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Intensive  Computation 
 

10th march 2021  

 

Sparse Matrices Formats – COO, CSR, CSC, MSR, BSR, SKY, DIAG, ELL-IT 

 

The following exercise must be applied to (matrices are described below in Set of matrices): 

1) generally sparse matrices  

2) one type among Banded sparse, Block sparse, Block diagonal sparse, at your choice  

 

Set of matrices 

Matrices are square n x n, randomly generated with sparsity s=nnz/n2 equal to 20%, with nonzero 

entries in the interval [1,100] (integer or double). Matrices can be of the following type:  

- Generally sparse – sparse matrix with sparsity s  

o associated formats: COO, CSR, CSC 

- Banded sparse – banded with parameter k, where the size b of the band is defined as b = 2k+1 

(k is the number of diagonals under, or over, the main diagonal); all nonzero entries are in included 

in the band  

o associated formats: Sky, diag, Ell-It 

- Block sparse – blocks are disjoint and positioned wherever; all blocks have the same size (at least 

n/5) and can include zero entries (sparsity of matrix is 20%)  

o associated formats: BSR, Ell-It, MSR 

- Block diagonal sparse – blocks are along the main diagonal; consider blocks of different sizes 

that can include zero entries (sparsity of matrix is 20%)  

o associated formats: BSR, Ell-It, diag 

 

Exercise  

- Write a function that produces the (random valued) full matrix of the selected type 

- Write the function toCompact that produces the compact representation of a given matrix for two 

of the formats associated to the selected matrix type 

- Write the function extractRow that takes in input the index h and the compact representation of 

the matrix and extracts row h  

- Write the function extractCol that takes in input the index k and the compact representation of 

the matrix and extracts column k  

- Write a script that calls the above functions and: 

o generates two sparse matrices A and B 

o produces the compact matrices A-Comp and B-Comp (from matrices A and B) 

o computes the product C-Comp= A-Comp*B-Comp, using the compact format of operand 

matrices A-Comp and B-Comp, and producing the resulting product matrix C-Comp in 

compact format 

- Calculate and show results for matrices of increasing size (for example n= 25, 50, 75, 100), giving 

a graph for: 

o The execution time, using commands tic…toc(consider also cputime and etime) 

o The memory occupation  

 

Note that dealing with random matrices, execution time and memory occupation need to be 

averaged on a set of test matrices (at least 5 for each type/format) 

 

A set of sparse matrices that arise in real applications can be found in the SuiteSparse Matrix 

Collection at the link: https://sparse.tamu.edu/ 

  

https://sparse.tamu.edu/
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Sparse Matrices in Matlab  

S=sparse(A) converts a full matrix to sparse form by squeezing out any zero elements. If S is 

already sparse, sparse(S) returns S. 

S=sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an m-by-n sparse matrix 

with elements vector s with indices in vectors i and j, such that S(i(k),j(k)) = 

(k), with space allocated for nzmax nonzeros. Vectors i, j, and s are all the same 

length.  

A=full(S) converts a sparse matrix S to full storage organization.  

 

Example: 
>> x =[5 9 1 7 3] 

>> S=sparse ([2 4 1 3 6] ,[1 1 3 3 7],x) 

S= 

(2,1) 5 

(4,1) 9 

(1,3) 1 

(3,3) 7 

(6,7) 3 

 

>> full(S) 

ans = 

0 0 1 0 0 0 0 

5 0 0 0 0 0 0 

0 0 7 0 0 0 0 

9 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 3 

Matlab includes many commands for dealing with a sparse matrix:  

nnz(A)  returns the number of nonzero matrix elements 

nzmax(A)  returns the maximum number of nonzero matrix elements allocated 

find(A)  returns all (i,j) indices of nonzero elements 

nonzeros(A) returns all the nonzero elements 

spy(S)  plots the sparsity pattern of any matrix S 
 

R=spones(S) generates a matrix R with the same sparsity structure as S, but with 1's in the nonzero 

positions. 
 

TF = issparse(S) returns logical 1 (true) if the storage class of S is sparse and logical 0 

(false) otherwise. 

 

R=sprand(m,n,density) is a random, m-by-n, sparse matrix with approximately 

density*m*n uniformly distributed nonzero entries (0≤density≤1)  
 

A=spdiags(b,d,m,n) creates an m-by-n sparse matrix by taking the columns of B and placing 

them along the diagonals specified by d.  
 

sprandsym(S) returns a symmetric random matrix whose lower triangle and diagonal have the 

same structure as S. Its elements are normally distributed, mean 0 and variance 1. 
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Example: 
 

>> n=10; 

>> e=ones(n,1); 

>> b=[e,-e,3*e,-e,2*e]; 

>> d=[-n/2 -1 0 1 n/2]; 

>> a=spdiags(b,d,n,n) 

a = 

(1,1) 3 

(2,1) -1 

(6,1) 1 

(1,2) -1 

(2,2) 3 

(3,2) -1 

……… 

 

>> aa=full(a) 

aa = 

 3 -1  0  0  0  2  0  0  0  0 

-1  3 -1  0  0  0  2  0  0  0 

 0 -1  3 -1  0  0  0  2  0  0 

 0  0 -1  3 -1  0  0  0  2  0 

 0  0  0 -1  3 -1  0  0  0  2 

 1  0  0  0 -1  3 -1  0  0  0 

 0  1  0  0  0 -1  3 -1  0  0 

 0  0  1  0  0  0 -1  3 -1  0 

 0  0  0  1  0  0  0 -1  3 -1 

 0  0  0  0  1  0  0  0 -1  3 

 

Example of tridiagonal matrix:  

 
>> b=ones(4,1); 

>> A=spdiags([b 3*b b],-1:1,4,4) 

A = 

(1,1) 3 

(2,1) 1 

(1,2) 1 

(2,2) 3 

(3,2) 1 

(2,3) 1 

(3,3) 3 

(4,3) 1 

(3,4) 1 

(4,4) 3 

 

>> d=full(A) 

d = 

3 1 0 0 

1 3 1 0 

0 1 3 1 

0 0 1 3 
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Example: comparison of memory occupation  

 
>> b=ones(100,1); 

>> A=spdiags([b 3*b b],-1:1,100,100) 

>> d=full(A); 

 

>> whos 

Name  Size   Bytes  Class 

A   100x100   3980  double array (sparse) 

b   100x1   800   double array 

d   100x100   80000  double array 

 

Example: comparison of execution time needed to compute the square of a matrix in the full and in 

the sparse representation 
 

>> a=eye(1000); 

>> t=cputime; 

>> b=a^2; 

>> temp=cputime-t 

temp = 

3.7454 

 

>> a=sparse(1:1000,1:1000,1,1000,1000); 

>> t=cputime; 

>> c=a^2; 

>> temp=cputime-t 

temp = 

0.4406 

 

--------- 

 

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates according to the n-

by-n adjacency matrix A, where n is the number of nodes. Coordinates is an n-by-2 

matrix, where n is the number of nodes and each coordinate pair represents one node.  

 

Example 

One interesting construction for graph analysis is the Bucky ball. This is composed of 60 points 

distributed on the surface of a sphere in such a way that the distance from any point to its nearest 

neighbors is the same for all the points. Each point has exactly three neighbors. The Bucky ball 

models different physical objects, such as the C60 molecule, a form of pure carbon with 60 atoms in 

a nearly spherical configuration and the seams in a soccer ball 

[B,v]=bucky; % B= adjacency matrix, v= coordinate matrix 
gplot(B,v) 

axis square 

------ 
[B,v]=bucky; 

axis('square');hold on 

gplot(B(1:30,1:30),v) 

for k=1:30 

text(v(k,1),v(k,2),num2str(k)) 

end 


