Exercise 7 (4 points) – Pipeline

APA course – 5 July 2017 – Part A (b)

Consider an architecture where each instruction (unpipelined) takes 99 ns. Consider the pipeline implementation of instructions takes 108 ns, using 9 pipe stages.

i) Compute the time required to execute 60 instructions without and with pipeline.

ii) Compute the speedup of the pipelined solution with respect to the unpipelined one (for 60 instructions).

Exercise 1 (4 points) – Pipeline

APA course - 7 December 2018 - Part A

Consider an architecture where each instruction (unpipelined) takes 82 ns. Consider the pipeline implementation of instructions takes 91 ns, using 7 pipe stages. i) Compute the time required to execute 80 instructions without and with pipeline.

ii) Compute the speedup of the pipelined solution with respect to the unpipelined one (for 80 instructions).

Consider the following loop expressed in a high level language:

The program has been written in MIPS assembly code, assuming that registers \$t6 and \$t7 have been initialized with values 0 and 4N respectively. The symbols VECTA, VECTB and VECTC is a 16-bit constant.

Let us consider the loop executed by 5-stage pipelined MIPS processor WITHOUT any optimisation in the pipeline.

1. Identify the Hazard Type (Data Hazard or Control Hazard) in the last column.

2. In the first column identify the number of stalls to be inserted before each instruction (or between stages IF and ID of each instruction) necessary to solve the hazards.

3. For each hazard, add an ARROW to indicate the pipeline stages involved in the hazard.

4. Specify if there is any hazard solved by the insertion of stalls for other instructions.

Num.	INSTRUCTION	C1	C2	С3	C4	C5	C7	C 6	C8	C9	C10	C11	C12	C13	C14	Hazard
Stalls																Туре
	FOR: beq \$t6,\$t7,END	IF	ID	EX	ME	WB										
	lw \$t2,VECTA(\$t6)		IF	ID	EX	ME	WB									
	addi \$t2,\$t2,4			IF	ID	EX	ME	WB								
	sw \$t2,VECTA(\$t6)				IF	ID	EX	ME	WB							
	lw \$t3,VECTB(\$t6)					IF	ID	EX	ME	WB						
	addi \$t3,\$t3,2						IF	ID	EX	ME	WB					
	sw \$t3,VECTB(\$t6)							IF	ID	EX	ME	WB				
	addi \$t6,\$t6,4								IF	ID	EX	ME	WB			
	blt \$t6,\$t7,FOR									IF	ID	EX	ME	WB		