LINEAR SYSTEMS (2)

Intensive Computation 2019-2020
prof. Annalisa Massini Viviana Arrigoni
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O ESKY DECOMPOS

Direct method to solve linear systems, Ax=b.

TION

T A Is symmetric and positive-definite, it can be written as the produc

of a lower triangular matrix L and its transpose, A=LL".
L i1s the Cholesky factor of A.

More notions on positive-definite matrices:

A matrix I1s positive-definite Iff its eigenvalues are positive

Tt Its principal minors are positive (Silvester’s criterion).

Eigenvalues: solutions of the characteristic polynomial (s

Principal minors: determinants of the sub matrices on t

diagonal.
3

bectrum).
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POSITIVE-DEFINITE
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~OMETRIC

Since we have already met positive-definite matrices, let's try to
visualise them in R?,

(z y) (i

C X sl 2 2
b) (y) = ax” + 2cxy + by » .

-

- 2

>0, ¥(z,y) # (0,0)
it A Is positive-definite

>0, V(z,y) # (0,0)
it A Is positive-semidefinite

|fA s Indefinite
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POSITIVE-SEMIDEFRINITE:
FARABOLIC CYLINEES

parabolic cylinder,a=1,b=c =0




INDEFINITE:
HYPERBOLIC PARABOLOID (SADDLE)

hyperbolic parabolod or saddle,a=1,b=-1,c=0




EEIOLESKY DECOMPOSHHGES

step: Given a symmetric square matrix A, we can write it as follows:

IO

Aol
/all @12 al,n}
RN an ) o Ai2r71 A R
f f f f 8 <A2»1 A2,2> A IR
\tnt) tn2 . Onn)
Al A2

Now we want to write A as LL" where L is lower-triangular and can be
written as follows:

TR . .
ERIREL D O b (ll,l 0 ) where Ly is again
; : : - \L21 Lao lower-triangular.




EEIOLESKY DECOMPOSHHGES

So A=LL"is:

al 1 2] l1.1 0 ) (ll 1 Lgl) R |
’ emember!
Az : @) {LQ 1: Lo2) \ 0 L3, We are looking for

the entries of L!

_( ll 1L21
[, 1L21 [L21L |+ LoaLs s,

At this point we can compute the following portions of L:

@ B N Basically we get the values
L= T Ly1 = r5A21|  of the entries of the first
& D\ o llnyRECINE

Then we compute the following:
Agg=1Lo1L5,+ Laolsy = Loslso=A09—Ly1Lls, = A®)

9



EROLESKY DECOMPOSHIGE.

2° step: repeat step | on the matrix A®=1,, 122",

B 4@ z N AL 12 ool
1,1 2,1 L 2,2 2,2 SR T PAZILEL
AD Al (5 <0 172) = (s (Tl TorlEs)

4@ ¢ Rin—Dx(n-1)

(2)

1272 — a
Afi, L3 o € R("=2) » i3 ‘
L3 = Aé i

Ag?%, L3,3 c R(n—Q)x(n—Q) , 12 5

AgQ% = L3,2L N 2B LS 3L3 3 — L373L£3 e Ag?% =0 L3,2Lg:,2 — A(3)

Iterate until the last sub matrix A is considered.
At every step, the size of AW decreases of one and the k° column of L
s computed.



EROLESKY DECOMPOSHIGE.

Once we get L, the linear system Ax=b can be written as LL"x=b, so:
- Solve Ly=b using forward substitution;

- Solve LTx=y using backward substitution.

» Why does A have to be positive-definite?

f AW is positive-definite, then:

: a§’f1) ER VR EISHUSHIFST Principal mIner), NEmcEl % — \/aﬁ? s well

defined.

7y A2,143, is positive-definite.

a11
VE = 155

S AR Ag";)




AN EXAMEPLES

20 15 —5 [ 0 0 i1 1 Lo ]
A= 15 18 0 — l2,2 0 0 l272 13,2 ST
B 0 11 sz las) N D
l% 1 ZT }‘I l‘)71 l1 /1 lgl‘l
A ’ e
— |l il I51+ 15, lo.1l31 4+ 12232

2 2 2
11,113,1 J2,113,1 12,2l3,2 l3,1 13,2 1373

step | l 15 3
h1=v25=5 L= (2’1> =3 <_5) B (—1)

5
MEaNS ( 3 )is the first column of L. The matrix for the next iteration Is:

—1

Laalas = (108 101>_(—31> Glele (108 1O1>_<—93 _13) ]




AN EXAMPEE

. 9 3
Repeat the same procedure on matrix Al2: <3 10)

SR (oo (O o g l%,g l2.203 .2

3 10 32 [33 0 33 l2,203,2 l§,2+l§,3
BREls:

=30 ) — 50— - 3 =1

So the second column of L is “while:

s (DO ()

AG=10—-1-1=09



AN EXAMPEE

P = . =12. hence; Lz=—vO9-13

, 0
So the last column of L is (O)
3

In conclusion:

5
A=LIT =1 3
|
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Assume b=(1,...,1)

N EXANMPEE




EEIOLESKY DECOMPOSHHGES

Algorithm:

Given a linear system Ax=b, A Is symmetric and positive-definite

and Its size 1s n
O(n?) - expensive!
L(i+ 1n,i) = AG+n) 7 LGi);

A(i+in,i+ 1:0)=A(~+ I:ni+ [:n) - L(i+ 1:n,i) * LG+ 1)’

* |nrtialize L as a nxn zero matrix:

* Fori=I:n
LGD=vVAGD;
s i<

- Solve Ly=b (forward substitution);
» Solve L'x=y (backward substitution);

|6



EHIOLESKY FOR SPARSS
MATRICES

[ IEiSpalrse, so may be L.
f L Is sparse, the cost of factorization is less t

on n,the number of nonzero elements, and t

100% Fill-in example:

1 o
a

§

I

S R R R B

Factorization

han n3/3 and it depends

ne sparsity pattern. .

1C6)-0) mp )= 2)0 0

.

e /B G
DGR G
A e
T

D R SRR G
T o e R P
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EHIOLESKY FOR SPARSS
MATRICES

... This can be solved by shifting columns of A of one position to the
left (and swapping entries on vectors x and b), getting no fill-in at all.

Shift

o 7)0)=() = 9)E)-6) =

Feci@klzation

» (aIT ) o (aIT ¢1_O aTa) (é ﬂim)

*x

23 e A S S 5
*
*

DT | T e e




EHIOLESKY FOR SPARSS
MATRICES

VWe have seen that permuting the entries of A can prevent fill-in during
factorization, so one can factorize a permutation of A instead of A itself.

Permutation matrix: square matrix having exactly one | on every
row and column,

T P Is a permutation matrix, then PA permutes A's row, AP permutes A’s
column, PTAP permutes A’s rows and columns.

Permutation matrices are orthogonal: P = P/

nstead of factorizing A, one can factorize P'AP in order to prevent fill-in

P effects the sparsity pattern of A and it is not known a-priori, but there
are heuristic methods to select good permutation matrices.



| > ON CHOLESE S
PECOMPOSHTICHS

Speaking of methods to avoid pivoting, as the transpose method produces
positive-definite matrices, the Cholesky decomposition may be applied.

Gaussian Elimination vs Cholesky Decomposition:

he Gaussian elimination can be applied to any matrix, even to non
square ones, while the Cholesky decomposition can be applied only on
(square) symmetric and positive-definite matrices.

 They have the same asymptotic computational cost (O(n3)), but
Cholesky Is faster by a factor 2.

20
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[ TERATIVE METHODS

terative methods for solving a linear system Ax=b consist in finding a
series of approximate solutions x!', x?, etc,, starting from an initial
approximate solution x° until convergence to the exact solution.

teration can be interrupted when the desired precision is reached.

For example: precision threshold, € = 1073,
Suppose the error is computed as the absolute value of the
difference of the exact and the approximate solutions element-
Wwise, |Xi - X|<i|.
[t follows that an approximate solution x*is accepted
G| < €.
Assume the solution of Ax=b is x=(1,...,1)!, the approximate
solution x*=(1.0009,...,1.0009)" satisfies the threshold.

i



[ TERATIVE METHODS

terative methods are usually faster than exact methods, specially if
the coefficient matrix Is large and sparse.

One can ‘play’ with the threshold to find the desired tradeoff
between speed and accuracy (increasing the precision threshold
reduces the number of Iterations to reach acceptable approximate
solutions, but at the same time 1t produces less accurate solutions).

On the other hand, for some problems convergence may be very
slow or the solution may not converge at all.

23
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JACOBI METHOD

Strictly diagonally dominant matrix:

The absolute value of the diagonal entries Is strictly greater than the
sum of the absolute value of the non diagonal entries of the
corresponding rows.

T

a; sl > > laiij| Vi=1l...n
j=1
JF0

The Jacobl method always succeeds If A

or A" are strictly diagonally dominant.

*If the system is not strictly diagonally dominant, it may still converge.VWe will consider strictly
diagonally dominant linear systems.

25



JACOBI METHOD

Given the linear system:

1,11 T A1 22 T ... T Al ndp = bl

A2 1L1 T A22X2 T ... T A2 ndn = b2

Ap, 101 o Ap, 202 a0 T Ap ndn — bn

where A Is strictly diagonally-dominant, it can be rewritten as follows
by Isolating x; In the 1° equation:

b ai, 2 al,n
ajl — 1 aj2 T, e o o xn
ai,1 ai, 1 ai. i
b a2 1 a2 n
$2 — 2 w]_ = e o o :Crn/
az 2 az 2 az 2
b An,1 An, 2
T = W 95 To —
An,n An,n An,n

26



JACOBI METHOD

Let 2@ = (2{?,...,5Y) be the initial approximate solution (commonly

xYis the zero vector).
Find the approximate solution x(") by substituting x¥) in the right hand

side of the linear system:

1 0 S
()_ by al,zmg)_”. ai, :E?(%)
ai,1 ai,1 ai,1
(1) Sb az,1,.(0) az,n .(0)
o= az, 2 az, 2 4 It az, 2 Ln
- S )
) — g a’lxg) a,zwé)_

An,n An,n An,n

hen use the approximate solution x(") just computed to find x(?) by
substituting x(1) in the right hand side of the linear system.

LT



JACOBI METHOD

terate.
At the k° step one finds the approximate solution x® by substituting
the previous one In the right hand side of the linear system:

Ul a1,z . (k—1) ai,n .(k—1)
ki ai,l ai, 1 5 RN ai, 1 Ln

(k) _ b a1, (k—1) az,n  (k—1)
ToRs e az, 2 az 2 ] R az, 2 Ln
(K il e (e
ZEfp(v,): by, “’1:1:& ) a’zxé S

An,n An,n An,n

T A Is strictly diagonally-dominant, the produced approximate solutions
are more and more accurate.

28



JACORBI - STOPPING CRITERIA

VWhen should one stop iterating! When the error produced is small

enough.

Different ways to compute the error at each step:

» el:=||xFD-xM||: the error is the difference between the last and

the previous solutions.

and the approximate so
H e(k)::HX(k+l)—x(k)H/HX(kH)‘

el:=||x-xW||: the error is the difference between the exact solution

ution(exact solution s usually unknown tho).
. the error Is the change rate bEtWES RS

last and the previous solutions.
where [|.]| is the 1 2 norm: [[x|2=+/(x12+...+x:2).

So the iterations are repeated while eW>= ¢

29



AN EXAMEPLES

IESNlREarsystem 92 +y + z = 10 has solution [« 1
sap == 1y == 3 = 1LY g =
3z +4y+ 112 =0 % —1

Since A Is strictly diagonally dominant, the system can be solved with
Jacobi. Compute the error as e®:=||x&*D-x®|| and let x®=(0,0,0)
be the Inrtial approximate solution.

(1) = %(10 — (0) _ 20}y — %

o= e DR AQUE GO —
2 = L(_350) _ 4y©) =g
So the first approximate solution is x(: (z,y,2)T = (3, 15,0)F

B oris:e9=22010.

30



AN EXANMPEE

Substituting x(") we get:

x(j) = %1(10 pye ¢ (D) . 5(1 2 ok —13% .
y;) . ?(19—12:1:( ) —13z< )) g 1—0(1109—21?9) = %0
B (5 ) = (-3 4G SR

Ese error st et= | .040|. One more iteration:

P ARSI 00 et
y® = (19 — 22 — 329) = (19 — 23 + 3535) = 8

(
2 = 57 (—32% — 4y'?) = 5(-34; 4%) =

The erroris: e®=0.39 |5

31



AN EXAMITER

Assume the required precision is € = 103, Then after | | iteration the
error is 59847 x 10, and the approximate solution is

z(11) 1.0001
y1D | = [ 2.0001
z(11) —0.9999

Bil



JACOBI METHOD

Algorithm:
Given Ax=b, where A is strictly diagonally dominant:

* Inrtialize the first approximate solution xO and an array x and set

err=Inf and €
O(#of iterations x n?)

* while err >= ¢
» fori1 = I:n
x(1) = b()
sior | — I:n
SR =
x(1) = x(1) - A,) * x0();
SR A1)
update err;
p=

Es



JACOBI METHOD

T k I1s the number of rterations (in the while), then the number of
operations executed by the Jacobi algorithm is kn?.
he Gaussian elimination requires n3/3 operations.

So It Is more convenient to use the Jacobi method instead of the
Gaussian elimination if kn?< n3/3, that is when k<n/3.
For this reason 1t Is iImportant to assess the minimum number of
iterations before deciding whether to apply Jacobl. Such number is
the smallest k that satisfies:

A= sk i |a’f’j‘

1-2)) e R A
(4

B2



JACOBI - MATRICIAL FORM

Given Ax=b, where A Is strictly diagonally dominant, one can write A
as follows:

A : 0 0 Bas0 0 e () 0 , n 1
/al,l ay, 2 al,\ (&11 \ ( \ (0 iy, 2 aj \

a1 dA22 ... Q2n 0 a2 ... 0 a2.1 0 =) 0 ce. Q2.

R . 0 0 e e an )

A = D - - L o U

So the linear system can be rewritten as: {D — [-L - U|}lz =b

T A Is diagonally dominant, D is invertible, so:

Dr—[-L-Ulz=bsxz— D -L-Ulzx=D"1
< x=D"Y-L-Ulz+ D1

Matricial form of Jacobi: |z¥t1) = D=L — U]z=* + D=1b
b — 012

ES
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GAUSS-SEIDEL

terative method, very similar to Jacobi’s.

[t always converges if A s strictly diagonally

dominant or symmetric and positive-definite.

k b1 1.2 (k-1 1,3 (k—1 a1 n i<
i L GGy S en T CLugiEeE
a1 1.1 a1 a1
k by a1 (k) 423 (k-1 a2n (L_
B 2 Gl 033 0en | Sam (e
az 2 a2 2 az 2 az 2
k Da Rl s asn (k_
g D0 Bam L Bl
a3 3 a3 3 a3 3 a3 3
. bn an 1 k An, 2 k An . n—1 k
:B,,(%k):—— ’xg)— ’xé)—...— : x,g_)l
an,n an,n an,n an,n

*If the system Is not strictly diagonally dominant nor positive-definite, it may still converge. We

will consider strictly diagonally dominant or positive-definite linear systems.
37



N EXAMPLESS

The same linear system we used before: 9z +y+ 2z = 10
2¢ + 10y + 32 = 19
3r+4y+ 112 =10
Compute the error as e(:=||x&*D-x®|| and let x(=(0,0,0)
be the Initial approximate solution.

10 10

9 9

B 2 e o 15

y () = 9 Ay EZ(O) & 9 0 3 151

10 10 10 10 109 90
o ¢t o 310 41510 S
11 11 O Oy 990

Shern= ). 2098,

38



AN EXAMPEE

Second iteration:

10 1 1 10 1151 1904 9143
e S B S e

O e g 9 990 9990 8910

y(Q) i ) S o iz(l) B 19 2 9143 I 3 904 43853

T i 10 10 108910 10990 _ 22275

(2) e D o 3 9143 4 43853 — 487969
< = - L W am o U = —
11 Ll 118910 1122275 490050

error = 0.3 141,

55



AN EXAMITER

f the error threshold is 1073, after 5 iterations we get:

J.

) = ( 2 ) Computed error: 2.2362 *|0
|

In rteration 4, the approximate solution was:

7 1.0002
= 2 Eompliied ericpMeIuiE s
% —1.0001

210,



GAUSS-SEIDEL-MATRICIAL FORM

Write A as follows:

: 0 o, o feh o :
\ RS G ) _\a;J , 8) \0 0 0
A = D G T ~ U

Then the linear system can be written as:
e E = — b

Then: (D+ L)z +Uzxz =05

So the matricial form of Gauss-Seidel is: |(D + L)z'*tY) = p — Uz®)
i =

<l



GAUSS-SEIDEL

Algorithm:

Given Ax=b, where A is strictly diagonally dominant or positive-definite:
* Initialize x0, x arrays of length n. Set err=Inf and ¢;

* whileerr = €
e fori= I
X(1) = b(I);
S ——

 for|=2in

x(1) = x(1) - A1) * x0(0);
S seiior) = - |
RS (P

e = 1N

200

|
x(1) = x(1) VAQ,);
Update err;

X(1) = x(1) - AL)) = x00):

<=

O(#of iterations x n?)



JACOBIVS. GAUSS-SEIDEL

On several classes of matrices, Gauss-Seidel converges twice as fast

as Jacobl (meaning that at every iteration, the number of Tixed exact

solution digits that Gauss-Seidel computes Is twice as large as
Jacobr’s).

As soon as the improved entries of the approximate solution are
computed, they are iImmediately used In the same iteration step, k.

On the other hand, Jacobi can be parallelized, while Gauss-Seidel is
inherently non parallelizable.

The same stopping criteria work for both methods.

45



