
INTENSIVE COMPUTATION

Annalisa Massini Lecture 3

2018-2019

INTRODUCTION TO MATLAB

Part 2

Plotting

The function plot creates a 2D line plot - it can be used in different ways

• Example

» n = 31

» x = linspace(0,2*pi,n)

» y = sin(x)

» plot(x,y)

x is a vector of linearly spaced values between 0 and 2π

y is the vector of values of sine function evaluated at the values in x

Matlab - 2018/2019 3

Plotting

• Command plot is:

• plot(X,Y,options)

Where X is for abscissas and Y is for ordinates

options sets the line style, marker symbol, and color

• To plot multiple lines in the same windows, we can use two ways:

y2 = sin(x - .4);

y3 = sin(x - .8);

y4 = sin(x - 1.2);

• plot(x,y,x,y2,x,y3,x,y4)

• plot(x,[y;y2;y3;y4])

Matlab - 2018/2019 4

Plotting

 Another way to plot multiple line in the same window is by using
commands hold on and hold off:

» x = linspace(0,2*pi)

» y1 = cos(x)

» y2 = sin(x)

» plot(x,y1,’-’)

» hold on

» plot(x,y2,’--’)

» hold off

Matlab - 2018/2019 5

Plotting

 You can add a title and axis labels to the graph

» title(‘title of the graph’)

» xlabel(‘x axis’)

» ylabel(‘y axis’)

 axis - axis scaling and appearance

 legend - graph legend

 text - create text object in current axes
» text(x(70)+0.5,r(70),'r = -2x')

 grid on add grid lines for 2D and 3D plots

Matlab - 2018/2019 6

Plotting

Other functions for graphs are:

• loglog Log-log scale plot

• semilogx Semilogarithmic plot (x logarithmic, y linear)

• semilogy Semilogarithmic plot (x linear, y logarithmic)

• errorbar Plot error bars along curve

• bar Bar graph

• stairs Stairstep graph

• scatter Scatter plot

Matlab - 2018/2019 7

Plotting

subplot divides the current figure into grid, it numbers the cells by rows

» subplot(m,n,p)

divides the current figure into an m-by-n grid and plots in the grid
position specified by p

1

4

2

3

Matlab - 2018/2019 8

Plotting

fplot(fun, lims) plots a function

 fun, that must be a string

 between the limits specified by lims, specifying the x-axis limits

([xmin xmax]), or the x- and y-axes limits, ([xmin xmax ymin ymax])

» fun=‘1/(1+x^2)’;

» lims=[-5,5];

» fplot(fun,lims);

or the equivalent

» fplot(‘1/(1+x^2)’, [-5,5]);

Matlab - 2018/2019 9

Plotting

 fplot(fun,limits,LineSpec) plots fun using the line

specification LineSpec

fplot(fun, lims, ‘- -’)

fplot(fun, lims, ‘r -’)

 fplot can plot a vector of functions

fplot(‘[sin(t), sin(t-.25), sin(t-.5)]’,[0,2*pi])

Matlab - 2018/2019 10

Plotting

 ezplot plots the expression fun(x) over the default domain -2π < x <

2π, where fun(x) is an explicit function of only x

 ezplot(fun,[xmin,xmax]) plots fun(x) over the domain: xmin

< x < xmax

 Both for fplot and ezplot fun can be a function handle

fh = @tanh;

fplot(fh,[-2,2])

Matlab - 2018/2019 11

Plotting

3D plot with mesh and surf

 mesh and surf plot a surface

 mesh and surf create 3D surface plots of matrix data generated by
the command meshgrid

» n=30; m=n;

» x=linspace(-2,2,n);

» y=linspace(-2,2,n);

» [X,Y]=meshgrid(x,y); % matrices X e Y for the grid

» Z=(1-Y).*cos(X.^2)+(X-1).*cos(Y.^2);

» mesh(X,Y,Z);

Matlab - 2018/2019 12

Data and file management

You can load variables from file into workspace with load

For example if you want analyze data coming from a program, like the

following, that are in the file data.dat

1 0.2000 -5

2 0.2500 -9

3 0.0740 -23

4 0.0310 -53

5 0.0160 -105

6 0.0090 -185

7 0.0050 -299

8 0.0030 -453

9 0.0020 -653

10 0.0020 -905

Matlab - 2018/2019 13

Data and file management

If you load these data with the function load, a matrix is created of size

10x3

>> load data.dat

>> whos

Name Size Bytes Class

data 10x3 240 double array

Grand total is 30 elements using 240 bytes

load filename is the command form

load ’filename’ is the function form

Matlab - 2018/2019 14

Data and file management

>> M = load('data.dat')

M =

1.0000 2.0000 -5.0000

2.0000 0.2500 -9.0000

3.0000 0.0740 -23.0000

4.0000 0.0310 -53.0000

5.0000 0.0160 -105.0000

6.0000 0.0090 -185.0000

7.0000 0.0050 -299.0000

8.0000 0.0030 -453.0000

9.0000 0.0020 -653.0000

10.0000 0.0020 -905.0000

Matlab - 2018/2019 15

Data and file management

save save workspace variables to file

 save (filename)

saves all variables from the current workspace in a formatted binary file (MAT-
file) called filename

if filename is not specified the file Matlab.mat is created

 save(filename,variables)

saves only the variables or fields of a structure array specified by variables

 save(filename,variables,fmt)

saves in the file format specified by fmt - variables is optional

Matlab - 2018/2019 16

Data and file management

Example

% mytable.m

n=input(‘Insert the number of values n:');

x=linspace(0,pi,n);

s=sin(x);

c=cos(x);

v=(1:n);

save mytable.dat v x s c -ascii

Matlab - 2018/2019 17

Data and file management

Example

To visualize the table saved in the previous example with save we can load
the file and display the table

% viewtable.m

load mytable.dat

A=mytable;

disp('--------------------------------------');

fprintf('k\t x(k)\t sin(x(k))\t cos(x(k))\n');

disp('--------------------------------------');

fprintf('%d\t %3.2f\t %8.5f\t %8.5f\n',A);

Matlab - 2018/2019 18

Data and file management

dir List directory

dir directory_name or dir(’directory_name’) lists the

files in a directory -- Pathnames and wildcards may be used

dir *.m lists all the M-files in the current directory

D = dir('directory_name') returns the results in an M-by-1

structure with the fields:

name -- filename

date -- modification date

bytes -- number of bytes allocated to the file

isdir -- 1 if name is a directory and 0 if not

datenum -- modification date as a MATLAB serial date number

Matlab - 2018/2019 19

Improving performance

Techniques for Improving Performance

 Preallocating Arrays

 for and while loops that incrementally increase the size of a data structure

each time through the loop can adversely affect performance and memory use

 resizing arrays often requires MATLAB to spend extra time looking for larger

contiguous blocks of memory, and then moving the array into those blocks

 you can improve code execution time by preallocating the maximum amount

of space required for the array

Matlab - 2018/2019 20

Improving performance

Techniques for Improving Performance

 Preallocating a Nondouble Matrix

 Use the following command to create an array having int8 values

A = zeros(100, 'int8')  EFFICIENT

This command allows to save time and memory

 Avoid using the following method, when you preallocate a block of memory to

hold a matrix of some type other than double

A = int8(zeros(100))  INEFFICIENT

 This statement preallocates a 100-by-100 matrix of int8, first by creating a

full matrix of double values, and then by converts each element to int8

Matlab - 2018/2019 21

Improving performance

Techniques for Improving Performance

 Vectorization

 MATLAB is optimized for operations involving matrices and vectors

 The process of revising loop-based, scalar-oriented code to use MATLAB

matrix and vector operations is called vectorization

 Vectorizing your code is worthwhile for several reasons:

 Appearance: Vectorized mathematical code appears more like the

mathematical expressions, making the code easier to understand

 Less Error Prone: Without loops, vectorized code is often shorter, and fewer

lines of code mean fewer programming errors

 Performance: Vectorized code often runs much faster

Matlab - 2018/2019 22

Improving performance

 Vectorizing Code for General Computing

 This code computes the sine of 1,001 values ranging from 0 to 10:
i = 0;

for t = 0:.01:10

i = i + 1;

y(i) = sin(t);

end

 This is a vectorized version of the same code:
t = 0:.01:10;

y = sin(t);

Matlab - 2018/2019 23

Improving performance

 Vectorizing Code for Specific Tasks

 This code computes the cumulative sum of a vector at every fifth element:
x = 1:10000;

ylength = (length(x) - mod(length(x),5))/5;

y(1:ylength) = 0;

for n= 5:5:length(x)

y(n/5) = sum(x(1:n));

end

 This code shows one way to accomplish the task:
x = 1:10000;

xsums = cumsum(x);

y = xsums(5:5:length(x));

Matlab - 2018/2019 24

Improving performance

 Array Operations

 Array operators perform the same operation for all elements in the data set

 Example

 collect the volume (V) of various cones by recording their diameter (D) and height (H)

 The volume for that single cone: V = 1/12*pi*(D^2)*H

 Consider 10,000 cones

 The vectors D and H each contain 10,000 elements

for n = 1:10000

V(n) = 1/12*pi*(D(n)^2)*H(n));

end

 Vectorized Calculation
V = 1/12*pi*(D.^2).*H;

Matlab - 2018/2019 25

More examples

Use built-in Matlab functions

• find is a very important function

• Returns indices of nonzero values

• Can simplify code and help avoid loops

• Basic syntax: index=find(cond)

» x=rand(1,100);

» inds = find(x>0.4 & x<0.6);

• Inds will contain the indices at which x has values between 0.4 and 0.6.

• This is what happens:

• x>0.4 returns a vector with 1 where true and 0 where false

• x<0.6 returns a similar vector

• The & combines the two vectors using an and

• The find returns the indices of the 1's

Matlab - 2018/2019 26

More examples

• Given x= sin(linspace(0,10*pi,100)), how many of the entries are positive?

• Using a loop and if/else
count=0;

for n=1:length(x)

if x(n)>0

count=count+1;

end

end

• Being more clever

count=length(find(x>0));

• Avoid loops! Built-in functions will make it faster to write and execute

Matlab - 2018/2019 27

PARALLEL TOOLBOX

Matlab - 2018/2019 28

Parallel Computing

• Parallel Computing: Using multiple computer processing units (CPUs)

at the same time to solve a problem

• The compute resources might be:

• computer with multiple processors or

• networked computers

• The computational problem should be able to:

• Be broken into discrete parts that can be solved simultaneously and

independently

• Be solved in less time with multiple compute resources than with a single compute

resource.

Matlab - 2018/2019 29

Parallel Computing in Matlab

• Parallel Computing Toolbox (PCT)

• shared memory, single node

• parfor

• Matlab Distributed Computing Server (MDCS)

• distributed computing across nodes

• spmd or parfor

• Built-in multithreading

• shared memory, single node

Matlab - 2018/2019 30

Parallel Computing in MATLAB

• MATLAB Parallel Computing Toolbox

• Workers limited only by resources on the node, see parallel preferences for the

default. Typically the entire node.

• Built in functions for parallel computing

• parfor loop (for running task-parallel algorithms on multiple processors)

• spmd (handles large datasets and data-parallel algorithms)

Matlab - 2018/2019 31

Primary Parallel Commands

• parpool

• mypool = parpool(4)

• … do work …

• delete(mypool)

• parfor (for loop)

• spmd (distributed computing for datasets)

Matlab - 2018/2019 32

parpool

• Use parpool to open a pool of workers to execute code on other

compute cores

• In Matlab you can think of workers like threads or processes

• You can open these workers locally (on the same node) or remotely

• Local access is enabled by the Parallel Computing Toolkit, remote

access is enabled via MDCS (Matlab Distributed Computing Server)

Matlab - 2018/2019 33

parpool

Starting a parallel pool
• mypool = parpool (‘local’,4);

• Mypool = parpool(4);

• Opens 4 workers locally on the same node

• Communication is fastest within a node

• Make sure you submitted your Matlab job with “-n X” where X matches the number of

workers you open! Use –N 1 to ensure the slots are all on the same node (i.e. local)

• Use display(mypool) to show information about the pool

Closing a parallel pool

• delete(mypool) to end parallel session

• If you didn’t save the name you can use
• delete (gcp(‘nocreate’));

Matlab - 2018/2019 34

Parallel for Loops (parfor)

• parfor loop executes a series of statements in the loop body in parallel

• A parfor-loop can provide significantly better performance than its

analogous for-loop, because several MATLAB workers can compute

simultaneously on the same loop

• Each execution of the body of a parfor-loop is an iteration

• The MATLAB client issues the parfor command and coordinates with

MATLAB workers to execute the loop iterations in parallel on the workers

in a parallel pool

• The client sends the necessary data on which parfor operates to

workers, where most of the computation is executed

• The results are sent back to the client and assembled

Matlab - 2018/2019 35

Parallel for Loops (parfor)

• MATLAB workers evaluate iterations in no particular order and

independently of each other

• Because each iteration is independent, there is no guarantee that the

iterations are synchronized in any way, nor is there any need for this

• If the number of workers is equal to the number of loop iterations, each

worker performs one iteration of the loop

• If there are more iterations than workers, some workers perform more than

one loop iteration; in this case, a worker might receive multiple iterations

at once to reduce communication time

Matlab - 2018/2019 36

Parallel for Loops (parfor)

A parfor-loop can be useful if you have a slow for-loop.

Consider parfor if you have:

• Some loop iterations that take a long time to execute.

• In this case, the workers can execute the long iterations simultaneously.

• Make sure that the number of iterations exceeds the number of workers. Otherwise,

you will not use all workers available.

• Many loop iterations of a simple calculation (such as a Monte Carlo

simulation or a parameter sweep)

• parfor divides the loop iterations into groups so that each worker executes some

portion of the total number of iterations.

Matlab - 2018/2019 37

Parallel for Loops (parfor)

A parfor-loop might not be useful if you have:

• Code that has vectorized out the for-loops

• If you want to make code run faster, first try to vectorize it

• Vectorizing code allows you to benefit from the built-in parallelism provided by the

multithreaded nature of many of the underlying MATLAB libraries

• However, if you have vectorized code and you have access only to local workers, then

parfor-loops may run slower than for-loops

• Do not devectorize code to allow for parfor; in general, this solution does not work well

• Loop iterations that take a short time to execute

• In this case, parallel overhead dominates your calculation

Matlab - 2018/2019 38

Parfor example

Will work in parallel, loop increments are not dependent on each other

mypool =parpool(2)

j=zeros(100,1); %pre-allocate vector

parfor i=1:100;

j(i,1)=i^4;

end;

delete(mypool);

Matlab - 2018/2019 39

Makes the loop

run in parallel

• DOES NOT work in parallel - it’s serial:
j=zeros(100,1); %pre-allocate vector

j(1)=5;

for i=2:100;

j(i,1)=2*j(i-1);

end;

Serial Loop example

j(i-1) needed to

calculate j(i,1)

 serial!

Example

for loop

parfor loop

Example

Generation and delation of the pool

Example

Measuring the serial time

Measuring the parallel time

Example

Measuring the serial time

Example

Measuring the serial time

Starting the parallel pool

Example

parpool consisting

of 2 workers

Example

parallel time

with 2 workers

Example

parpool consisting

of 4 workers

Example

parallel time

with 4 workers

Example

parpool consisting

of 8 workers

Example

Example

Measuring the parallel time

including the overhead

Example

Measuring the overhead

with 2 workers

Example

Example

Measuring the overhead

with 4 workers

• Single Program Multiple Data model

• Used to create parallel regions of code

• Values returning from the body of an spmd statement are converted to

Composite objects

• A Composite object contains references to the values stored on the

remote MATLAB workers, and those values can be retrieved using cell-

array indexing

• The actual data on the workers remains available on the workers for
subsequent spmd execution, so long as the Composite exists on the

client and the parallel pool remains open

spmd

• spmd distributes the array among MATLAB workers (each worker

contains a part of the array) but can still operate on entire array as 1 entity

• Inside the body of the spmd statement, each MATLAB worker has:

• a unique value of labindex,

• the total number of workers numlabs executing the block in parallel

• Data automatically transferred between workers when necessary

• Within the body of the spmd statement, communication functions for

communicating jobs (such as labSend and labReceive) can transfer data

between the workers

spmd

• Format
parpool (4)

spmd

statements

end

• Simple Example
parpool(4)

spmd

j=zeros(1e7,1);

end;

Spmd Format

• Result j is a Composite with 4 parts!

Spmd Examples

• A Composite is an object used for data distribution in MATLAB

• A Composite object has one entry for each worker

• parpool(12) creates 12X1 composite

• parpool(6) creates 6X1 composite

• You can create a composite in two ways:

• spmd

• c = Composite();

• This creates a composite that does not contain any data, just placeholders for data

• Also, one element per parpool worker is created for the composite

• Use smpd or indexing to populate a composite created this way

MATLAB Composites

%Perform a simple calculation in parallel, and plot the

results:

parpool(4)

spmd

% build magic squares in parallel

q = magic(labindex + 2);

% labindex - index of the lab/worker (e.g. 1)

end

for ii=1:length(q)

% plot each magic square

figure, imagesc(q{ii}); %plot a matrix as an image

end

delete (gcp(‘nocreate’));

Another spmd Example - creating graphs

• Results

Another spmd Example- creating graphs

• parfor is simpler to use

• parfor can’t control iterations

• parfor only does loops

• spmd more control over iterations

• spmd more control over data movement

• spmd is persistent

• spmd is more flexible and you can create parallel regions that do more

than just loop

parfor vs spmd

Built-in Multithreading

• Operations in the algorithm carried out by the function are easily

partitioned into sections that can be executed concurrently, and with

little communication or few sequential operations required

• Data size is large enough so that any advantages of concurrent

execution outweigh the time required to partition the data and manage

separate execution threads. For example, most functions speed up

only when the array is greater than several thousand elements.

• Operation is not memory-bound where the processing time is

dominated by memory access time. As a general rule, more complex

functions speed up better than simple functions.
• http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-

multithreaded-computation

Matlab - 2018/2019 64

IMAGES AND MATLAB

Matlab - 2018/2019 65

• A digital image can be considered as a large array of discrete dots,

each of which has a brightness associated with it

• These dots are called picture elements or more simply pixels

• The pixels surrounding a given pixel constitute its neighborhood

• A neighborhood can be characterized by its shape in the same way as

a matrix: 3x3 neighborhood, 5x7 neighborhood…

Images

66 Matlab - 2018/2019

• Binary: Each pixel is just black or white. Since there are only two

possible values for each pixel (0,1), we only need one bit per pixel

Types of digital image

67 Matlab - 2018/2019

• Grayscale: Each pixel is a shade of gray, normally from 0 (black) to

255 (white), that is each pixel can be represented exactly one byte

• Other greyscale ranges can be used, generally power of 2

68 Matlab - 2018/2019

Types of digital image

• True Color, or RGB: Each pixel has a particular color, described by

the amount of red, green and blue

• Each components has a range 0–255, for a total of 2563 different

possible colors

• Three matrices representing the red, green and blue values for

each pixel

69 Matlab - 2018/2019

Types of digital image

• Read and write images in Matlab

img = imread('apple.jpg');

dim = size(img);

figure;

imshow(img);

imwrite(img, 'output.bmp', 'bmp');

• Alternatives to imshow

imagesc(I)

imtool(I)

image(I)

70 Matlab - 2018/2019

Image Import and Export

Column 1 to 256

R
o

w
 1

 to
 2

5
6

How to build a matrix (or image)?

Intensity Image:

row = 256;

col = 256;

img = zeros(row, col);

img(100:105, :) = 0.5;

img(:, 100:105) = 1;

figure;

imshow(img);

71 Matlab - 2018/2019

Image and Matrices
[0, 0]

[256, 256]

Binary Image

row = 256;

col = 256;

img = rand(row,

col);

img = round(img);

figure;

imshow(img);

72 Matlab - 2018/2019

Image and Matrices

• image - create and display image object

• imagesc - scale and display as image

• imshow - display image

• colorbar - display colorbar

• getimage - get image data from axes

• truesize - adjust display size of image

• zoom - zoom in and zoom out of 2D plot

73 Matlab - 2018/2019

Image display

74

iminfo returns information
about the image

impixel(i,j) returns the
value of the pixel (i,j)

Matlab - 2018/2019

Image information

• gray2ind - intensity image to index image

• im2bw - image to binary

• im2double - image to double precision

• im2uint8 - image to 8-bit unsigned integers

• im2uint16 - image to 16-bit unsigned integers

• ind2gray - indexed image to intensity image

• mat2gray - matrix to intensity image

• rgb2gray - RGB image to grayscale

• rgb2ind - RGB image to indexed image

75 Matlab - 2018/2019

Image conversion

Arithmetic operations act by applying a simple function y=f(x) to
each gray value in the image

• Simple functions include adding or subtract a constant value
to each pixel: y = x±C (imadd, imsubtract)

• Multiplying each pixel by a constant: y = C·x (immultiply,
imdivide)

• Complement: For a grayscale image is its photographic
negative.

76 Matlab - 2018/2019

Point Processing: Arithmetic operations

Image: I Image: I+50

77 Matlab - 2018/2019

Addition

Image: I Image: I-80

78 Matlab - 2018/2019

Subtraction

Image: I Image: I*3

79 Matlab - 2018/2019

Multiplication

Image: I Image: I/2

80 Matlab - 2018/2019

Division

Image: I Image: 255-I

81 Matlab - 2018/2019

Complement

Image filtering

• Filtering is used to enhance or attenuate some characteric of the image

• Filtering modifies the pixels in an image based on some function of a

local neighborhood of each pixel

• Filtering generates a new image

• Linear filtering (cross-correlation, convolution) replace each pixel by a

linear combination of its neighbors

Filtering IMG FIMG I

Matlab - 2018/2019 82

Image filtering

• Linear filtering uses a matrix of coefficients W

• Imagine F is obtained from imagine I using W:

• Where W and the submatrix of I are:

 
 


a

as

b

bt

tysxItsWyxF],[],[],[

W[-1,-1] W[-1,0] W[-1,1]

W[0,-1] W[0,0] W[0,1]

W[1,-1] W[1,0] W[1,1]

I[x-1,y-1] I[x-1,y] I[x-1,y+1]

I[x,y-1] I[x,y] I[x,y+1]

I[x+1,y-1] I[x+1,y] I[x+1,y+1]

Matlab - 2018/2019 83

Image filtering

• Convolution Same as cross-correlation, except that the kernel is

flipped (horizontally and vertically)

• The prescription for the linear combination - W - is called the kernel

(or mask, or filter) of the cross-correlation/convolution

 
 


a

as

b

bt

tysxItsWyxF],[],[],[

Matlab - 2018/2019 84

Image filtering

• Smoothing filters: mean filter,

gaussian filter, median filter

• Sharpening filters

Matlab - 2018/2019 85

Smoothing filter

• Mean filter






















111

111

111

1









ba
Wmedio

Matlab - 2018/2019 86

Smoothing filter

• Gaussian filter: weights of filter follow a gaussian distribution

• Example

2

22

2

2

1
),(




yx

eyxG






























14741

41626164

72641267

41626164

14741

273

1
G

Matlab - 2018/2019 87

Gaussian filter

• Removes high-frequency components from the image (low-pass filter)

Matlab - 2018/2019 88

Median filter

The median filter selects a sample from the window, does not average

Matlab - 2018/2019 89

Median filter

Best suited for salt and pepper noise

Matlab - 2018/2019 90

Sharpening filter

• Sharpening filters emphasize fine details in the image, exactly
the opposite of the low-pass filter such as Gaussian filter  it
just uses a different convolution kernel

• A high-pass filter can be used to make an image appear
sharper.

• Usually the central pixel is positive, whereas adjacent pixels
are negative

Matlab - 2018/2019 91

Sharpening filter

• First, I is modified by using a gaussian filter

• Then Is cis obtained as a linaera combination among image I and the

Gauss filtered image, with a suitable value of k usually equal to 1

],[],[],[

],)[(],[],[

yxIkyxIyxI

yxIGyxIyxI

s 

 

Matlab - 2018/2019 92

