 

understanding the complicated behavior of a general 

linear transformation by decomposing it into simpler actions
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Eigenvalue Problems

• Although many examples involve only real matrices, both 

the theory and computational procedures are generally 

applicable to complex matrices

• The notation difference for complex matrices is that the 

conjugate transpose, AH, is used instead of the transpose, AT

• The set of all the eigenvalues of a matrix A is called the 

spectrum of A and is denoted by λ(A) 

• The maximum modulus of the eigenvalues is called the 

spectral radius of A: ρ(A) = max{| λ |: λ in λ(A)}
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Eigenvalue Problems

• The equation Ax = λ x is equivalent to

(A – λI) x = 0

• This homogeneous equation has a nonzero solution x if and 

only if its matrix is singular, that is the eigenvalues of A are 

the values λ such that

det(A – λI) = 0

• det(A – λI) is a polynomial of degree n in λ:

• It is the characteristic polynomial of A

• Its roots are the eigenvalues of A
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Eigenvalue Problems

• An nxn matrix A always has n eigenvalues (Fundamental

Theorem of Algebra)

• Eigenvalues need be neither distinct nor real

• The product of the eigenvalues is

• The sum of the eigenvalues is                          called trace

det 𝐴 =ෑ

𝑖=1

𝑛

𝜆𝑖

෍

𝑖=1

𝑛

𝑎𝑖𝑖 =෍

𝑖=1

𝑛

𝜆𝑖
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POWER METHOD
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Computing Eigenvalues and Eigenvectors

• Many numerical methods for computing eigenvalues and 

eigenvectors are based on reducing the original matrix 

to a simpler form, whose eigenvalues and eigenvectors are 

then easily determined

• Finding the eigenvalues and eigenvectors is equivalent 

to transforming the underlying system of equations into a 

special set of coordinate axes in which the matrix is 

diagonal

• The eigenvalues are the entries of the diagonal matrix

• The eigenvectors are the new set of coordinate axes

Intensive Computation - 2020/2021 11



Similarity Transformations

• We need to identify:

• what types of transformations preserve eigenvalues

• for what types of matrices the eigenvalues are easily determined

• A matrix B is similar to a matrix A if there is a nonsingular 

matrix T such that

B = T -1AT

• Then By = λ y → T -1AT y = λ y → A(Ty) = λ(Ty)

so that A and B have the same eigenvalues, and if y is an 

eigenvector of B, then x = T y is an eigenvector of A
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Similarity Transformations

• Similarity transformations:

• Preserve eigenvalues

• Do not preserve eigenvectors

• But the eigenvectors are still easily recovered

• Note that the converse is not true

• two matrices that are similar must have the same eigenvalues

• but two matrices that have the same eigenvalues are not 

necessarily similar
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Similarity Transformations

• The eigenvalues of a diagonal matrix are its diagonal 

entries, and the eigenvectors are the corresponding columns 

of the identity matrix I

• Note that:

• Diagonal form simplifies eigenvalue problems for general 

matrices by similarity transformations

• But some matrices cannot be transformed into diagonal 

form by a similarity transformation

• Fortunately:

• every matrix can be transformed into triangular by a similarity 

transformation

• The eigenvalues of a triangular matrix are also the diagonal entries
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Computing Eigenvalues and Eigenvectors

• There are several methods designed to compute all of the 

eigenvalues of a matrix and require a great deal of work

• In practice, one may need only one or a few eigenvalues

and corresponding eigenvectors

• The simplest method for computing a single eigenvalue 

and eigenvector of a matrix is the power method, which 

takes successively higher powers of the matrix times an 

initial starting vector
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Power Method

• Assume that the matrix has a unique eigenvalue λ1 of 

maximum modulus, with corresponding eigenvector u1

• Let us consider the following iteration scheme, starting 

from a given nonzero vector x0

xk = Axk-1

• The iteration scheme converges to a multiple of u1, the 

eigenvector corresponding to the dominant eigenvalue λ1
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Power Method

• In fact, if we express the starting vector x0 as a linear 

combination,                     where ui are eigenvectors of A 𝑥0 =෍

𝑖=1

𝑛

𝛼𝑖𝑢𝑖
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Power Method

• In fact, if we express the starting vector x0 as a linear 

combination,                     where ui are eigenvectors of A, 

then

𝑥0 =෍

𝑖=1

𝑛

𝛼𝑖𝑢𝑖
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𝑥𝑘 = 𝐴𝑥𝑘−1 = 𝐴2𝑥𝑘−2 = ⋯ = 𝐴𝑘𝑥0 = 𝐴𝑘෍

𝑖=1

𝑛

𝛼𝑖𝑢𝑖 =

=෍

𝑖=1

𝑛

𝛼𝑖𝐴
𝑘𝑢𝑖 =෍

𝑖=1

𝑛

𝜆𝑖
𝑘𝛼𝑖𝑢𝑖 = 𝜆1

𝑘(𝛼1𝑢1 +෍

𝑖=2

𝑛

Τ(𝜆𝑖 𝜆1)
𝑘𝛼𝑖𝑢𝑖)



Power Method

• In fact, if we express the starting vector x0 as a linear 

combination,                     where ui are eigenvectors of A, 

then

• Since | λi / λ1 |< 1 for i > 1, successively higher powers go 

to zero, leaving only the component corresponding to u1

𝑥0 =෍

𝑖=1

𝑛

𝛼𝑖𝑢𝑖

𝑥𝑘 = 𝐴𝑥𝑘−1 = 𝐴2𝑥𝑘−2 = ⋯ = 𝐴𝑘𝑥0 = 𝐴𝑘෍

𝑖=1

𝑛

𝛼𝑖𝑢𝑖 =

=෍

𝑖=1

𝑛

𝛼𝑖𝐴
𝑘𝑢𝑖 =෍

𝑖=1

𝑛

𝜆𝑖
𝑘𝛼𝑖𝑢𝑖 = 𝜆1

𝑘(𝛼1𝑢1 +෍

𝑖=2

𝑛

Τ(𝜆𝑖 𝜆1)
𝑘𝛼𝑖𝑢𝑖)
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Power Method

• Then, having

• We can obtain

𝑥𝑘 =෍

𝑖=1

𝑛

𝜆𝑖
𝑘𝛼𝑖𝑢𝑖 = 𝜆1

𝑘(𝛼1𝑢1 +෍

𝑖=2

𝑛

Τ(𝜆𝑖 𝜆1)
𝑘𝛼𝑖𝑢𝑖)
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𝑥𝑘+1
𝑥𝑘

=
𝐴𝑥𝑘
𝑥𝑘

→
𝛼1𝜆1

𝑘+1𝑢1

𝛼1𝜆1
𝑘𝑢1

=
𝛼1𝜆1

𝑘+1 𝑢1

𝛼1𝜆1
𝑘 𝑢1

= 𝜆1 as 𝑘 → ∞



Power Method

• To avoid eventual overflow (or underflow if the dominant 

eigenvalue is less than 1 in magnitude), it is better to 

normalize the approximate eigenvector at each iteration

• We can require its largest component to have modulus 1

• This step gives the iteration scheme

• With this normalization                       and

𝑦𝑘 = 𝐴𝑥𝑘−1
𝑥𝑘 = 𝑦𝑘/ 𝑦𝑘 ∞ = 𝐴𝑥𝑘−1/ 𝐴𝑥𝑘−1 ∞

𝑦𝑘 ∞ → 𝜆1 𝑥𝑘 → 𝑢1/ 𝑢1 ∞
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Deflation Methods

• Suppose that an eigenvalue λ1 and corresponding 

eigenvector x1 for a matrix A have been computed

• We can compute additional eigenvalues λ2, …, λn of A, 

by a process called deflation, which removes the known 

eigenvalue

• We construct a new matrix B with eigenvalues λ2, …, λn , 

that is we deflate the matrix A, removing λ1

• Then λ2 of matrix A can be obtained matrix B by the power 

method
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Deflation Methods

• Let H be any nonsingular matrix such that Hx1 = αe1, that is H
is such that α a scalar multiple of the first column e1 of the 
identity matrix I

• Then the similarity transformation determined by H
transforms A into the form

where B is a matrix of order n - 1 having eigenvalues λ2, …, λn

• For example, a good choice for H can be an appropriate 

Householder transformation (linear transformation that describes a 

reflection about a plane or hyperplane containing the origin)

𝐻𝐴𝐻−1 = 𝜆1 𝑏𝑇

0 𝐵
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Deflation Methods

• We use B to compute next eigenvalue λ2 and eigenvector y2

• Once computed y2, eigenvector of B, we want to compute the 

second eigenvector x2 of matrix A
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Deflation Methods

• We use B to compute next eigenvalue λ2 and eigenvector y2

• Once computed y2, eigenvector of B, we want to compute the 
second eigenvector x2 of matrix A

• We need to add an element to vector y2 (that consist of n-1
elements), that is x2 = (s2  y’2)

• s2  can be the element α such that

• Hence, x2 is an eigenvector corresponding to λ2 for the 
original matrix A, provided that  

• Process can be repeated to find additional eigenvalues and eigenvectors

𝑥2 = 𝐻−1
𝛼
𝑦2

where 𝛼 =
𝑏𝑇𝑦2
𝜆2 − 𝜆1

𝜆2 ≠ 𝜆1
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Deflation Methods

Hotelling deflation

• We have: A given, λ1 and u1 known (e.g., by power method)

• Consider

• We can verify that B has the same eigenvectors as A, and 

the same eigenvalues as A except that the largest one has 

been replaced by 0

• In fact 

• Then we compute the value of λ2 by the power method

𝐵 = 𝐴 − 𝜆1𝑢1𝑢1
𝑇
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(𝐴 − 𝜆1𝑢1𝑢1
𝑇)𝑢𝑗 = 𝐴𝑢𝑗 − 𝜆1𝑢1𝑢1

𝑇𝑢𝑗 = 𝜆𝑗𝑢𝑗 − 𝜆1𝑢1𝑢1
𝑇𝑢𝑗

If 𝑗 = 1 then (𝐴 − 𝜆1𝑢1𝑢1
𝑇)𝑢1 = 𝜆1𝑢1 − 𝜆1𝑢1(𝑢1

𝑇𝑢1) = 0𝑢1
If 𝑗 ≠ 1 then (𝐴 − 𝜆1𝑢1𝑢1

𝑇)𝑢𝑗 = 𝜆𝑗𝑢𝑗 − 𝜆1𝑢1(0) = 𝜆𝑗𝑢𝑗



Deflation Methods

An alternative approach is the following:

• A given, λ1 and x1 known (e.g., by power method)

• Denote by aT the first row of A (or the p-th row of A), i.e., 
aT=(a11, a12, …, a1n)

• Consider

• where x1* is the vector x1 normalized by dividing by its first 
element (and product x1* aT is an nxn matrix)

• We can verify that B x1=0 that is 0 is eigenvalue of B (instead 
of λ1) and λ2, …, λn are still eigenvalues (of A)

• Then we compute the value of λ2 by the power method

𝐵 = 𝐴 − 𝑥1
∗𝑎𝑇
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Deflation Methods

A variant of the previous alternative approach is:

• A given, λ1 and x1 known (e.g., by power method)

• Denote by v1 any vector such that

• Then the matrix has eigenvalues of 0, λ2, …, λn

• Then we compute the value of λ2 by the power method

• There are several possible choices for v1 

𝐴 − 𝑥1𝑣1
𝑇

𝑣1
𝑇𝑥1 = 𝜆1
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Smallest eigenvalue

• For some applications, the smallest eigenvalue of a matrix 

is required rather than the largest

• We can use the property that the eigenvalues of A-1 are the 

reciprocals of those of A

• Hence the smallest eigenvalue of A is the reciprocal of the 

largest eigenvalue of A-1

• In fact

• We therefore use the inverse iteration scheme

𝐴𝑦𝑘 = 𝑥𝑘−1 ⇒ 𝑦𝑘 = 𝐴−1𝑥𝑘−1

min
𝑖=1,...,𝑛

𝜆𝑖(𝐴) = min
𝑖=1,...,𝑛

1

𝜆𝑖(𝐴−1)
=

1

max
𝑖=1,...,𝑛

𝜆𝑖(𝐴−1)
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Convergence 

• The convergence rate of the power method depends on 

the ratio |λ2|/| λ1|, where λ2 is the eigenvalue having 

second-largest modulus

• The smaller |λ2|/| λ1|, the faster the convergence

• Hence the power method will converge

• Quickly if |λ2|/| λ1| is small 

• Slowly if |λ2|/| λ1| is close to 1
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EXAMPLES
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Gould Index of Accessibility 

• https://www.math.washington.edu/~morrow/336_11/papers/leo.pdf

• http://matrixapps.blogspot.it/2010/07/gould-index-matrix-application-

to.html

• The method proposed by Peter Gould (1967), also known as 

eigenvector centrality, is one method of computing the 

centrality, or approximate importance, of each node in a 

graph

• The assumption is that each node's centrality is the sum of 

the centrality values of the nodes that it is connected to
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Gould Index of Accessibility 

• Let us look at the method

• We begin with the adjacency matrix A of the graph

• It is usual to define the entries aii, the diagonal, as 0

• We replace the diagonal zeros with ones

• The index that Gould uses the (normalized) eigenvector 

from the principle eigenvalue of the  modified adjacency 

matrix B=A+I

• The i-th entry corresponds to the i-th vertex and this is its 

accessibility rank
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Gould Index of Accessibility 

• Consider a graph that represents a set of towns (the vertices) 

and the travel routes between those towns (the edges) 

• Historical geographers were interested in which town would 

become the trade center for this region
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Gould Index of Accessibility 

• Consider a graph that represents a set of towns (the vertices) 

and the travel routes between those towns (the edges) 

• Historical geographers were interested in which town would 

become the trade center for this region

• Make the adjacency matrix for the graph and place a 1 in 

each diagonal position
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Gould Index of Accessibility 

• Consider a graph that represents a set of towns (the vertices) 

and the travel routes between those towns (the edges) 

• Historical geographers were interested in which town would 

become the trade center for this region

• Make the adjacency matrix for the graph and place a 1 in 

each diagonal position
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Gould Index of Accessibility 

• Find the largest eigenvalue of the matrix

• The eigenvalues are: (2, 0, 4, -1, 0, 2, 0), 

• The third eigenvalue has the largest absolute value - 4
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Gould Index of Accessibility 

• Find the largest eigenvalue of the matrix

• The eigenvalues are: (2, 0, 4, -1, 0, 2, 0), 

• The third eigenvalues has the largest absolute value, 4

• Find the eigenvector associated with the eigenvalue of 4:

(0.3162, 0.3162, 0.3162, 0.3162, 0.6325, 0.3162, 0.3162)
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Gould Index of Accessibility 

• You can normalize this vector by dividing by the sum of the 

entries, 2.5297. You get:
(Q, R, S, T, U, V, W) = (0.125, 0.125, 0.125, 0.125, 0.25, 1.25, 1.25)
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Gould Index of Accessibility 

• You can normalize this vector by dividing by the sum of the 

entries, 2.5297. You get:
(Q, R, S, T, U, V, W) = (0.125, 0.125, 0.125, 0.125, 0.25, 1.25, 1.25)

• These are the Gould indices of each of the vertices

• They describe how strongly each vertex is connected to the 

other vertices
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Gould Index of Accessibility 

• You can normalize this vector by dividing by the sum of the 

entries, 2.5297. You get:
(Q, R, S, T, U, V, W) = (0.125, 0.125, 0.125, 0.125, 0.25, 1.25, 1.25)

• These are the Gould indices of each of the vertices

• They describe how strongly each vertex is connected to the 

other vertices
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Gould Index of Accessibility 

• Now consider a more realistic graph 

• In this case, would G be the trade center, or would it be C?
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Gould Index of Accessibility 

• Now consider a more realistic graph 

• In this case, would G be the trade center, or would it be C?

• The eigenvalues are:

(4.01, -1.37, 1.71, 1, -0.37, -0.56, 2.58, 1, 1)
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Gould Index of Accessibility 

• The eigenvector associated with the largest eigenvalue is 
(0.2941, 0.4097, 0.5023, 0.3249, 0.3026, 0.1359, 0.4770, 0.1583, 0.1583)

• Normalizing we have (A, B, C, D, E, F, G, H, I) =

(0.1064, 0.1482, 0.1818, 0.1176, 0.1095, 0.0492, 0.1726, 0.0573, 0.0573)
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Gould Index of Accessibility 

• The eigenvector associated with the largest eigenvalue is 
(0.2941, 0.4097, 0.5023, 0.3249, 0.3026, 0.1359, 0.4770, 0.1583, 0.1583)

• Normalizing we have (A, B, C, D, E, F, G, H, I) =

(0.1064, 0.1482, 0.1818, 0.1176, 0.1095, 0.0492, 0.1726, 0.0573, 0.0573)

• C has the largest Gould Index with 0.18

• G comes second with 0.17
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Gould Index of Accessibility 

• The eigenvector associated with the largest eigenvalue is 
(0.2941, 0.4097, 0.5023, 0.3249, 0.3026, 0.1359, 0.4770, 0.1583, 0.1583)

• Normalizing we have (A, B, C, D, E, F, G, H, I) =

(0.1064, 0.1482, 0.1818, 0.1176, 0.1095, 0.0492, 0.1726, 0.0573, 0.0573)

• C has the largest Gould Index with 0.18

• G comes second with 0.17

• Note that:

• F has the smallest index

• I and H have the same second smallest index
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Algebraic Connectivity of graphs

• The importance of the algebraic connectivity of a graph is 

due to the fact that it is a good parameter to measure, to a 

certain extent, how well a graph is connected

• The algebraic connectivity is for 

• application on trees, 

• application on hard problems in graph theory (the expanding properties 

of graphs, weighted graphs, absolute algebraic connectivity, 

isoperimetric number, genus and other invariants of a graph)

• the study of the asymptotic behavior for random graphs; 

• applications on combinatorial optimization problems (the maximum cut 

problem and the traveling salesman problem)

• the theory of elasticity 

• the correspondence between continuous and discrete mathematics
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Algebraic Connectivity of graphs

• Based on theory of Fiedler (1970s)

• We define the Laplacian matrix L(G) of the graph G(N,E) as:

• L(G) (i,i) = degree of node I (number of incident edges) 

• L(G) (i,j) = -1 if i != j and there is an edge (i,j) 

• L(G) (i,j) = 0 otherwise

• We have L(G)=D-A where D is the diagonal matrix of node 

degrees and A is the adjacency matrix of graph G(N,E) 
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Algebraic Connectivity of Graphs

• L(G) is symmetric:

• the eigenvalues of L(G) are real

• the eigenvectors are real and orthogonal

• Further, the eigenvalues of L(G) are nonnegative: 

• 0 = λ1 <= λ2 <= … <= λn

• The number of connected components of G is equal to the 

number of λi equal to 0

• G is connected  if and only if λ2 != 0
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Algebraic Connectivity of Graphs

• The second smallest eigenvalue λ2 of L(G) is called 

algebraic connectivity of G

• The eigenvector associated with the algebraic connectivity 

has been named the Fiedler vector

• The Fiedler vector can be used to partition a graph
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Graph Partitioning

Spectral Bi-partitioning Algorithm 

• Build the Laplacian matrix L of the graph 

• Find the second smallest eigenvalue and the corresponding 

eigenvector

• Map vertices to corresponding components of the Fiedler

vector

• Grouping

• Sort components in the Fiedler vector

• Identify clusters by splitting the sorted vector in two
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Graph Partitioning

How to choose a splitting point?

• Split at 0, that is positive and negative values

• Mean value

• Median value

• Partitioning a graph into k clusters can be done by 

Recursive bi-partitioning (Hagen et al.,’91)

• Recursively apply bi-partitioning algorithm in a hierarchical 

divisive manner

• Example:  Image Segmentation

• Uses 2nd (smallest) eigenvector to define optimal cut 

• Recursively generates two clusters with each cut
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Markov chain

• http://webspace.ship.edu/deensley/m318/ppt/Section_49.pdf

• A vector with nonnegative entries that add up to 1 is called a 

probability vector

• A stochastic matrix is a square matrix whose columns are 

probability vectors

• A Markov chain is a sequence of probability vectors x0, x1, … 

together with a stochastic matrix P, such that  

x1=Px0 x2=Px1 x3=Px2 …
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Markov chain

Example

• Consider the following model of population movement 

between a city and the suburbs: 

• each year 5% of city dwellers move the suburbs and 

• 3% of suburbanites move to the city

• If in 2001 58.2% of the population lived in the city and 41.8% 

lived in the suburbs, what is the population distribution 20 

years later?
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Markov chain

Example

• Consider matrix                                   and vector

to represent the population distribution in 2001

• In this case                                  gives the population

distribution in 2002

• In general gives the population distribution in 

n years after 2001

𝑀 =
0.95 0.03
0.05 0.97

𝑥0 =
0.582
0.418

𝑥1 = 𝑀𝑥0 =
0.565
0.435

𝑥𝑛 = 𝑀𝑛𝑥0
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Markov chain

• The difference between xi and xi+1 gets smaller every step 

• Let P be stochastic matrix

• A steady-state vector (also called equilibrium vector) is a 

probability vector x such that Px=x

• If state x is achieved, the system stays there

• A nonzero steady-state vector is in fact an eigenvector of 

eigenvalue 1 of P (since it satisfies Px=x) 
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Markov chain

• In our example, the eigenvalues are  λ1= 1 and λ2 = 0.92, 

and the corresponding eigenvectors are 

• So we form matrix P using eigenvectors and matrix D using

eigenvalues

𝑣1 =
−0.514496
−0.857493

𝑣2 =
−0.707107
0.707107

𝑃 =
0.514496 −0.707107
−0.85749 0.707107 𝐷 =

1 0
0 0.92
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Markov chain

• We can apply the diagonalization and obtain

• Now

• And, in general

• Having

• It follows

𝑀 = 𝑃𝐷𝑃−1

𝑀 ⋅ 𝑀 = 𝑃𝐷𝑃−1𝑃𝐷𝑃−1 = 𝑃𝐷2𝑃−1

𝑀𝑘 = 𝑃𝐷𝑘𝑃−1

𝑀𝑘 = 𝑃
1 0
0 (0.92)𝑘

𝑃−1

lim
𝑘→∞

𝑀𝑘 = 𝑃
1 0
0 0

𝑃−1 =
0.375 0.375
0.625 0.625
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Markov chain

• For any initial stochastic vector x we will have

lim
𝑘→∞

𝑀𝑘 𝑥 =
0.375 0.375
0.625 0.625

𝑥 =

0.375 𝑥1 + 0.375 𝑥2
0.625 𝑥1 + 0.625 𝑥2

=
0.375
0.625
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The covariance matrix
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• https://www.visiondummy.com/2014/04/geometric-interpretation-

covariance-matrix/

• Given a set of data, the standard deviation (square root of 

the variance) provides a measure of how much the data is 

spread across the feature space

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/


The covariance matrix

• However, variance can only 
be used to explain the 
spread of the data in the 
directions parallel to the axes 
of the space

• We could calculate the 
variance σ(x,x) in the x-
direction and the variance 
σ(y,y) in the y-direction

• However, the horizontal 
spread and the vertical 
spread of the data does not 
explain the clear diagonal 
correlation
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The covariance matrix

• The correlation between x-
value data and y-value data 
can be captured by extending 
the notion of variance to the 
covariance of the data:

• Σ(x,y)= E[(x-(E(x))(y- E(y))]

• For 2D data, we thus obtain 
σ(x,x), σ(y,y), σ(x,y) and σ(y,x)

• These four values can be 
summarized in the covariance 
matrix, ∑:
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σ(x,x) σ(x,y)

σ(y,x) σ(y,y)



The covariance matrix

• If x is positively correlated 

with y, y is also positively 

correlated with x. In other 

words, we can state that:

σ(x,y) = σ(y,x)

• Therefore, the covariance 

matrix is always a 

symmetric matrix with the 

variances on its diagonal 

and the covariances off-

diagonal

Intensive Computation - 2020/2021 63



The covariance matrix

• The covariance matrix 
defines both the spread 
(variance), and the 
orientation (covariance) of 
data

• To represent the covariance 
matrix with a vector and its 
magnitude, we have to find 
the vector that points into 
the direction of the largest 
spread of the data, and 
whose magnitude equals 
the spread (variance) in this 
direction
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The covariance matrix

• The largest eigenvector of 

the covariance matrix 

always points into the 

direction of the largest 

variance of the data, and 

the its magnitude equals the 

corresponding eigenvalue

• The second largest 

eigenvector is always 

orthogonal to the largest 

eigenvector, and points into 

the direction of the second 

largest spread of the data
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