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Efficient number representations

• Representations different from the binary and 2’s complement 
representations are studied to obtain a faster arithmetic

• We need to consider the impact of changing representation on:
• Standard operations of ALU:

• Zero recognition

• Arithmetic comparison

• Sign detection

• Conversions:

• Forward conversion from binary to the new representation

• Reverse conversion from the new representation to binary

• We consider the following examples of representation:
• Redundant representations

• Residue number systems
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REDUNDANT NUMBER SYSTEMS
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Redundant number systems
• Conventional radix-r systems use [0, r-1] digit set

radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• If the digit set (in radix-r system) contains more than r digits, the 
system is redundant
• radix-2 → 0, 1, 2 or -1, 0, 1

• radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

• radix-10 → -6, -5,- 4, -3, -2, -1, 0, 1, 2, 3, 4, 5 

• Redundancy may result from adopting the digit set wider than 
radix and the number interpretation is conventional

• Redundancy – representation of numbers is not unique
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Signed-digit numbers

• A radix-r redundant signed-digit number system is based on 
digit set S = {- β, -(β - 1), … , -1, 0, 1, … , α}, 

where

• The digit set S contains more than r values multiple 
representations for any number in signed digit format    
redundant

• A symmetric signed digit has α = β

• Carry-free addition is an attractive property of redundant
signed-digit numbers
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Signed digit representation

• In mathematical notation for numbers, signed-digit 
representation is a positional system with signed digits

• The representation may not be unique

• Signed-digit representation can be used to accomplish fast 
addition of integers because it can eliminate chains of 
dependent carries
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MODIFIED SIGNED DIGIT

REPRESENTATION
A. K. Cherri, M. A. Karim, “Modified-signed digit arithmetic using an 

efficient symbolic substitution”, Appl. Opt. (1988)
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Modified signed digit representation
• The set of digit is 

• The representation is not unique:

• The number of possible representation depends on the length of 
the sequence of digits

• To perform the addition, truth table are used

Intensive Computation - 2018/2019 8

   1,0,11,0,1 

712481111

7180011

71281011









Modified signed digit representation
• Truth tables 

• Three steps are needed to obtain the sum
• Left table is applied in step 1 and 3

• Right table is applied in step 2

• Output: sum  lower row - complemented sum  upper row
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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RB - REDUNDANT BINARY NUMBER 

REPRESENTATION

G. A. De Biase, A. Massini “Redundant binary number representation 

for an inherently parallel arithmetic on optical computers”, 

Appl. Opt., 32 (1993)
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RB - Redundant Binary Representation

• An integer D obtained by

• This weight sequence characterizes the RB number 
representation and is:

• All position weights are doubled: the left digit is called r 
(redundant) and the right digit n (normal)
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RB - Redundant Binary Representation

• RB representation of a number can be obtained from its binary 
representation by the following recoding rules:  

0 00 1 01

• The RB number obtained in this way is in canonical form

• This coding operation is performable in parallel in constant 
time (one elemental logic step)
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RB - Redundant Binary Representation

• Each RB number has a canonical form and several redundant 
representations

• Examples of unsigned RB numbers (canonical and redundant)
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1010101010010101100101011117
0100111010000110000101001106
1000101000010100100100011015
0001110011001000000100001004

0010100010010001010113

0000110010000001000102

0000100000010011

0000000000



Table for addition

• Truth table
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Table for addition

• Two steps: parallel application of the table 2 on all rn pairs

• Output: sum on the lower row and zero on the upper row
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• In analogy with the 2's complement binary system, a signed RB 
number is obtained by

n even

• The same procedure of the addition of two unsigned RB 
numbers obtains the algebraic sum of two signed RB numbers 
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RB - Redundant Binary Representation

• The additive inverse of an RB number is obtained by following a 
procedure similar to that used in the 2's complement number 
system, taking into account that the negation of all RB 
representations of the number 0 is (-2)10 whereas in the 2's 
complement binary system it is (- 1) 10

• Procedure
• Step 1 - all digits of the RB number are complemented

• Step 2 - algebraic sum between the RB canonical form of (2) 10 and the RB 
number

• The output is the additive inverse of the considered RB number
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RB - Redundant Binary Representation

• The decoding of RB numbers, with the correct truncation, can 
be performed with the following procedure that derives directly 
from the RB number definition

• Procedure 

• The input is RBn and RBr

• Binary addition RB + RBr.

• Only the first n/2 bits are considered

• The output is the corresponding binary or 2's complement
binary number
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RB - Redundant Binary Representation

• Zero and Its Detection

• In the case of unsigned RB numbers the (0)10 has only the RB 
canonical form and is easily detectable

• In the case of signed RB numbers, (0)10 has many RB 
representations

• Example for six-digit signed RB numbers: 

(000000) (101011) (101100)

(100111) (010111) (011100)

• This difficulty can be overcome by using the number (- 1) 10

instead of (0) 10
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RB - Redundant Binary Representation

• Zero and Its Detection

• In fact, any redundant representation of the number (- 1) 10

obtains the canonical representation of the (- 1) 10 if the 
following rules acting on rn pairs are applied 

0101 1001

• Then, if the result of an algebraic sum between an RB number 
and an RB representation of (-1) 10 is an RB representation of the 
number (-1) 10  again, this RB number is a representation of (0) 10
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RB - Redundant Binary Representation

• Zero and Its Detection

• Then the procedure to detect the number (0) 10 is:

Procedure
• Input an RB number

• Step 1 - algebraic sum between the RB canonical form of (- 1) 10 and the RB 
number

• Step 2 - application of rules to the result

• Output is the RB canonical form of (-1) 10 or of another RB number
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RESIDUE NUMBER SYSTEM
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Residue number systems
• Residue number systems are based on the congruence relation:

• Two integers a and b are said to be congruent modulo m if m divides 
exactly the difference of a and b

• We write a ≡ b (mod m) 

• For example
• 10 ≡ 7 (mod 3)

• 10 ≡ 4 (mod 3)

• 10 ≡ 1 (mod 3)

• 10 ≡ -2 (mod 3)

• The number m is a modulus or base, and we assume that its 
values exclude 1, which produces only trivial congruences
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Residue number systems
• In fact:

• If q and r are the quotient and remainder, respectively, of the 
integer division of a by m - that is: a = q:m + r

 then, by definition, we have a ≡ r (mod m)

• The number r is said to be the residue of a with respect to m, and 
we shall usually denote this by r = |a|m

• The set of m smallest values, {0; 1; 2; … ;m – 1}, that the residue 
may assume is called the set of least positive residues modulo m
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Residue number systems
• Suppose we have a set {m1; m2; …; mN} of N positive and 

pairwise relatively prime moduli

• Let M be the product of the moduli M=m1xm2x …xmN

• [0; M-1] is the range of representation

• We write the representation in the form <x1; x2; …; xN>, where 
xi = |X|mi , and we indicate the relationship between X and its 
residues by writing X ≈ <x1; x2; …; xN>

• Example: in the residue system {2, 3, 5}, M=30 and 

8  <0, 2, 3>

16  <0, 1, 1>
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Residue number systems
• Every number X < M has a unique representation in the 

residue number system, which is the sequence of residues 
<|X|mi : 1 ≤ i ≤ N>

• A partial proof of uniqueness is as follows:
• Suppose X1 and X2 are two different numbers with the same residue 

representation

• Then |X1 |mi = | X2 |mi , and so | X1 - X2 |mi = 0

• Therefore X1 - X2 is the least common multiple (lcm) of mi

• But if the mi are relatively prime, then their lcm is M, and it must be that 
X1 - X2 is a multiple of M

• So it cannot be that X1 < M and X2 < M

• Therefore, the representation <|X|mi : 1 ≤ i ≤ N> is unique and may be 
taken as the representation of X
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Residue number systems
• The number M is called the dynamic range of the RNS, because 

the number of numbers that can be represented is M

• For unsigned numbers, that range is [0; M - 1]

• Representations in a system in which the moduli are not 
pairwise relatively prime will be not be unique: two or more 
numbers will have the same representation
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Relatively prime Relatively non-prime

N m1=2 m2=3 m3=5 m1=2 m2=4 m3=6

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 0 2 2 0 2 2

3 1 0 3 1 3 3

4 0 1 4 0 0 4

5 1 2 0 1 1 5

6 0 0 1 0 2 0

7 1 1 2 1 3 1

8 0 2 3 0 0 2

9 1 0 4 1 1 3

10 0 1 0 0 2 4

11 1 2 1 1 3 5

12 0 0 2 0 0 0

13 1 1 3 1 1 1

14 0 2 4 0 2 2

15 1 0 0 1 3 3



Residue number systems
• The computation of the residues in the case of negative 

numbers is obtained by complementing the residues:

ۦ ۧ𝑋 𝑚𝑖
= ൞

ۦ ۧ𝑋 𝑚𝑖
if 𝑋 ≥ 0

ർ ඀𝑚𝑖 − ۦ ۧ|𝑋| 𝑚𝑖 𝑚𝑖

if 𝑋 < 0
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m1=2 m2=3 m3=5

0 0 0 0

1 1 1 1

2 0 2 2

3 1 0 3

4 0 1 4

5 1 2 0

… …. …. ….

14 0 2 4

15 1 0 0

16 0 1 1 -14

17 1 2 2 -13

18 0 0 3 -12

… …. …. …. …



Residue number systems
• Ignoring other, more practical, issues, the best moduli are 

probably prime numbers

• For computer applications, it is important to have moduli-sets 
that facilitate both efficient representation and balance, 
meaning that the differences between the moduli should be as 
small as possible
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Residue number systems
• Take, for example, the choice of 13 and 17 for the moduli that 

are adjacent prime numbers

• The dynamic range is 221

• With a straightforward binary encoding:
• 4 bits will be required to represent 13 

• 5 bits will be required to represent 17

Intensive Computation - 2018/2019 38



Residue number systems
• The representational efficiency is:

• In the first case 13/16

• In the second case is 17/32

• If instead we chose 13 and 16, then the representational 
efficiency:
• is improved to 16/16 in the second case 

• but at the cost of reduction in the range (down to 208)

• With the better balanced pair, 15 and 16, we would have:
• a better efficiency 15/16 and 16/16 

• A greater range: 240
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Residue number systems
• It is also useful to have moduli that simplify the 

implementation of the arithmetic operations

• This means that arithmetic on residue digits should not 
deviate too far from conventional arithmetic, which is just 
arithmetic modulo a power of two

• A common choice of prime modulus that does not complicate 
arithmetic and which has good representational efficiency is 
mi = 2i – 1
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Residue number systems
• Not all pairs of numbers of the form 2i – 1 are relatively prime

• It can be shown that that 2j - 1 and 2k - 1 are relatively prime if 
and only if j and k are relatively prime

• For example:

• 24-1= 15 15=3x5

• 25-1= 31 31 prime

• 26-1= 63 63=3x7

• 27-1= 127 127 prime

• 28-1= 255 255=3x5x17
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Residue number systems
• Many moduli sets are based on these choices, but there are 

other possibilities; for example, moduli-sets of the form {2n-1; 
2n; 2n +1} are among the most popular in use

• At least four considerations for the selection of moduli
• The selected moduli must provide an adequate range whilst also 

ensuring that RNS representations are unique

• The efficiency of binary representations; a balance between the 
different moduli in a given moduli-set is also important

• The implementations of arithmetic units for RNS should to some extent 
be compatible with those for conventional arithmetic, especially given 
the legacy that exists for the latter

• The size of individual moduli
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Residue number systems
• One of the primary advantages of RNS is that certain RNS-

arithmetic operations do not require carries between digits

• But, this is so only between digits

• Since a digit is ultimately represented in binary, there will be 
carries between bits, and therefore it is important to ensure 
that digits ( the moduli) are not too large
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Residue number systems
• Small digits make it possible to realize cost-effective table-

lookup implementations of arithmetic operations

• But, on the other hand, if the moduli are small, then a large 
number of them may be required to ensure a sufficient 
dynamic range

• The choices depend on applications and technologies
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Residue number systems
Negative numbers

• As with the conventional number systems, any one of the radix 
complement, diminished-radix complement, or sign-and-
magnitude notations may be used in RNS 

• The merits and drawbacks of choosing one over the other are 
similar to those for the conventional notations

• However, the determination of sign is much more difficult with 
the residue notations, as is magnitude-comparison

• This problem imposes many limitations on the application of 
RNS and we deal with just the positive numbers
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Residue number systems
Basic arithmetic

• Addition/subtraction and multiplication are easily implemented 
with residue notation, depending on the choice of the moduli

• Division is much more difficult due to the difficulties of sign-
determination and magnitude-comparison
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Residue number systems
Basic arithmetic

• Residue addition is carried out by individually adding 
corresponding digits

• A carry-out from one digit position is not propagated into the 
next digit position

• As an example, with the moduli-set {2; 3; 5; 7}:
• the representation of 17 is <1; 2; 2; 3>

• the representation of 19 is <1; 1; 4; 5>

• adding the two residue numbers yields <0; 0; 1; 1>, which is the 
representation for 36 in that system
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Residue number systems
Basic arithmetic

• Subtraction may be carried out by negating (in whatever is the 
chosen notation) the subtrahend and adding to the minuend

• This is straightforward for numbers in diminished-radix 
complement or radix complement notation

• For sign-and-magnitude representation, a slight modification of 
the algorithm for conventional sign-and-magnitude is 
necessary: 
• the sign digit is fanned out to all positions 

• addition proceeds as in the case for unsigned numbers but with a 
conventional sign-and-magnitude algorithm.
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Residue number systems
Basic arithmetic

• Multiplication too can be performed simply by multiplying 
corresponding residue digit-pairs, relative to the modulus for 
their positionmultiply digits and ignore or adjust an 
appropriate part of the result

• As an example, with the moduli-set {2; 3; 5; 7}:
• 17  <1; 2; 2; 3>

• 19  <1; 1; 4; 5>

• their product, 323 is <1; 2; 3; 1>
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Residue number systems
Basic arithmetic

• Basic fixed-point division consists, essentially, of a sequence of 
subtractions, magnitude-comparisons, and selections of the 
quotient-digits

• But comparison in RNS is a difficult operation, because RNS is 
not positional or weighted

• Example:
• moduli-set {2; 3; 5; 7} 

• the number represented by <0; 0; 1; 1> is almost twice that represented 
by <1; 1; 4; 5> 

• but this is far from apparent
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Residue number systems
Forward conversion

• The most direct way to convert from a conventional 
representation to a residue one is to divide by each of the given 
moduli and then collect the remainders

• This is a costly operation if the number is represented in an 
arbitrary radix and the moduli are arbitrary

• If number is represented in radix-2 (or a radix that is a power of 
two) and the moduli are of a suitable form (e.g. 2n-1), then 
these procedures that can be implemented with more 
efficiency
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Residue number systems
Reverse conversion

• The conversion from residue notation to a conventional 
notation is more difficult (conceptually, if not necessarily in the 
implementation) and so far has been one of the major 
impediments to the adoption use of RNS
• One way in which it can be done is to assign weights to the digits of a 

residue representation and then produce a positional (weighted) mixed-
radix representation that can then be converted into any conventional
form

• Another approach involves the use of the Chinese Remainder Theorem, 
which is the basis for many algorithms for conversion from residue to 
conventional notation
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