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Half adder and Full adder

• Adders are usually implemented by combining multiple 

copies of simple components

• The natural components for addition are half adders and 

full adders

• The half adder takes two bits a and b as input and 

produces a sum bit s and a carry bit cout as output

• As logic equations:                     and 
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Half adder and Full adder

• The full adder takes three bits a, b and c as input and 

produces a sum bit s and a carry bit cout as output

• As logic equations:                                                 

and 

• The half adder is a (2,2) adder:

• it takes two inputs and produces two outputs

• The full adder is a (3,2) adder:

• it takes three inputs and produces two outputs
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Ripple-Carry Addition

• The principal problem in constructing an adder for n-bit 

numbers out of smaller pieces is propagating the carries 

from one piece to the next

• The most obvious way to solve this is with a ripple-carry 

adder, consisting of n full adders
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Ripple-Carry Addition

• The time a circuit takes to produce an output is 

proportional to the maximum number of logic levels 

through which a signal travels

• Determining the exact relationship between logic levels 

and timings is highly technology dependent
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Ripple-Carry Addition

• When comparing adders we simply compare the number 

of logic levels in each one

• A ripple-carry adder takes:

• two levels to compute c1 from a0 and b0

• two more levels to compute c2 from c1, a1, b1 - and so on, up to cn

• So, there are a total of 2n levels
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Ripple-Carry Addition

• Typical values of n are 32 for integer arithmetic and 53 for 

double-precision floating point

• The ripple-carry adder is the slowest adder, but also the 

cheapest

• It can be built with only n simple cells, connected in a 

simple, regular way
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Ripple-Carry Addition

• The ripple-carry adder is relatively slow  it takes time O(n)

• But it is used because in technologies like CMOS, the 

constant factor is very small

• Short ripple adders are often used as building blocks in 

larger adders
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Ripple-Carry Addition for Signed Numbers

• The most widely used system for representing integers is 

the  two’s complement, where the MSB is considered 

associated with a negative weight

• The value of a two’s complement number is:
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Ripple-Carry Addition for Signed Numbers

• The reasons for the popularity of two’s complement are:

• It makes signed addition easy  simply discard the carry-out from 

the high order bit

• Subtraction is executed as an addition: 

• A-B = A+(-B), recalling that
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Ripple-Carry Addition for Signed Numbers

• The Ripple-Carry adder is used for subtraction acting on 

second operand B and on C0 

• If line complement is 1 then operand B is complemented 

bit wise and C0=1
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Unsigned Multiplication

• The simplest multiplier computes the product of two 

unsigned numbers, an–1an–2 ⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0, one 

bit at a time

• Register Product is initially 0
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Unsigned Multiplication

• Each multiply step has two parts:

(i) Partial product and accumulation:
• If the least-significant bit of A is 1, then bn–1bn–2 ⋅ ⋅ ⋅ b0, (in register B) is 

added to P; 

• else 0 ⋅ ⋅ ⋅ 00 is added to P. 

• The sum is placed back into P
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Unsigned Multiplication

(ii) Registers P and A are shifted right:

• the carry-out of the sum is moved into the high-order bit of P 

• the low-order bit of P is moved into register A, 

• the rightmost bit of A (not used any more) is shifted out
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Unsigned Multiplication
• Hence, we add the contents of P to either B or 0 (depending on 

the low-order bit of A), replace P with the sum, and then shift 
both P and A one bit right

• After n steps, the product appears in registers P and A, with A 
holding the lower-order bits
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Signed Multiplication
• To multiply  two’s complement numbers, the obvious approach is 

to convert operands to be nonnegative, do an unsigned 
multiplication, and then (if the original operands were of 
opposite signs) negate the result 

• This requires extra time and hardware
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Signed Multiplication
• A better approach to multiply A and B using the hardware below:

• If B is potentially negative but A is nonnegative, to convert the 
unsigned multiplication algorithm into a two’s complement one we 
need that when P is shifted, it is shifted arithmetically
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Signed Multiplication

• A better approach to multiply A and B using the hardware below:

• If A is negative, the method is Booth recoding that is based on the 
fact that any sequence of 1s in a binary number can be written as     

011…11 = 100..00 - 1
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Signed Multiplication

• Then, we replace a string of 1s in multiplier with an initial 
subtract when we first see a one and then later add for the bit 
after the last one
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Signed Multiplication

• Then, we replace a string of 1s in multiplier with an initial 
subtract when we first see a one and then later add for the bit 
after the last one
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Signed Multiplication

• Hence, to deal with negative values of A, all that is required is to 
sometimes subtract B from P, instead of adding either B or 0 to P

• Rules: If the initial content of A is an–1 ⋅ ⋅ ⋅ a0, then step (i) in the 
multiplication algorithm becomes:

• If ai = 0 and ai–1 = 0, then add 0 to P

• If ai = 0 and ai–1 = 1, then add B to P

• If ai = 1 and ai–1 = 0, then subtract B from P

• If ai = 1 and ai–1 = 1, then add 0 to P

• For the first step, when i = 0, take ai–1 to be 0
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 Integer addition is the simplest operation and the most 
important

 Even for programs that don’t do explicit arithmetic, 
addition must be performed to increment the program 
counter and to calculate addresses

 The delay of an N-bit ripple-carry adder is:

tripple = NtFA

where tFA is the delay of a full adder

 There are different  techniques to increase the speed of 
integer operations (that lead to faster floating point), as
the Carry Look-ahead Adder (CLA)

Intensive Computation - 2019/2020

Speeding Up Integer Multiplication



Speeding Up Integer Multiplication

• Methods that increase the speed of multiplication can be 
divided into two classes: 
• single adder 

• multiple adders

• In the simple multiplier we described, each multiplication step 
passes through the single adder

• The amount of computation in each step depends on the used 
adder

• If the space for many adders is available, then multiplication 
speed can be improved
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Pipelined arithmetic

• Consider the instruction pipelining:
• The processor goes through a repetitive cycle of fetching and processing 

instructions

• In the absence of hazards, the processor is continuously fetching 
instructions from sequential locations the pipeline is kept full and a 
savings in time is achieved

• Similarly, a pipelined ALU will save time if it is fed a stream of 
data from sequential locations

• A single, isolated operation is not speeded up by pipeline

• The speedup is achieved when a vector of operands is 
presented to the units in the ALU
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Pipelined Addition
• For n bits operands, a 

pipeline adder consists 
of n stages of half 
adders

• Registers (FF D) are 
inserted at each stage 
to synchronize the 
computation

• At each clock cycle a 
new pair of operands is 
applied to the inputs of 
the adder
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Pipelined Addition

• After n clock cycles,  
the sum of the first pair 
of operands is obtained 

• The computing time for 
a single sum is the 
same of the carry-ripple 
adder

• A new sum is obtained 
at each clock cycle 
starting from the (n+1)-
th clock cycle
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Pipelined Addition

• The number of HA is 
O(n2), whereas the 
circuit complexity of 
the carry-ripple adder is 
O(n)

• The added circuit 
complexity pays off if 
long sequences of 
numbers are being 
added
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Pipelined Unsigned Multiplication
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Pipelined Unsigned Multiplication
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Pipelined Unsigned Multiplication

31Intensive Computation - 2019/2020

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

 After stage (n-1) 
all bit products 
(AND) are added

 Last (n-1) stages 
represent a 
pipelined adder

 Bit p2n-1 of the 
result is obtained 
as OR among the 
carries generated 
by the most left 
HA of each stage

ti
m

e



Pipelined Unsigned Multiplication
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Pipelined Signed Multiplication

• Signed numbers are 
extended to the length 
2n of the product and 
used as operands
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Pipelined Signed Multiplication

• Partial products of length 
2n are considered (the 
remaining part is 
ignored) 

• All stages but the first 
consists of FAs
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CIRCUIT AREA AND TIME 

EVALUATION
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Circuit area and time

• To discuss about the time and area, it is useful the analytical 
model (unit-gate model) presented in 

• A. Tyagi, A reduced-area scheme for carry-select adders, IEEE 
Trans. Comput., 1993

• They use a simplistic model for gate-count and gate-delay:

• Each gate except EX-OR counts as one elementary gate

• An EX-OR gate is counted as two elementary gates, because in 
static (restoring) CMOS, an EX-OR gate is implemented as two
elementary gates (NAND)

• The delay through an elementary gate is counted as one gate-
delay unit, but an EX-OR gate is two gate-delay units
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Circuit area and time

• In this model we are ignoring the fanin and fanout of a gate

• This can lead to unfair comparisons for circuits containing gates 
with a large difference in fanin or fanout
• For instance, gates in the CLA adder have different fanin

• A carry-ripple adder has no gates with fanin and fanout greater than 2

• The best comparison for a VLSI implementation is 
actual area and time

• The gate-count and gate-delay comparisons may not 
always be consistent with the area-time comparisons
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Circuit area and time

• To simplify we consider:

• Any gate (but the EX-OR) counts as one gate for both area and 

delay  Agate and Tgate

• An exclusive-OR gate counts as two elementary gates for both 

area and delay  AEX-OR =2Agate and TEX-OR =2Tgate

• An m-input gate counts as m − 1 gates for area and log2m gates

for delay  Am-gate =(m-1)Agate and Tm-gate = log2m Tgate
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Circuit area and time

• A half adder (HA) has:
• delay 2 unit gates – THA= 2 Tgate

• area 3 unit gates – AHA= 3 Agate 
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Circuit area and time

• A half adder (HA) has:
• delay 2 unit gates – THA= 2 Tgate

• area 3 unit gates – AHA= 3 Agate 

• A full adder (FA) has:
• delay 4 unit gates – TFA= 4 Tgate

• area 7 unit gates – AFA= 7 Agate 
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Circuit area and time

• A half adder (HA) has:
• delay 2 unit gates – THA= 2 Tgate

• area 3 unit gates – AHA= 3 Agate 

• A full adder (FA) has:
• delay 4 unit gates – TFA= 4 Tgate= 2 THA 

• area 7 unit gates – AFA= 7 Agate = 2 AHA + Agate 
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Circuit area and time

• A carry-ripple adder for n-bits operands has:

• delay TCR-adder      TCR-adder = n TFA = 2n THA = 4n Tgate

• area ACR-adder  ACR-adder = n AFA = 2n AHA + n Agate = 7n Agate
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