
Computer arithmetic

Intensive Computation

Annalisa Massini Lecture 16

2019-2020

2

References

Computer Architecture - A Quantitative Approach

Hennessy Patterson

Appendix J

Intensive Computation - 2019/2020

Half adder and Full adder

• Adders are usually implemented by combining multiple

copies of simple components

• The natural components for addition are half adders and

full adders

• The half adder takes two bits a and b as input and

produces a sum bit s and a carry bit cout as output

• As logic equations: and

Intensive Computation - 2019/2020 3

bab a b as ab cout

Half adder and Full adder

• The full adder takes three bits a, b and c as input and

produces a sum bit s and a carry bit cout as output

• As logic equations:

and

• The half adder is a (2,2) adder:

• it takes two inputs and produces two outputs

• The full adder is a (3,2) adder:

• it takes three inputs and produces two outputs

Intensive Computation - 2019/2020 4

abcba cout)(

cbaabccba cba cb as)(

S

Ripple-Carry Addition

• The principal problem in constructing an adder for n-bit

numbers out of smaller pieces is propagating the carries

from one piece to the next

• The most obvious way to solve this is with a ripple-carry

adder, consisting of n full adders

Intensive Computation - 2019/2020 5

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

an-1 bn-1

Ripple-Carry Addition

• The time a circuit takes to produce an output is

proportional to the maximum number of logic levels

through which a signal travels

• Determining the exact relationship between logic levels

and timings is highly technology dependent

Intensive Computation - 2019/2020 6

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition

• When comparing adders we simply compare the number

of logic levels in each one

• A ripple-carry adder takes:

• two levels to compute c1 from a0 and b0

• two more levels to compute c2 from c1, a1, b1 - and so on, up to cn

• So, there are a total of 2n levels

Intensive Computation - 2019/2020 7

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition

• Typical values of n are 32 for integer arithmetic and 53 for

double-precision floating point

• The ripple-carry adder is the slowest adder, but also the

cheapest

• It can be built with only n simple cells, connected in a

simple, regular way

Intensive Computation - 2019/2020 8

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition

• The ripple-carry adder is relatively slow it takes time O(n)

• But it is used because in technologies like CMOS, the

constant factor is very small

• Short ripple adders are often used as building blocks in

larger adders

Intensive Computation - 2019/2020 9

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

Ripple-Carry Addition for Signed Numbers

• The most widely used system for representing integers is

the two’s complement, where the MSB is considered

associated with a negative weight

• The value of a two’s complement number is:

Intensive Computation - 2019/2020 10

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

0

0

1

1

2

2

1

1 2222 aaaa n

n

n

n

0121 aaaa nn

an-1 bn-1

Ripple-Carry Addition for Signed Numbers

• The reasons for the popularity of two’s complement are:

• It makes signed addition easy simply discard the carry-out from

the high order bit

• Subtraction is executed as an addition:

• A-B = A+(-B), recalling that

Intensive Computation - 2019/2020 11

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

1 XX

an-1 bn-1

Ripple-Carry Addition for Signed Numbers

• The Ripple-Carry adder is used for subtraction acting on

second operand B and on C0

• If line complement is 1 then operand B is complemented

bit wise and C0=1

Intensive Computation - 2019/2020 12

an-1 a0a1a2

Sn-1 s0s1s2

bn-1 b2 b1 b0

complement

Unsigned Multiplication

• The simplest multiplier computes the product of two

unsigned numbers, an–1an–2 ⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0, one

bit at a time

• Register Product is initially 0

Intensive Computation - 2019/2020 13

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Unsigned Multiplication

• Each multiply step has two parts:

(i) Partial product and accumulation:
• If the least-significant bit of A is 1, then bn–1bn–2 ⋅ ⋅ ⋅ b0, (in register B) is

added to P;

• else 0 ⋅ ⋅ ⋅ 00 is added to P.

• The sum is placed back into P

Intensive Computation - 2019/2020 14

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Unsigned Multiplication

(ii) Registers P and A are shifted right:

• the carry-out of the sum is moved into the high-order bit of P

• the low-order bit of P is moved into register A,

• the rightmost bit of A (not used any more) is shifted out

Intensive Computation - 2019/2020 15

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Unsigned Multiplication
• Hence, we add the contents of P to either B or 0 (depending on

the low-order bit of A), replace P with the sum, and then shift
both P and A one bit right

• After n steps, the product appears in registers P and A, with A
holding the lower-order bits

Intensive Computation - 2019/2020 16

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication
• To multiply two’s complement numbers, the obvious approach is

to convert operands to be nonnegative, do an unsigned
multiplication, and then (if the original operands were of
opposite signs) negate the result

• This requires extra time and hardware

Intensive Computation - 2019/2020 17

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication
• A better approach to multiply A and B using the hardware below:

• If B is potentially negative but A is nonnegative, to convert the
unsigned multiplication algorithm into a two’s complement one we
need that when P is shifted, it is shifted arithmetically

Intensive Computation - 2019/2020 18

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication

• A better approach to multiply A and B using the hardware below:

• If A is negative, the method is Booth recoding that is based on the
fact that any sequence of 1s in a binary number can be written as

011…11 = 100..00 - 1

Intensive Computation - 2019/2020 19

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

Signed Multiplication

• Then, we replace a string of 1s in multiplier with an initial
subtract when we first see a one and then later add for the bit
after the last one

Intensive Computation - 2019/2020 20

0010

x 0110

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001100

Signed Multiplication

• Then, we replace a string of 1s in multiplier with an initial
subtract when we first see a one and then later add for the bit
after the last one

Intensive Computation - 2019/2020 21

0010

x 0110

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001100

0010

x 0110

+ 0000 shift (0 in multiplier)

- 0010 sub(first 1 in multpl)

+ 0000 shift(mid string of 1s)

+ 0010 add(prior step had last 1)

00001100

Signed Multiplication

• Hence, to deal with negative values of A, all that is required is to
sometimes subtract B from P, instead of adding either B or 0 to P

• Rules: If the initial content of A is an–1 ⋅ ⋅ ⋅ a0, then step (i) in the
multiplication algorithm becomes:

• If ai = 0 and ai–1 = 0, then add 0 to P

• If ai = 0 and ai–1 = 1, then add B to P

• If ai = 1 and ai–1 = 0, then subtract B from P

• If ai = 1 and ai–1 = 1, then add 0 to P

• For the first step, when i = 0, take ai–1 to be 0

Intensive Computation - 2019/2020 22

23

 Integer addition is the simplest operation and the most
important

 Even for programs that don’t do explicit arithmetic,
addition must be performed to increment the program
counter and to calculate addresses

 The delay of an N-bit ripple-carry adder is:

tripple = NtFA

where tFA is the delay of a full adder

 There are different techniques to increase the speed of
integer operations (that lead to faster floating point), as
the Carry Look-ahead Adder (CLA)

Intensive Computation - 2019/2020

Speeding Up Integer Multiplication

Speeding Up Integer Multiplication

• Methods that increase the speed of multiplication can be
divided into two classes:
• single adder

• multiple adders

• In the simple multiplier we described, each multiplication step
passes through the single adder

• The amount of computation in each step depends on the used
adder

• If the space for many adders is available, then multiplication
speed can be improved

24Intensive Computation - 2019/2020

Pipelined arithmetic

• Consider the instruction pipelining:
• The processor goes through a repetitive cycle of fetching and processing

instructions

• In the absence of hazards, the processor is continuously fetching
instructions from sequential locations the pipeline is kept full and a
savings in time is achieved

• Similarly, a pipelined ALU will save time if it is fed a stream of
data from sequential locations

• A single, isolated operation is not speeded up by pipeline

• The speedup is achieved when a vector of operands is
presented to the units in the ALU

Intensive Computation - 2019/2020 25

Pipelined Addition
• For n bits operands, a

pipeline adder consists
of n stages of half
adders

• Registers (FF D) are
inserted at each stage
to synchronize the
computation

• At each clock cycle a
new pair of operands is
applied to the inputs of
the adder

26Intensive Computation - 2019/2020

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

ti
m

e

Pipelined Addition

• After n clock cycles,
the sum of the first pair
of operands is obtained

• The computing time for
a single sum is the
same of the carry-ripple
adder

• A new sum is obtained
at each clock cycle
starting from the (n+1)-
th clock cycle

27Intensive Computation - 2019/2020

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

ti
m

e

Pipelined Addition

• The number of HA is
O(n2), whereas the
circuit complexity of
the carry-ripple adder is
O(n)

• The added circuit
complexity pays off if
long sequences of
numbers are being
added

28Intensive Computation - 2019/2020

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

ti
m

e

Pipelined Unsigned Multiplication

29Intensive Computation - 2019/2020

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

01234567

30313233

20212223

10111213

00010203

0123

0123

pppppppp

babababa

babababa

babababa

babababa

bbbb

aaaa

 The product of
two n bit
operands has
length 2n

 Result is obtained
by executing n-1
sums

ti
m

e

Pipelined Unsigned Multiplication

30Intensive Computation - 2019/2020

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

01234567

30313233

20212223

10111213

00010203

0123

0123

pppppppp

babababa

babababa

babababa

babababa

bbbb

aaaa

 Inputs to the
multiplier are
logical AND
among pairs of
bits

 There are 2(n-1)
stages of FA or HA

ti
m

e

Pipelined Unsigned Multiplication

31Intensive Computation - 2019/2020

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

 After stage (n-1)
all bit products
(AND) are added

 Last (n-1) stages
represent a
pipelined adder

 Bit p2n-1 of the
result is obtained
as OR among the
carries generated
by the most left
HA of each stage

ti
m

e

Pipelined Unsigned Multiplication

32Intensive Computation - 2019/2020

HA HAHA

FA FA FA

HA HA

HA

a3b2 a3b1
a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

 After 2(n-1) clock
cycles, the
product of the
first pair of
operands is
obtained

 A new result is
obtained at each
clock cycle
starting from the
(2n-1)-th clock
cycle

ti
m

e

Pipelined Signed Multiplication

• Signed numbers are
extended to the length
2n of the product and
used as operands

33Intensive Computation - 2019/2020

HA HAHA

FA FA FA

FA

HA HA

a3b2

a1b4

a0b0

p0p1p2p3

FA FA FA

FA

FA FA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5

a3b1a4b0a4b1a5b0

a0b4

a0b5

012345

505152

40414243

3031323334

202122232425

101112131415

000102030405

012345

012345

pppppp

bababa

babababa

bababababa

babababababa

babababababa

babababababa

bbbbbb

aaaaaa

ti
m

e

Pipelined Signed Multiplication

• Partial products of length
2n are considered (the
remaining part is
ignored)

• All stages but the first
consists of FAs

34Intensive Computation - 2019/2020

HA HAHA

FA FA FA

FA

HA HA

a3b2

a1b4

a0b0

p0p1p2p3

FA FA FA

FA

FA FA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5

a3b1a4b0a4b1a5b0

a0b4

a0b5

012345

505152

40414243

3031323334

202122232425

101112131415

000102030405

012345

012345

pppppp

bababa

babababa

bababababa

babababababa

babababababa

babababababa

bbbbbb

aaaaaa

ti
m

e

CIRCUIT AREA AND TIME

EVALUATION

Intensive Computation - 2019/2020 35

Circuit area and time

• To discuss about the time and area, it is useful the analytical
model (unit-gate model) presented in

• A. Tyagi, A reduced-area scheme for carry-select adders, IEEE
Trans. Comput., 1993

• They use a simplistic model for gate-count and gate-delay:

• Each gate except EX-OR counts as one elementary gate

• An EX-OR gate is counted as two elementary gates, because in
static (restoring) CMOS, an EX-OR gate is implemented as two
elementary gates (NAND)

• The delay through an elementary gate is counted as one gate-
delay unit, but an EX-OR gate is two gate-delay units

Intensive Computation - 2019/2020 36

Circuit area and time

• In this model we are ignoring the fanin and fanout of a gate

• This can lead to unfair comparisons for circuits containing gates
with a large difference in fanin or fanout
• For instance, gates in the CLA adder have different fanin

• A carry-ripple adder has no gates with fanin and fanout greater than 2

• The best comparison for a VLSI implementation is
actual area and time

• The gate-count and gate-delay comparisons may not
always be consistent with the area-time comparisons

Intensive Computation - 2019/2020 37

Circuit area and time

• To simplify we consider:

• Any gate (but the EX-OR) counts as one gate for both area and

delay Agate and Tgate

• An exclusive-OR gate counts as two elementary gates for both

area and delay AEX-OR =2Agate and TEX-OR =2Tgate

• An m-input gate counts as m − 1 gates for area and log2m gates

for delay Am-gate =(m-1)Agate and Tm-gate = log2m Tgate

Intensive Computation - 2019/2020 38

Circuit area and time

• A half adder (HA) has:
• delay 2 unit gates – THA= 2 Tgate

• area 3 unit gates – AHA= 3 Agate

Intensive Computation - 2019/2020 39

Circuit area and time

• A half adder (HA) has:
• delay 2 unit gates – THA= 2 Tgate

• area 3 unit gates – AHA= 3 Agate

• A full adder (FA) has:
• delay 4 unit gates – TFA= 4 Tgate

• area 7 unit gates – AFA= 7 Agate

Intensive Computation - 2019/2020 40

Circuit area and time

• A half adder (HA) has:
• delay 2 unit gates – THA= 2 Tgate

• area 3 unit gates – AHA= 3 Agate

• A full adder (FA) has:
• delay 4 unit gates – TFA= 4 Tgate= 2 THA

• area 7 unit gates – AFA= 7 Agate = 2 AHA + Agate

Intensive Computation - 2019/2020 41

S

Circuit area and time

• A carry-ripple adder for n-bits operands has:

• delay TCR-adder TCR-adder = n TFA = 2n THA = 4n Tgate

• area ACR-adder ACR-adder = n AFA = 2n AHA + n Agate = 7n Agate

Intensive Computation - 2019/2020 42

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

an-1 bn-1

