
Representations for fast
arithmetic

Intensive Computation

Annalisa Massini
2018/2019

Efficient number representations

• Representations different from the binary and 2’s complement
representations are studied to obtain a faster arithmetic

• We need to consider the impact of changing representation on:
• Standard operations of ALU:

• Zero recognition

• Arithmetic comparison

• Sign detection

• Conversions:

• Forward conversion from binary to the new representation

• Reverse conversion from the new representation to binary

• We consider the following examples of representation:
• Redundant representations

• Residue number systems

Intensive Computation - 2018/2019 2

REDUNDANT NUMBER SYSTEMS

Intensive Computation - 2018/2019 3

Redundant number systems
• Conventional radix-r systems use [0, r-1] digit set

radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• If the digit set (in radix-r system) contains more than r digits, the
system is redundant
• radix-2 → 0, 1, 2 or -1, 0, 1

• radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

• radix-10 → -6, -5,- 4, -3, -2, -1, 0, 1, 2, 3, 4, 5

• Redundancy may result from adopting the digit set wider than
radix and the number interpretation is conventional

• Redundancy – representation of numbers is not unique

Intensive Computation - 2018/2019 4

Signed-digit numbers

• A radix-r redundant signed-digit number system is based on
digit set S = {- β, -(β - 1), … , -1, 0, 1, … , α},

where

• The digit set S contains more than r values multiple
representations for any number in signed digit format 
redundant

• A symmetric signed digit has α = β

• Carry-free addition is an attractive property of redundant
signed-digit numbers

Intensive Computation - 2018/2019 5

1-βα,1 r

Signed digit representation

• In mathematical notation for numbers, signed-digit
representation is a positional system with signed digits

• The representation may not be unique

• Signed-digit representation can be used to accomplish fast
addition of integers because it can eliminate chains of
dependent carries

Intensive Computation - 2018/2019 6

MODIFIED SIGNED DIGIT

REPRESENTATION
A. K. Cherri, M. A. Karim, “Modified-signed digit arithmetic using an

efficient symbolic substitution”, Appl. Opt. (1988)

Intensive Computation - 2018/2019 7

Modified signed digit representation
• The set of digit is

• The representation is not unique:

• The number of possible representation depends on the length of
the sequence of digits

• To perform the addition, truth table are used

Intensive Computation - 2018/2019 8

   1,0,11,0,1 

712481111

7180011

71281011







Modified signed digit representation
• Truth tables

• Three steps are needed to obtain the sum
• Left table is applied in step 1 and 3

• Right table is applied in step 2

• Output: sum  lower row - complemented sum  upper row

Intensive Computation - 2018/2019 9

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1

-1

0

0

0

0 -1

0

0

0

1

0

1 0

0

1

0

0

1

Modified signed digit representation
• Example

Intensive Computation - 2018/2019 10

1001111

911011



First addend

-1 0 1

Se
co

n
d

ad
d

en
d -

1
0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

Modified signed digit representation
• Example

Intensive Computation - 2018/2019 11

011100

10100

1001111

911011



First addend

-1 0 1

Se
co

n
d

ad
d

en
d -

1
0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

Modified signed digit representation
• Example

Intensive Computation - 2018/2019 12

0

0

00100

11010

11100

10100

1001111

911011



First addend

-1 0 1

Se
co

n
d

ad
d

en
d -

1
0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

Modified signed digit representation
• Example

Intensive Computation - 2018/2019 13

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -

1
0

-1
1

-1
0

0

0 1
-1

0
0

-1
1

1 0
0

-1
1

0
1

First addend

-1 0 1

Se
co

n
d

ad
d

en
d -1 0

-1
-1

0
0

0

0 -1
0

0
0

1
0

1 0
0

1
0

0
1

111000

111000

00100

11010

11100

10100

1001111

911011





0

0

RB - REDUNDANT BINARY NUMBER

REPRESENTATION

G. A. De Biase, A. Massini “Redundant binary number representation

for an inherently parallel arithmetic on optical computers”,

Appl. Opt., 32 (1993)

Intensive Computation - 2018/2019 14

RB - Redundant Binary Representation

• An integer D obtained by

• This weight sequence characterizes the RB number
representation and is:

• All position weights are doubled: the left digit is called r
(redundant) and the right digit n (normal)

Intensive Computation - 2018/2019 15

nrnrnrnr
11224488

 2/
1

0

2
ii

n

i

iaD








RB - Redundant Binary Representation

• RB representation of a number can be obtained from its binary
representation by the following recoding rules:

0 00 1 01

• The RB number obtained in this way is in canonical form

• This coding operation is performable in parallel in constant
time (one elemental logic step)

Intensive Computation - 2018/2019 16

RB - Redundant Binary Representation

• Each RB number has a canonical form and several redundant
representations

• Examples of unsigned RB numbers (canonical and redundant)

Intensive Computation - 2018/2019 17

1010101010010101100101011117
0100111010000110000101001106
1000101000010100100100011015
0001110011001000000100001004

0010100010010001010113

0000110010000001000102

0000100000010011

0000000000

Table for addition

• Truth table

Intensive Computation - 2018/2019 18

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

Table for addition

• Two steps: parallel application of the table 2 on all rn pairs

• Output: sum on the lower row and zero on the upper row

Intensive Computation - 2018/2019 19

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

RB - Redundant Binary Representation

• Example

Intensive Computation - 2018/2019 20

1101101100

811101000

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

RB - Redundant Binary Representation

• Example

Intensive Computation - 2018/2019 21

00110010

01010100

1101101100

811101000

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

RB - Redundant Binary Representation

• Example

Intensive Computation - 2018/2019 22

191011101

000000000

0110010

01010100

1101101100

811101000

0

120

7

 00 01 10 11

00 00
00

 10
00

 00
01

 10
01

01 00
01

 10
01

 00
10

 10
10

10 00
01

 10
01

 00
10

 10
10

11 00
10

 10
10

 00
11

 10
11

RB - Redundant Binary Representation

• In analogy with the 2's complement binary system, a signed RB
number is obtained by

n even

• The same procedure of the addition of two unsigned RB
numbers obtains the algebraic sum of two signed RB numbers

Intensive Computation - 2018/2019 23

   2/
3

0

2/
1

2

22
ii

n

i

i

ii
n

ni

i aaD











 

RB - Redundant Binary Representation

• The additive inverse of an RB number is obtained by following a
procedure similar to that used in the 2's complement number
system, taking into account that the negation of all RB
representations of the number 0 is (-2)10 whereas in the 2's
complement binary system it is (- 1) 10

• Procedure
• Step 1 - all digits of the RB number are complemented

• Step 2 - algebraic sum between the RB canonical form of (2) 10 and the RB
number

• The output is the additive inverse of the considered RB number

Intensive Computation - 2018/2019 24

RB - Redundant Binary Representation

• The decoding of RB numbers, with the correct truncation, can
be performed with the following procedure that derives directly
from the RB number definition

• Procedure

• The input is RBn and RBr

• Binary addition RB + RBr.

• Only the first n/2 bits are considered

• The output is the corresponding binary or 2's complement
binary number

Intensive Computation - 2018/2019 25

RB - Redundant Binary Representation

• Zero and Its Detection

• In the case of unsigned RB numbers the (0)10 has only the RB
canonical form and is easily detectable

• In the case of signed RB numbers, (0)10 has many RB
representations

• Example for six-digit signed RB numbers:

(000000) (101011) (101100)

(100111) (010111) (011100)

• This difficulty can be overcome by using the number (- 1) 10

instead of (0) 10

Intensive Computation - 2018/2019 26

RB - Redundant Binary Representation

• Zero and Its Detection

• In fact, any redundant representation of the number (- 1) 10

obtains the canonical representation of the (- 1) 10 if the
following rules acting on rn pairs are applied

0101 1001

• Then, if the result of an algebraic sum between an RB number
and an RB representation of (-1) 10 is an RB representation of the
number (-1) 10 again, this RB number is a representation of (0) 10

Intensive Computation - 2018/2019 27

RB - Redundant Binary Representation

• Zero and Its Detection

• Then the procedure to detect the number (0) 10 is:

Procedure
• Input an RB number

• Step 1 - algebraic sum between the RB canonical form of (- 1) 10 and the RB
number

• Step 2 - application of rules to the result

• Output is the RB canonical form of (-1) 10 or of another RB number

Intensive Computation - 2018/2019 28

RESIDUE NUMBER SYSTEM

Intensive Computation - 2018/2019 29

Residue number systems
• Residue number systems are based on the congruence relation:

• Two integers a and b are said to be congruent modulo m if m divides
exactly the difference of a and b

• We write a ≡ b (mod m)

• For example
• 10 ≡ 7 (mod 3)

• 10 ≡ 4 (mod 3)

• 10 ≡ 1 (mod 3)

• 10 ≡ -2 (mod 3)

• The number m is a modulus or base, and we assume that its
values exclude 1, which produces only trivial congruences

Intensive Computation - 2018/2019 30

Residue number systems
• In fact:

• If q and r are the quotient and remainder, respectively, of the
integer division of a by m - that is: a = q:m + r

 then, by definition, we have a ≡ r (mod m)

• The number r is said to be the residue of a with respect to m, and
we shall usually denote this by r = |a|m

• The set of m smallest values, {0; 1; 2; … ;m – 1}, that the residue
may assume is called the set of least positive residues modulo m

Intensive Computation - 2018/2019 31

Residue number systems
• Suppose we have a set {m1; m2; …; mN} of N positive and

pairwise relatively prime moduli

• Let M be the product of the moduli M=m1xm2x …xmN

• [0; M-1] is the range of representation

• We write the representation in the form <x1; x2; …; xN>, where
xi = |X|mi , and we indicate the relationship between X and its
residues by writing X ≈ <x1; x2; …; xN>

• Example: in the residue system {2, 3, 5}, M=30 and

8  <0, 2, 3>

16  <0, 1, 1>

Intensive Computation - 2018/2019 32

Residue number systems
• Every number X < M has a unique representation in the

residue number system, which is the sequence of residues
<|X|mi : 1 ≤ i ≤ N>

• A partial proof of uniqueness is as follows:
• Suppose X1 and X2 are two different numbers with the same residue

representation

• Then |X1 |mi = | X2 |mi , and so | X1 - X2 |mi = 0

• Therefore X1 - X2 is the least common multiple (lcm) of mi

• But if the mi are relatively prime, then their lcm is M, and it must be that
X1 - X2 is a multiple of M

• So it cannot be that X1 < M and X2 < M

• Therefore, the representation <|X|mi : 1 ≤ i ≤ N> is unique and may be
taken as the representation of X

Intensive Computation - 2018/2019 33

Residue number systems
• The number M is called the dynamic range of the RNS, because

the number of numbers that can be represented is M

• For unsigned numbers, that range is [0; M - 1]

• Representations in a system in which the moduli are not
pairwise relatively prime will be not be unique: two or more
numbers will have the same representation

Intensive Computation - 2018/2019 34

Intensive Computation - 2018/2019 35

Relatively prime Relatively non-prime

N m1=2 m2=3 m3=5 m1=2 m2=4 m3=6

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 0 2 2 0 2 2

3 1 0 3 1 3 3

4 0 1 4 0 0 4

5 1 2 0 1 1 5

6 0 0 1 0 2 0

7 1 1 2 1 3 1

8 0 2 3 0 0 2

9 1 0 4 1 1 3

10 0 1 0 0 2 4

11 1 2 1 1 3 5

12 0 0 2 0 0 0

13 1 1 3 1 1 1

14 0 2 4 0 2 2

15 1 0 0 1 3 3

Residue number systems
• The computation of the residues in the case of negative

numbers is obtained by complementing the residues:

ۦ ۧ𝑋 𝑚𝑖
= ൞

ۦ ۧ𝑋 𝑚𝑖
if 𝑋 ≥ 0

ർ ඀𝑚𝑖 − ۦ ۧ|𝑋| 𝑚𝑖 𝑚𝑖

if 𝑋 < 0

Intensive Computation - 2018/2019 36

m1=2 m2=3 m3=5

0 0 0 0

1 1 1 1

2 0 2 2

3 1 0 3

4 0 1 4

5 1 2 0

… …. …. ….

14 0 2 4

15 1 0 0

16 0 1 1 -14

17 1 2 2 -13

18 0 0 3 -12

… …. …. …. …

Residue number systems
• Ignoring other, more practical, issues, the best moduli are

probably prime numbers

• For computer applications, it is important to have moduli-sets
that facilitate both efficient representation and balance,
meaning that the differences between the moduli should be as
small as possible

Intensive Computation - 2018/2019 37

Residue number systems
• Take, for example, the choice of 13 and 17 for the moduli that

are adjacent prime numbers

• The dynamic range is 221

• With a straightforward binary encoding:
• 4 bits will be required to represent 13

• 5 bits will be required to represent 17

Intensive Computation - 2018/2019 38

Residue number systems
• The representational efficiency is:

• In the first case 13/16

• In the second case is 17/32

• If instead we chose 13 and 16, then the representational
efficiency:
• is improved to 16/16 in the second case

• but at the cost of reduction in the range (down to 208)

• With the better balanced pair, 15 and 16, we would have:
• a better efficiency 15/16 and 16/16

• A greater range: 240

Intensive Computation - 2018/2019 39

Residue number systems
• It is also useful to have moduli that simplify the

implementation of the arithmetic operations

• This means that arithmetic on residue digits should not
deviate too far from conventional arithmetic, which is just
arithmetic modulo a power of two

• A common choice of prime modulus that does not complicate
arithmetic and which has good representational efficiency is
mi = 2i – 1

Intensive Computation - 2018/2019 40

Residue number systems
• Not all pairs of numbers of the form 2i – 1 are relatively prime

• It can be shown that that 2j - 1 and 2k - 1 are relatively prime if
and only if j and k are relatively prime

• For example:

• 24-1= 15 15=3x5

• 25-1= 31 31 prime

• 26-1= 63 63=3x7

• 27-1= 127 127 prime

• 28-1= 255 255=3x5x17

Intensive Computation - 2018/2019 41

Residue number systems
• Many moduli sets are based on these choices, but there are

other possibilities; for example, moduli-sets of the form {2n-1;
2n; 2n +1} are among the most popular in use

• At least four considerations for the selection of moduli
• The selected moduli must provide an adequate range whilst also

ensuring that RNS representations are unique

• The efficiency of binary representations; a balance between the
different moduli in a given moduli-set is also important

• The implementations of arithmetic units for RNS should to some extent
be compatible with those for conventional arithmetic, especially given
the legacy that exists for the latter

• The size of individual moduli

Intensive Computation - 2018/2019 42

Residue number systems
• One of the primary advantages of RNS is that certain RNS-

arithmetic operations do not require carries between digits

• But, this is so only between digits

• Since a digit is ultimately represented in binary, there will be
carries between bits, and therefore it is important to ensure
that digits ( the moduli) are not too large

Intensive Computation - 2018/2019 43

Residue number systems
• Small digits make it possible to realize cost-effective table-

lookup implementations of arithmetic operations

• But, on the other hand, if the moduli are small, then a large
number of them may be required to ensure a sufficient
dynamic range

• The choices depend on applications and technologies

Intensive Computation - 2018/2019 44

Residue number systems
Negative numbers

• As with the conventional number systems, any one of the radix
complement, diminished-radix complement, or sign-and-
magnitude notations may be used in RNS

• The merits and drawbacks of choosing one over the other are
similar to those for the conventional notations

• However, the determination of sign is much more difficult with
the residue notations, as is magnitude-comparison

• This problem imposes many limitations on the application of
RNS and we deal with just the positive numbers

Intensive Computation - 2018/2019 45

Residue number systems
Basic arithmetic

• Addition/subtraction and multiplication are easily implemented
with residue notation, depending on the choice of the moduli

• Division is much more difficult due to the difficulties of sign-
determination and magnitude-comparison

Intensive Computation - 2018/2019 46

Residue number systems
Basic arithmetic

• Residue addition is carried out by individually adding
corresponding digits

• A carry-out from one digit position is not propagated into the
next digit position

• As an example, with the moduli-set {2; 3; 5; 7}:
• the representation of 17 is <1; 2; 2; 3>

• the representation of 19 is <1; 1; 4; 5>

• adding the two residue numbers yields <0; 0; 1; 1>, which is the
representation for 36 in that system

Intensive Computation - 2018/2019 47

Residue number systems
Basic arithmetic

• Subtraction may be carried out by negating (in whatever is the
chosen notation) the subtrahend and adding to the minuend

• This is straightforward for numbers in diminished-radix
complement or radix complement notation

• For sign-and-magnitude representation, a slight modification of
the algorithm for conventional sign-and-magnitude is
necessary:
• the sign digit is fanned out to all positions

• addition proceeds as in the case for unsigned numbers but with a
conventional sign-and-magnitude algorithm.

Intensive Computation - 2018/2019 48

Residue number systems
Basic arithmetic

• Multiplication too can be performed simply by multiplying
corresponding residue digit-pairs, relative to the modulus for
their positionmultiply digits and ignore or adjust an
appropriate part of the result

• As an example, with the moduli-set {2; 3; 5; 7}:
• 17  <1; 2; 2; 3>

• 19  <1; 1; 4; 5>

• their product, 323 is <1; 2; 3; 1>

Intensive Computation - 2018/2019 49

Residue number systems
Basic arithmetic

• Basic fixed-point division consists, essentially, of a sequence of
subtractions, magnitude-comparisons, and selections of the
quotient-digits

• But comparison in RNS is a difficult operation, because RNS is
not positional or weighted

• Example:
• moduli-set {2; 3; 5; 7}

• the number represented by <0; 0; 1; 1> is almost twice that represented
by <1; 1; 4; 5>

• but this is far from apparent

Intensive Computation - 2018/2019 50

Residue number systems
Forward conversion

• The most direct way to convert from a conventional
representation to a residue one is to divide by each of the given
moduli and then collect the remainders

• This is a costly operation if the number is represented in an
arbitrary radix and the moduli are arbitrary

• If number is represented in radix-2 (or a radix that is a power of
two) and the moduli are of a suitable form (e.g. 2n-1), then
these procedures that can be implemented with more
efficiency

Intensive Computation - 2018/2019 51

Residue number systems
Reverse conversion

• The conversion from residue notation to a conventional
notation is more difficult (conceptually, if not necessarily in the
implementation) and so far has been one of the major
impediments to the adoption use of RNS
• One way in which it can be done is to assign weights to the digits of a

residue representation and then produce a positional (weighted) mixed-
radix representation that can then be converted into any conventional
form

• Another approach involves the use of the Chinese Remainder Theorem,
which is the basis for many algorithms for conversion from residue to
conventional notation

Intensive Computation - 2018/2019 52

