
Parallelism and Performance

Intensive Computation

Annalisa Massini
2018/2019

2

References

Computer Architecture - A Quantitative Approach

Hennessy Patterson

Chapter 1 - Fundamentals of Quantitative Design and Analysis

Section 1.8 - Measuring, Reporting, and Summarizing Performance

Section 1.9 - Quantitative Principles of Computer Design

Intensive Computation - 2018/2019

Measuring Performance

• When we say one computer is faster than another we can

mean different things:

• The computer user is interested in reducing response time - the

time between the start and the completion of an event - also

referred to as execution time

• The operator of a warehouse-scale computer may be interested in

increasing throughput - the total amount of work done in a given

time

Intensive Computation - 2018/2019 3

Measuring Performance

• In comparing design alternatives, we often want to relate

the performance of two different computers: X and Y

• When we say X is faster than Y we mean that the

response time or execution time is lower on X than on Y

for the given task

• In particular, X is n times faster than Y will mean:

Execution time 𝑌

Execution time 𝑋
= 𝑛

• Execution time is the reciprocal of performance

Intensive Computation - 2018/2019 4

Measuring Performance

• Since execution time is the reciprocal of performance, the

following relationship holds:

𝑛 =
Execution time 𝑌

Execution time 𝑋
=
Performance 𝑋

Performance 𝑌

• The phrase the throughput of X is 1.3 times higher than Y

signifies that the number of tasks completed per unit time

on computer X is 1.3 times the number completed on Y

Intensive Computation - 2018/2019 5

Measuring Performance

• Unfortunately, time is not always the metric quoted in

comparing the performance of computers

• But (for Hennessy and Patterson) the only consistent

and reliable measure of performance is the execution

time of real programs

• All proposed alternatives to time as the metric or to real

programs as the items measured have eventually led to

misleading claims or even mistakes in computer design

Intensive Computation - 2018/2019 6

Measuring Performance

• Even execution time can be defined in different ways

depending on what we count

• The most straightforward definition of time is called

wall-clock time, response time, or elapsed time

which is the latency to complete a task, including disk

accesses, memory accesses, input/output activities,

operating system overhead…

Intensive Computation - 2018/2019 7

Measuring Performance

• With multiprogramming, the processor works on another

program while waiting for I/O and may not necessarily

minimize the elapsed time of one program

• Hence, we need a term to consider this activity

• CPU time recognizes this distinction and means the time

the processor is computing, not including the time waiting

for I/O or running other programs

• Clearly, the response time seen by the user is the elapsed

time of the program, not the CPU time

Intensive Computation - 2018/2019 8

Measuring Performance

• Benchmarks can be used to measure performance

• The best choice of benchmarks is real applications

• Attempts at running programs much simpler than a real

application have led to performance pitfalls

• Examples include:

• Kernels, which are small, key pieces of real applications

• Toy programs, which are 100-line programs (such as quicksort)

• Synthetic benchmarks, which are fake programs invented to try to

match the profile and behavior of real applications (as Dhrystone)

• All three are discredited today (compiler writer and

architect can conspire to make the computer appear

faster than on real applications)

Intensive Computation - 2018/2019 9

Taking advantage of parallelism

• In the design and analysis of computers, we need

• Principles and guidelines

• Observations about design

• Equations to evaluate alternatives

• Taking advantage of parallelism is one of the most

important methods for improving performance

• Parallelism at the system level – scalability

• Parallelism at the level of an individual processor - parallelism

among instructions

• Parallelism at the level of digital design - memories and ALUs

Intensive Computation - 2018/2019 10

Taking advantage of parallelism

• Fundamental observations come from properties of

programs

• The most important program property that we regularly

exploit is the principle of locality

• Temporal locality states that recently accessed items are likely to

be accessed in the near future

• Spatial locality says that items whose addresses are near one

another tend to be referenced close together in time

Intensive Computation - 2018/2019 11

Taking advantage of parallelism

• An important and pervasive principle of computer design

is to focus on the common case:

• In making a design trade-off, favor the frequent case over the

infrequent case

• This principle applies when determining how to spend

resources, since the impact of the improvement is

higher if the occurrence is frequent

• In applying this simple principle, we have to decide what

the frequent case is and how much performance can be

improved by making that case faster

Intensive Computation - 2018/2019 12

Amdahl’s Law
• The performance gain obtained by improving some portion of a

computer can be calculated using Amdahl’s law

• Amdahl’s law:

• states that the performance improvement is limited by the fraction of the time

the faster mode can be used

• defines the speedup that can be gained by using a particular feature

𝒔𝒑𝒆𝒆𝒆𝒅𝒖𝒑

=
𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒆𝒏𝒕𝒊𝒓𝒆 𝒕𝒂𝒔𝒌 𝒖𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒎𝒆𝒏𝒕 𝒘𝒉𝒆𝒏 𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒆𝒏𝒕𝒊𝒓𝒆 𝒕𝒂𝒔𝒌 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒖𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒎𝒆𝒏𝒕

=
𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 𝒇𝒐𝒓 𝒆𝒏𝒕𝒊𝒓𝒆 𝒕𝒂𝒔𝒌𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒖𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒎𝒆𝒏𝒕

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 𝒇𝒐𝒓 𝒆𝒏𝒕𝒊𝒓𝒆 𝒕𝒂𝒔𝒌𝒖𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒎𝒆𝒏𝒕 𝒘𝒉𝒆𝒏 𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆

Intensive Computation - 2018/2019 13

Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup

from some enhancement, which depends on two factors:

1) The fraction of the computation time in the original computer

that can be converted to take advantage of the enhancement,

that is

Fractionenhanced = time with enhancement / total time

Example:

• A program that takes 60 seconds in total

• 20 seconds of the execution time can use an enhancement

• The fraction is: 20/60

• This value is always less than or equal to 1

Intensive Computation - 2018/2019 14

Amdahl’s law

• Amdahl’s law gives us a quick way to find the speedup

from some enhancement, which depends on two factors:

2) The improvement gained by the enhanced execution mode, that

is, how much faster the task would run if the enhanced mode

were used for the entire program:

Speedupenhanced = original mode time / enhanced mode time

Example:

• A portion of the program in the original mode is 5 seconds

• In the enhanced mode takes 2 seconds

• The improvement is 5/2

• This value is always greater than 1

Intensive Computation - 2018/2019 15

Amdahl’s law

• The execution time using the original computer with the

enhanced mode will be the time spent using the

unenhanced portion of the computer plus the time spent

using the enhancement:

• The overall speedup is the ratio of the execution times:

Intensive Computation - 2018/2019 16













enhanced

enhanced
enhancedoldnew

Speedup

Fraction
)Fraction – (1time Executiontime Execution

enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
)Fraction – (1

1

time Execution

time Execution
Speedup





Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the

Web serving application than the original processor

• Assume that the original processor is busy with computation

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the

enhancement?

Intensive Computation - 2018/2019 17

Example

• We want to enhance the processor used for Web serving

• The new processor is 10 times faster on computation in the

Web serving application than the original processor

• Assume that the original processor is busy with computation

40% of the time and is waiting for I/O 60% of the time

• What is the overall speedup gained by incorporating the

enhancement?

Fractionenhanced = 0.4 Speedupenhanced = 10

Intensive Computation - 2018/2019 18

6.1
0.64

1

10

0.4
0.4)– (1

1

Speedup

Fraction
)Fraction– (1

1
Speedup

enhanced

enhanced
enhanced

overall 









Amdahl’s law

• Amdahl’s law can serve as a guide to:

• how much an enhancement will improve performance

• how to distribute resources to improve cost-performance

• The goal is to spend resources proportional to where time

is spent

• Amdahl’s law is useful

• for comparing the overall system performance of two

alternatives

• to compare two processor design alternatives

Intensive Computation - 2018/2019 19

Example

• A common transformation in graphics processors is square

root

• Implementations of floating-point square root (FPSQR) vary

significantly in performance among processors for graphics

• Suppose

• FPSQR is responsible for 20% of the execution time of a critical

graphics benchmark and

• FP instructions are responsible for half of the execution time for

the application

Intensive Computation - 2018/2019 20

Example

• Two proposals:

• To enhance the FPSQR hardware and speed up this operation

by a factor of 10

• To try to make all FP instructions in the graphics processor run

faster by a factor of 1.6

• Compare these two design alternatives

Intensive Computation - 2018/2019 21

Example

• We can compare these two alternatives by comparing the

speedups

Intensive Computation - 2018/2019 22

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





Example

• We can compare these two alternatives by comparing the

speedups

Intensive Computation - 2018/2019 23

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP 





Example

• We can compare these two alternatives by comparing the

speedups

• Improving the performance of the FP operations overall is

slightly better because of the higher frequency

Intensive Computation - 2018/2019 24

1.22
0.82

1

10

0.2
0.2) – (1

1
SpeedupFPSQR 





1.23
0.8125

1

1.6

0.5
0.5) – (1

1
SpeedupFP 





Processor Performance Equation

• All computers are constructed using a clock running at a

constant rate

• Discrete time events are called ticks, clock ticks, clock

periods, clocks, cycles, or clock cycles

• Computer designers refer to the time of a clock period by

its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz)

• CPU time for a program can then be expressed two ways:

• CPU time = CPU clock cycles for a program × Clock cycle time

or

• CPU time = CPU clock cycles for a program / Clock rate

Intensive Computation - 2018/2019 25

Processor Performance Equation

• We can also count the number of instructions executed -

the instruction path length or instruction count (IC)

• If we know the number of clock cycles and the

instruction count, we can calculate the average number

of clock cycles per instruction (CPI):

CPI = CPU clock cycles for a program / IC

• From this formula we obtain

• CPU clock cycles for a program = CPI x IC

Intensive Computation - 2018/2019 26

Processor Performance Equation

• This allows us to use CPI in the execution time formula and

obtain the performance equation:

• CPU time = IC × CPI × Clock cycle time

• In fact (using the units of measurement) we have:

• Observe that processor performance is equally

dependent upon clock cycle (or rate), clock cycles per

instruction, and instruction count

Intensive Computation - 2018/2019 27

 time CPU
Program

Seconds

cycles Clock

Seconds

nsInstructio

cycles Clock

Program

nsInstructio
 time cycle Clock CPI IC





Processor Performance Equation

• It is useful to calculate the number of total processor clock

cycles as

• where

• ICi is the number of times instruction i is executed in a program

• CPIi is the average number of clocks per instruction for instr. i

Intensive Computation - 2018/2019 28

i

n

i

i CPIIC cycles clock CPU 
1

Processor Performance Equation

• This expression can be used to express CPU time as

• and the overall CPI as

Intensive Computation - 2018/2019 29

i

n

i

i

i

n

i

i

CPI
count nInstructio

IC

count nInstructio

CPIIC

 CPI 



 






1

1

time cycle ClockCPIIC time CPU i

n

1i
i 








 



Example

• Suppose we have made the following measurements in

the previous example :

• Frequency of FP operations = 25%

• Average CPI of FP operations = 4.0

• Average CPI of other instructions = 1.33

• Frequency of FPSQR = 2%

• CPI of FPSQR = 20

• Assume that the two design alternatives are:

• To decrease the CPI of FPSQR to 2 or

• To decrease the average CPI of all FP operations to 2.5

• Compare these two design alternatives using the

processor performance equation

Intensive Computation - 2018/2019 30

Example

• Observe that only the CPI changes

• The clock rate and instruction count remain identical

• We start by finding the original CPI with no enhancement:

Intensive Computation - 2018/2019 31

2.0 75%) (1.33 25%) (4

count nInstructio

IC
CPI CPI original






n

i

i
i

1

Example

• We can compute the CPI for the enhanced FPSR by

subtracting the cycles saved from the original CPI:

• We can compute the CPI for the enhancement of all FP

instructions (the same way or) by summing the FP and

non-FP CPIs:

• Since the CPI of the overall FP enhancement is slightly

lower, its performance will be marginally better

Intensive Computation - 2018/2019 32

1.625 75%) (1.33 25%) (2.5 CPI FP new 

1.64 2)-(20 2% - 2

) CPI- (CPI2%- CPI CPI only FPSR newFPSR oldoriginalFPSR new





Example

• The speedup for the FPSR enhancement is

• The speedup for the overall FP enhancement is

Intensive Computation - 2018/2019 33

1.23
1.625

2.0

CPI

CPI

CPI cycle Clock IC

CPI cycle Clock IC

time CPU

time CPU
 Speedup

FPnew

original

FPnew

original

FPnew

original

FPnew









1.22
1.64

2.0

CPI

CPI

time CPU

time CPU
 Speedup

FPSR

original

FPSR

original

FPSR 

Conclusions

• It is often easier to use the processor performance

equation than Amdahl’s law

• In fact,

• It is often possible to measure the constituent parts of the

processor performance equation

• It may be difficult to measure things such as the fraction of

execution time for which a set of instructions is responsible

• In practice, this would probably be computed by summing the

product of the instruction count and the CPI for each of the

instructions in the set

• Hence, the starting point is often individual instruction

count and CPI measurements  performance equation

Intensive Computation - 2018/2019 34

