
INTENSIVE COMPUTATION

Annalisa Massini Lecture 2

2018-2019

INTRODUCTION TO MATLAB

Introduction

 MATLAB stands for MATrix LABoratory

 MATLAB is a high-level interpreted language and interactive

environment for numerical computation, data analysis, visualisation and

algorithm development

 MATLAB enables you to perform computationally intensive tasks faster

than with traditional programming languages such as C, C++ and Fortran

Matlab - 2018/2019 3

Introduction

• MATLAB started its life in the late 1970s as an interactive calculator built

on top of LINPACK and EISPACK, which were then state-of-the-art

Fortran subroutine libraries for matrix computation

• In the 80s Cleve Moler write the first version of MATLAB to give his

students at the University of New Mexico easy access to these libraries

without writing Fortran

• Matlab has many specialized toolboxes

Matlab - 2018/2019 4

Matlab Screen  Workspace

 View program variables

 Double click on a

variable to see it in the

Array Editor

Matlab - 2018/2019 5

 Command Window

 Type commands

 Current Directory

 View folders and m-files

 Command History

 view past commands

 save a whole session

using diary

Helpful commands

 help lists all the help topic – the most important function to learn Matlab

 help name the help text for the functionality specified by name,

such as a function, method, class, or toolbox

 who/whos show the current variables in the workspace

 dir list files in the current directory

 clear all delete all the variables present in the workspace

 clear var1 var2 clear variables var1 and var2

 lookfor search for keyword in all help entries

 lookfor topic

Matlab - 2018/2019 6

Variables and expressions

 In the Command window, the command prompt is " >> "

 Two types of statement:

evaluation of an expression

“>> expression”

assignment “>> variable = expression”

 The evaluation of an expression generates a matrix

assigned to the specified variable

 If you do not specify the name of the variable associated

to the result, the system “ans” is used

Examples:

• >> 8+2

ans =

10

• >> a = 5*ans

a =

50

• >> 6.9

ans =

6.9000

Matlab - 2018/2019 7

Variables and expressions

 If an expression ends with symbol “;” its value is not
displayed on the screen

 MATLAB names are case-sensitive

 No need to declare variables

 No need for types

• Built-in variables. Don’t use these names!

• i and j can be used to indicate complex numbers

• pi has the value 3.1415926…

• ans stores the last unassigned value (like on a calculator)

• Inf and –Inf are positive and negative infinity

• NaN represents ‘Not a Number’

Examples:

» b = 6+a;

» b

b =

56

Matlab - 2018/2019 8

Variables and expressions

 All variables are created with double precision

 The variables are 1x1 matrices with double precision

 Double precision values consist of 8 bytes

 The default display format for variables is 5-digit scaled, fixed-point

values

 We can ask for different display formats with command format

 The format function affects only how numbers display in the Command

Window, not how MATLAB computes or saves them

Matlab - 2018/2019 9

The command FORMAT

Command format changes the display format to the specified style

Let us consider x = 4/3

• format short 1.3333 0.0000 - 5-digit scaled, fixed-point default

• format long 1.33333333333333 - 15-digit fixed point

• format short e 1.3333e+000 - 5-digit floating point

• format long e 1.333333333333333e+000 - 15-digit floating point

• format short g 1.3333 – best between fixed point and floating point

• format long g 1.33333333333333 – best between fixed and floating pt

• format bank 1.33 – currency format (dollar or euro)

• format rat 4/3 - ratio of small integers

• format hex 3ff5555555555555 - hexadecimal (double-precision)

Matlab - 2018/2019 10

Double precision values

• Only a number of double precision values can be represented

• There is always a small gap between two consecutive values

• The command eps provides the floating-point relative accuracy

• eps returns the distance from 1.0 to the next largest double-precision

number, that is eps = 2^(-52)

• eps(x) is the positive distance from abs(X) to the next larger in magnitude

floating point number of the same precision as X

• realmin returns the smallest positive normalized floating-point number in

IEEE double precision about 2.2251e-308 that is 2^(-1022)

• realmax returns the largest finite floating-point number in IEEE double

precision, about 1.7976e+308 that is 2^1023

Matlab - 2018/2019 11

 The simplest way to create a matrix is to use the matrix constructor

operator []

 Create a row in the matrix by entering elements within the brackets

 Separate row elements with a comma or space

 For a new row, terminate the current row with a semicolon or return

» A = [7 8; 8.9 7; 9 8] » B = [1 2 3
4 5 6]

A =
7.0000 8.0000 B =
8.9000 7.0000 1 2 3
9.0000 8.0000 4 5 6

Matlab - 2018/2019 12

Matrices

Matrices

• Examples of functions for creating different kinds of matrices

• zeros(n,m) matrix nxm of all zeros

• ones(n,m) matrix nxm of all ones

• eye(n,m) matrix with ones on the diagonal (zeros elsewhere)

• rand(n,m) matrix of uniformly distributed random numbers

• diag([a11, a22, a33, ..., aNN]) diagonal matrix

• ….

Matlab - 2018/2019 13

Matrices

• Increase matrices by adding a row or a column having the correct size

• Column

• Given A = [1 2; 3 4; 5 6];

• Add the column of elements 7 8 9

A = [A [7; 8; 9]] oppure A=[A [7 8 9]’])

1 2 1 2 7

3 4  3 4 8

5 6 5 6 9

Matlab - 2018/2019 14

Matrices

 » A = [7 8; 8.9 7; 9 8]

A =

7.0000 8.0000

8.9000 7.0000

9.0000 8.0000

Note that elements of the matrix

are displayed as 5-digit values

• A(n,m) access element (n,m)

of matrix A

» A(1,2)

ans =

8

To access elements of a matrix  matrices’ name followed by round
brackets containing a reference to the row and column number

Matlab - 2018/2019 15

Matrices

The colon operator

 The colon operator (first:last) generates a 1-by-n matrix (or

vector) of sequential numbers from the first value to the last

 The default sequence is made up of values incrementing by 1

A = 10:15  A = 10 11 12 13 14 15

 The numeric sequence can include negative and fractional numbers

A = -2.5:2.5  A = -2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

Matlab - 2018/2019 16

Matrices

The colon operator

 You can also specify a step value with the colon operator in between the
starting and ending value (first:step:last).

 To generate a series of numbers from 10 to 50 incrementing by 5:

A = 10:5:50  A = 10 15 20 25 30 35 40 45 50

 You can increment by noninteger values

A = 3:0.2:3.8  A = 3.0000 3.2000 3.4000 3.6000 3.8000

 Yo can decrement, specifying a negative step value:

A = 9:-1:1  A = 9 8 7 6 5 4 3 2 1

Matlab - 2018/2019 17

• A(n,:) extracts row n of matrix
A

» A(2,:)

ans =

8.9000 7.0000

A(:,m) extracts column m of
matrix A

» A(:,1)

ans =

7.0000

8.9000

9.0000

Accessing matrix rows or matrix columns

The colon notation“:” allows to specify a sequence of values

The whole row (column) is extracted because the interval is not specified

Matlab - 2018/2019 18

Matrices

Matrices
diag(A)

 If A is a square matrix, diag(A) returns the main diagonal of A

» A=[5 6 ; 7 8] » diag(A)

A = ans =

5 6 5

7 8 8

• If A is a vector with n components, returns an n-by-n diagonal matrix having A as its main

diagonal

» diag(ans)

ans =

5 0

0 8

Matlab - 2018/2019 19

Matrices
 sum(A)
 If A is a vector, then sum(A) returns the sum of the elements

» sum(A)
ans =

36

 If A is a matrix, then sum(A) treats the columns of A as vectors and

returns a row vector whose elements are the sums of each column

» A=[0 1 2 ;3 4 5 ;6 7 8] » B=sum(A)
A = B =

0 1 2 9 12 15
3 4 5
6 7 8

Matlab - 2018/2019 20

Vectors

 A matrix with only one row or column (that is, a 1-by-n or n-by-1 array)

is a vector, such as:

C = [1, 2, 3] row vector

D = [10; 20; 30] column vector

 An array can be created with the colon operator

x = 1:6  x = 1 2 3 4 5 6

x = 0.5:0.1:0.7  x = 0.5000 0.6000 0.7000

Matlab - 2018/2019 21

Vectors

• A vector can be created by using linspace(a,b) or

linspace(a,b,N) that generates vectors of (N) points linearly

spaced between and including a and b

x = linspace(-1,1)  -1 0 1

x = linspace(-1,1,4)  -1.0000 -0.3333 0.3333 1.0000

●The logspace functions - logspace(a,b) or

logspace(a,b,N)-generate logarithmically spaced vectors

●The logspace function is useful for creating frequency vectors

● It is a logarithmic equivalent of linspace and the ":" or colon operator

Matlab - 2018/2019 22

Vector Indexing

• IMPORTANT: MATLAB indexing starts with 1, not 0

• The index argument can be a vector

• In this case, each element is looked up individually, and returned as a

vector of the same size as the index vector

»x=[12 13 5 8];

»a=x(2:3);  a=[13 5];

»b=x(1:end-1);  b=[12 13 5];

Matlab - 2018/2019 23

Matrix Indexing

• Matrices can be indexed in two ways

• using subscripts(row and column)

• using linear indices(as if matrix is a vector)

• Matrix indexing: subscripts or linear indices

Matlab - 2018/2019 24

Picking submatrices

»A = rand(5) % shorthand for 5x5 matrix

»A(1:3,1:2) % specify contiguous submatrix

»A([1 5 3], [1 4]) % specify rows and columns143398

)2,2(

)2,1(

8111

3214

)1,2(

)1,1(

b

b

b

b

















)4(

)3(

8111

3214

)2(

)1(

b

b

b

b

















Matrix Indexing

• MATLAB contains functions to help you find desired values within a vector

or matrix

»vec = [5 3 1 9 7]

• To get the minimum value and its index:

»[minVal,minInd] = min(vec);

• Max works the same way

• To find any the indices of specific values or ranges

»ind = find(vec == 9);

»ind = find(vec > 2 & vec < 6);

• To convert between subscripts and indices, use ind2sub and sub2ind

Matlab - 2018/2019 25

Scalar operators and functions

 Mathematical operators on scalars
add +, subtract -, divide /, multiply *, power ^

 Trigonometric function

 sin, cos

 tan

 asin, acos

 atan

The list of elementary math functions

• help elfun: trigonometric, esponential, complex, rounding and remainder

The list of specialized math functions

• help specfun: specialized, number theoretic, coordinate transforms

Matlab - 2018/2019 26

Scalar operators and functions
 Some mathematical operators on scalars:

 abs Absolute value and complex magnitude

 conj Complex conjugate

 real, imag Real and Imaginary part of complex number

 exp Exponential

 log, log10 Natural and base 10 logarithm

 sqrt Square root

 ceil Round toward positive infinity

 floor Round toward negative infinity

 round Round to nearest integer

 Variables i and j are both functions denoting the imaginary unit and are

the square-root of -1

Matlab - 2018/2019 27

Matrix operations

Matrix operations:

 + addition of vectors or matrices (element-by-element)

 - subtraction of vectors or matrices (element-by-element)

 * multiplication of vectors or matrices (row-by-column)

Note that:

 addition / subtraction: matrices with the same number of rows and columns

 addition / subtraction with a scalar: the scalar is added/subtracted to each

element of the matrix

 multiplication: the number of columns in the first matrix must be the same as

the number of rows in the second matrix

Matlab - 2018/2019 28

Matlab has a set of dot operators, a dot and a normal algebraic

operator, performing element-wise algebraic operations on a matrix

 .* element-wise product

 ./ element-wise division

 .^ element-wise power

\ and / operators for the solution of linear systems:

 x = B/A is the solution of the equation x*A = B

 x = A\B denote the solution to the equation A*x = B

Matlab - 2018/2019 29

Matrix operations

Systems of Linear Equations

• Given a system of linear equations

x+2y-3z=5

-3x-y+z=-8

x-y+z=0

• Construct matrices so the system is described by Ax=b

»A=[1 2 -3;-3 -1 1;1 -1 1];

»b=[5;-8;0];

• And solve with a single line of code!

»x=A\b;

• x is a 3x1 vector containing the values of x, y, and z

• The \ will work with square or rectangular systems

• Gives least squares solution for rectangular systems

Matlab - 2018/2019 30

Matrix functions

 Matrix functions:

 Transpose matrix A'

 Inverse matrix inv(A)

 Matrix determinant det(A)

 Eigenvalues eig(A)

 Rank of matrix rank(A)

 Dimensions size(A)

The list of elementary matrices and matrix manipulation

• help elmat: elementary matrices, basic array information, matrix manipulation,
special variables e costants, specialized matrices, …

Matlab - 2018/2019 31

MATLAB Programming

Script and Function

• The simplest type of MATLAB program is called a script

• A script is a file that contains multiple sequential lines of MATLAB

commands and function calls

• You can run a script by typing its name at the command line

• Script and Function are M-files with a .m extension

• Scripts
• have no input or output arguments

• use workspace data

• Functions
• accept input arguments and produce output

• have their own workspace, separate from the base workspace

• function variables are local

Matlab - 2018/2019 32

MATLAB Programming

You can:

 Add comments to code using the percent symbol %.

 Create help text by inserting comments at the beginning of your

program.

 Help text appears in the Command Window when you use the help
function  help ProgramName

 If your program includes a function, position the help text immediately

below the function definition line (the line with the function keyword)

Matlab - 2018/2019 33

MATLAB Programming

Function - The definition statement is the first executable line

Each function definition includes:

 function keyword (required) (lowercase characters)

 Output arguments (optional)

 function output= myfunction(x)

 function [one,two,three] = myfunction(x)

 function myfun(x) or function []=myfunction(x)

 Function name (required)

 Input arguments (optional)

 function y = myfunction(one,two,three)

Remark: use the same name for both the file and the function

Matlab - 2018/2019 34

MATLAB Programming

Example

% mean computes the

% mean of a random

% values array and the

% mean among the

% minimum and maximum

v=rand(50,1)

mean=valmean(v)

meanmm=minmax(v)

function m=valmean(v)

n=length(v)

m=sum(v)/n

function mm=minmax(v)

mini=min(v)

maxi=max(v)

mm=(mini+maxi)/2

Matlab - 2018/2019 35

Relational and logical operators

The relational operators are:

• <, >, <=, >=, ==, and ~=

Relational operators perform element-by-element comparisons between two

arrays

They return a logical array of the same size, with elements set to:

• logical 1(true) where the relation is true

• logical 0 (false) where the relation is false

The logical operators are:

• & (and), | (or), ~ (not)

• xor (xor), all (all true), any (any true)

Matlab - 2018/2019 36

Relational and logical operators

• Examples

>> a=10; b=3; c=25;

>> a==b

ans=

0

>> a>b

ans=

1

>> a+b > c

ans=

0

Matlab - 2018/2019 37

Programming: loop control

With loop control statements, you can repeatedly execute a block of code

for statements loop a specific number of times, and keep track of each

iteration with an incrementing index variable

• for index=starting value:increment:final value

program statements

end

Remark indent the loops for readability, especially when they are nested

Matlab - 2018/2019 38

Programming: loop control
 Example

x = ones(1,10);

for n = 2:10

x(n) = 2 * x(n - 1);

end

 Example
for i=1:m

for j=1:n

H(i,j)=1/(i+j-1);

end

end

Matlab - 2018/2019 39

Programming: loop control

while repeatedly executes one or more program statements in a loop as
long as an expression remains true

while expression

statements

end

 Expressions can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~)

 To programmatically exit the loop, use a break statement

 To skip the rest of the instructions in the loop and begin the next iteration,
use a continue statement

Matlab - 2018/2019 40

Programming: loop control

Examples
• x = 3.;

while x < 25

x = x + 2

end

• Fibonacci

a(1)=1; a(2)=1; c=15;

n=2;

while a(n) < c

a(n+1) = a(n) + a(n-1);

n=n+1;

end

Matlab - 2018/2019 41

Programming: loop control

 if expression, statements, end

evaluates an expression, and executes the statements when the
expression is true

 elseif and else are optional, and execute statements only when
previous expressions in the if block are false

 An if block can include multiple elseif statements

if expression

statements

elseif expression

statements

else

statements

end

Matlab - 2018/2019 42

Programming: loop control

Example

if x > 0

y = sqrt(x);

elseif x == 0

y = 0;

else

y = NaN;

disp(‘y undefined’)

end

Matlab - 2018/2019 43

Programming: loop control

switch case otherwise

Switch among several cases based on expression

switch switch_expr

case case_expr

statements

case {case_expr1,case_expr2,case_expr3,...}

statements

...

otherwise

statements

end

Matlab - 2018/2019 44

Programming: loop control

Example

name=’rose’;

switch name

case ’rose’

disp(’the flower is a rose’)

case ’tulip’

disp(’the flower is a tulip’)

case ’daisy’

disp(’the flower is a daisy’)

otherwise

disp(’it’s a flower’)

end

Matlab - 2018/2019 45

Strings

• strcat Concatenate strings

t = strcat(s1,s2,s3,...) horizontally concatenates

corresponding rows of the character arrays s1, s2, s3 etc.

All input arrays must have the same number of rows (or any can be a

single string). When the inputs are all character arrays, the output is

also a character array

• strcmp Compare strings

tf = strcmp(s1,s2) compares the strings s1 and s2 and

returns logical 1 (true) if they are identical, and 0 (false) otherwise

• strfind Find one string within another

k = strfind(text,pattern) returns the starting indices

of any occurrences of the string pattern in the string text

Matlab - 2018/2019 46

Advanced Data Structures

• We have used 2D matrices

• Can have n-dimensions

• Every element must be the same type (ex. integers, doubles, characters…)

• Matrices are space-efficient and convenient for calculation

Sometimes, more complex data structures are more appropriate

• Cell array: it's like an array, but elements don't have to be the

same type

• Structs: can bundle variable names and values into one

structure

Matlab - 2018/2019 47

Cell

• A cell is just like a matrix, but each field can contain anything (even

other matrices):

• One cell can contain people's names, ages, and the ages of their

children

Matlab - 2018/2019 48

45

43

3x3 Cell Array

[6]

9

7
J o h n

M a r y

Cell

• To initialize a cell, specify the size

»a=cell(3,10);

• a will be a cell with 3 rows and 10 columns

• or do it manually, with curly braces {}

»c={'hello world',[1 5 6 2],rand(3,2)};

• c is a cell with 1 row and 3 columns

• Each element of a cell can be anything

• To access a cell element, use curly braces {}

»a{1,1}=[1 3 4 -10];

»a{2,1}='hello world 2';

»a{1,2}=c{3};

Matlab - 2018/2019 49

Structs

• Structs allow you to name and bundle relevant variables

• Like C-structs, which are objects with fields

• To initialize an empty struct:

»s=struct;

• size(s) will be 1x1

• initialization is optional but is recommended when using large structs

• To add fields:

»s.name = 'Jack Bauer';

»s.scores = [95 98 67];

»s.year = 'G3';

• Fields can be anything: matrix, cell, even struct

• Useful for keeping variables together

Matlab - 2018/2019 50

Structs

• To initialize a struct array, give field, values pairs

»ppl=struct('name',{'John','Mary','Leo'},...

'age',{45,43,32},'childAge',{[9;7],6,[]});

• size(s2)=1x3

• every cell must have the same size

»person=ppl(2);

• person is now a struct with fields name, age, children

• the values of the fields are the second index into each cell

»person.name

• returns 'Mary'

»ppl(1).age

• returns 45

Matlab - 2018/2019 51

ppl ppl(1) ppl(2) ppl(3)

45 43

[6]

name

age

children age

john mary leo

[9,7]

32

[]

Structs

• To access 1x1 struct fields, give name of the field

»stu=s.name;

»scor=s.scores;

• 1x1 structs are useful when passing many variables to a function. put them

all in a struct, and pass the struct

• To access nx1 struct arrays, use indices

»person=ppl(2);

• person is a struct with name, age, and child age

»personName=ppl(2).name;

• personName is 'Mary'

a=[ppl.age];

• a is a 1x3 vector of the ages

Matlab - 2018/2019 52

ppl ppl(1) ppl(2) ppl(3)

45 43

[6]

name

age

children age

john mary leo

[9,7]

32

[]

Polynomial

• A polynomial is represented by an array containing the coefficients of
the polynom in descending powers of the polynomial decreasing order

• The polynomial 3x3 + 2x + 8 can be represented as:

» pol= [3 0 2 8]

• To evaluate a polynomial in x, where x can be a vector, you can use
polyval(p,x) where p is the polynomial

» polyval(pol, 1)
ans =

13

Matlab - 2018/2019 53

Polynomial

 roots computes the roots of the polynomial

 r=roots(p) returns a column vector whose elements are the roots

of the polynomial p

 Row vector p contains the coefficients of the polynomial

 Example: the polynomial x3 -6 x2 + 11 x – 6

» p= [1 -6 11 -6]; format long;

» roots(p)

ans =

3.00000000000000

3.00000000000000

3.00000000000000

Matlab - 2018/2019 54

Polynomial

Remark There are some complications with multiple roots

The polynomial r3+3r2 +3r+1 have just one root r = -1, but

roots([1 3 3 1])

returns three different (though close) values

ans =

-1.00000913968880

-0.99999543015560 + 0.00000791513186i

-0.99999543015560 - 0.00000791513186i

Even worse for p(x)=(x+1)7 (coefficients [1 7 21 35 35 21 7 1])

Matlab - 2018/2019 55

Polynomial

Operations with polynomials

 p=conv(u,v) multiplication of the polynomials whose coefficients

are the elements of u and v

 [q,r]=deconv(u,v) polynomial division - the quotient is

returned in vector q and the remainder in vector r such that v =
conv(u,q)+r

 p=polyfit(x,y,n) finds the coefficients of a polynomial p(x)

of degree n that fits the data, p(x(i)) to y(i), in a least

squares sense. The result p is a row vector of length n+1 containing

the polynomial coefficients in descending powers

Matlab - 2018/2019 56

Polynomial

 poly gives the polynomial with specified roots

 p=roots(r) where r is a vector, returns a row vector whose
elements are the coefficients of the polynomial whose roots are the
elements of r

 p=roots(A) where A is an n-by-n matrix, returns an n+1 element
row vector whose elements are the coefficients of the characteristic
polynomial, det(λI – A)

Remark poly(A) generates the characteristic polynomial of A, and
roots(poly(A)) finds the roots of that polynomial, which are the
eigenvalues of A

Matlab - 2018/2019 57

