INTENSIVE COMPUTATION

Annalisa Massini Lecture 2
2018-2019

INTRODUCTION TO MATLAB

Matlab — 2018/2019 3

Introduction

e MATLAB stands for MATrix LABoratory
e MATLAB is a high-level interpreted language and interactive
environment for numerical computation, data analysis, visualisation and

algorithm development

e MATLAB enables you to perform computationally intensive tasks faster

than with traditional programming languages such as C, C++ and Fortran

Matlab — 2018/2019 4

Introduction

» MATLAB started its life in the late 1970s as an interactive calculator built
on top of LINPACK and EISPACK, which were then state-of-the-art
Fortran subroutine libraries for matrix computation

* In the 80s Cleve Moler write the first version of MATLAB to give his
students at the University of New Mexico easy access to these libraries
without writing Fortran

» Matlab has many specialized toolboxes

Matlab — 2018/2019

e Command History

Matlab Screen e view past commands . Workspace

e save a whole session . .
e View program variables

using dla.ry e Double click on a
e Command Window variable to see it in the

e Type commands Array Editor

e Current Directory
e VView folders and m-files

r Al
MATLAB R20%7a - academic use
= AP a=1el |
'{_lF' 9 Find Filos &‘ E [z, New Variable L Affalvze Code E {0} Preferences (% @ ¢} community
i [} Open variable + {7 ffon and Time (] Set Path Request Support
New New Open W-lcompare Impert ave Layaut Add-Ons Help
Script ~ Data Workspace () Clear Workspace ~ [JfClear Commands ~ = [lli paraliel ~ - ~ [Ellearn MaTLAB
FILE | VARIABLE | coE | ENVIRONMENT | | =
@ & 5 E |0/ home » o > -lof
Current Folder ® [Editor Jnetwork 20170622.m @ x | Workspace ®
|name [rum x| Mame £ [value I
anaconda3 0x5 double 224830x5 d o
backup 24530x7 cffl
Deskiop 1 2 3 4 5 & 7 8 s 10 11 12 13 S2am30%5
Documents 1 40421 2 NaN 3 NaN 290000 51523 6 7 8 9 10 11 12 13
Downloads 1 140424P nNaN NaM 90000 1524
Dropbox MaN 500000 1523
asmc 5 NaM 500000 1523
ke 17 NaN| 9.8125e... 1524
Pictures 18 NN 1000000 1525
public 19 NaN| 9.3083e... 1526
18 5 pycharmprojects 20 NaM 20000 1526
ssh 21 NaN| 15000 1527
o _Tdiﬁzlsa‘“ 22 NaM 22730 4571 830x5 double
2sh-syntax-highlighting = NaN| 2127| 1.5287¢ 1 2 3 4 5 5 7
1) examples desktop 24 20042plates NaN nan 18700 1528 12 4c421 Nan NaN - 200000 1522
3 thinter 2 L Nan NaN| 10500 527 12 aca21 nan NaN 20000 1524
20 2640473/ RBTNG e 2.8450.., =20 15 4c421 Nan MaN 500000 1522
2 2””{?2?'99“%3 Nanj 8.0065e.., 1530 16 ac421 Han Mah 50C000 1523
2 2840421 nan NaN| 30000 =23 17 4c421 Nan NaN 881250, 1524
29 2540421 Nan NaN| 15000 1925 18 ac421 Hah Mahl 100000 1525
| 20 3040421 nan Nan =050 =27 19 4c421 Nan Man 930830 1528
=1 3140421 Nan NaN| 130000 1925 20 aca21 nan NaN 20000 1526
2 3240421 nan NaN| 250000 =18 £ 4c421 Nan Man 15000 1527
33 3340421 NaN NaN| 72000 1522 5 = v SV e R ~
<] & o]]
ommand Windo
Details v fe >
|
Select a file to view details

Matlab — 2018/2019 6

Helpful commands

help lists all the help topic — the most important function to learn Matlab

e help name the help text for the functionality specified by name,
such as a function, method, class, or toolbox

who/whos show the current variables in the workspace

o dir list files in the current directory

e clear all delete all the variables present in the workspace
e clear var1 var2 clear variables var? and var2

 lookfor search for keyword in all help entries

* |ookfor topic

Matlab — 2018/2019 1

Variables and expressions
e In the Command window, the command prompt is " >> " Examples:
e Two types of statement: "7 8t2
e evaluation of an expression an:o-
“>> expression”
» assignment “>> variable = expression” o> as Yans
e The evaluation of an expression generates a matrix : ;0
assigned to the specified variable . >>6.9

e |f you do not specify the name of the variable associated

. ans =
to the result, the system “ans” is used

6.9000

Matlab — 2018/2019 8

Variables and expressions

e |f an expression ends with symbol “;” its value is not Examples:
displayed on the screen

.. b = 6+a;
e MATLAB names are case-sensitive ’
»b
e No need to declare variables b=
e No need for types 56

- Built-in variables. Don't use these names!
- i and j can be used to indicate complex numbers
- pi has the value 3.1415926...
- ans stores the last unassigned value (like on a calculator)
- Inf and —Inf are positive and negative infinity
- NaN represents ‘Not a Number’

Matlab — 2018/2019 9

Variables and expressions

e All variables are created with double precision
e The variables are 1x1 matrices with double precision

* Double precision values consist of 8 bytes

» The default display format for variables is 5-digit scaled, fixed-point
values

» We can ask for different display formats with command format

e The format function affects only how numbers display in the Command
Window, not how MATLAB computes or saves them

Matlab — 2018/2019

The command FORMAT

Command £ormat changes the display format to the specified style

Let us consider x =4/3

- format
- format
- format
- format
- format
- format
- format
- format
- format

short
long
short e
long e
short g
long g
bank
rat

hex

1.3333 0.0000 - 5-digit scaled, fixed-point default
1.33333333333333 - 15-digit fixed point

1.3333e+000 - 5-digit floating point
1.333333333333333e+000 - 15-digit floating point
1.3333 - best between fixed point and floating point
1.33333333333333 - best between fixed and floating pt
1.33 — currency format (dollar or euro)

4/3 - ratio of small integers

3ff5555555555555 - hexadecimal (double-precision)

Matlab — 2018/2019

Double precision values

- Only a number of double precision values can be represented
- There is always a small gap between two consecutive values
- The command eps provides the floating-point relative accuracy

- eps returns the distance from 1.0 to the next largest double-precision
number, that is eps = 2*(-52)

- eps(x) is the positive distance from abs(X) to the next larger in magnitude
floating point number of the same precision as X

- realmin returns the smallest positive normalized floating-point number in
IEEE double precision about 2.2251e-308 that is 2*(-1022)

- realmax returns the largest finite floating-point number in IEEE double
precision, about 1.7976e+308 that is 221023

Matlab — 2018/2019

Matrices

» The simplest way to create a matrix is to use the matrix constructor
operator [|

 Create a row in the matrix by entering elements within the brackets

e Separate row elements with a comma or space

e Foranew row, terminate the current row with a semicolon or return

»A=[7 8:89 7:9 8] »B=[12 3
45 6]
A=
7.0000 8.0000 B=

8.9000 7.0000
9.0000 8.0000

i NG
TN
o W

Matlab — 2018/2019

Matrices

- Examples of functions for creating different kinds of matrices

- zeros(n,m) matrix nxm of all zeros
* ones(n,m) matrix nxm of all ones

- eye(n,m) matrix with ones on the diagonal (zeros elsewhere)
* rand(n,m) matrix of uniformly distributed random numbers
- diag([a11, a22, a33, ..., aNN]) diagonal matrix

Matlab — 2018/2019

Matrices

- Increase matrices by adding a row or a column having the correct size

« Column
- GivenA=[12;3 4,5 6];
- Add the column of elements 7 8 9

A=[A[7;8;9]] oppure A=[A[789]'])

12 127
34 2> 348
56 569

Matlab — 2018/2019

Matrices

To access elements of a matrix => matrices’ name followed by round
brackets containing a reference to the row and column number

e »A=[7 8;8.9 7;9 §] - A(n,m) access element (n,m)
A = of matrix A
7.0000 8.0000
8.9000 7.0000 »A1,2)
9.0000 8.0000 ans =
8

Note that elements of the matrix
are displayed as 5-digit values

Matlab — 2018/2019

Matrices

The colon operator

e The colon operator (Eirst:last) generates a 1-by-n matrix (or
vector) of sequential numbers from the first value to the last

 The default sequence is made up of values incrementing by 1
A=10:15 > A=10 11 12 13 14 15

e The numeric sequence can include negative and fractional numbers
A=-25:25 -> A=-25000 -1.5000 -0.5000 0.5000 1.5000 2.5000

Matlab — 2018/2019

Matrices

The colon operator

 You can also specify a step value with the colon operator in between the
starting and ending value (first:step:last).

 To generate a series of numbers from 10 to 50 incrementing by 5:

A=10:5:50 - A=101520 25 30 3540 45 50
 You can increment by noninteger values

A=3:02.38 - A =3.0000 3.2000 3.4000 3.6000 3.8000
Yo can decrement, specifying a negative step value:

A=9:1:1 > A=987654321

Matlab — 2018/2019

Matrices

Accessing matrix rows or matrix columns

- A(n,:) extracts row n of matrix A(:,m) extracts column m of
A matrix A
» A(2,:) » A(:,1)
ans = ans =
8.9000 7.0000 7.0000
8.9000
9.0000

The colon notation®:” allows to specify a sequence of values

The whole row (column) is extracted because the interval is not specified

Matlab — 2018/2019

Matrices
diag(A)
o [fAis a square matrix, diag(A) returns the main diagonal of A
» A=[56;7 8] » diag(A)
A= ans =
56
78 8

* If Ais a vector with n components, returns an n-by-n diagonal matrix having A as its main
diagonal

» diag(ans)
ans =
50
08

Matlab — 2018/2019

Matrices

e sum(A)
e IfAis a vector, then sum(A) returns the sum of the elements
» sum(A)
ans =
36

e [fAis a matrix, then sum(A) treats the columns of A as vectors and
returns a row vector whose elements are the sums of each column

ZA=[0 12:345:678] 4 B=sum(A)
01 91215

2
345
678

Matlab — 2018/2019

Vectors

A matrix with only one row or column (that is, a 1-by-n or n-by-1 array)
IS a vector, such as:

C=[1,2,3] row vector
D =1[10; 20; 30] column vector

e An array can be created with the colon operator
x=1:6 - x=1 2 3 4 5 6
x =0.5:0.1:0.7 - x=0.5000 0.6000 0.7000

Matlab — 2018/2019

Vectors

- A vector can be created by using 1inspace (a,b) or
linspace (a,b,N) that generates vectors of (N) points linearly

spaced between and including aand b
x = linspace(-1,1) = -1 0 1
x = linspace(-1,1,4) - -1.0000 -0.3333 0.3333 1.0000

e The logspace functions - logspace (a,b) or
logspace (a, b, N) —generate logarithmically spaced vectors

e The logspace function is useful for creating frequency vectors
e It is a logarithmic equivalent of linspace and the ":" or colon operator

Matlab — 2018/2019

Vector Indexing

- IMPORTANT: MATLAB indexing starts with 1, not 0

- The index argument can be a vector

- In this case, each element is looked up individually, and returned as a
vector of the same size as the index vector

»x=[12 13 5 8];
»a=x(2:3); 2> a=[135];
»b=x(1:end-1); 2> b=[1213 5];

Matlab — 2018/2019

Matrix Indexing

- Matrices can be indexed in two ways
- using subscripts(row and column)
- using linear indices(as if matrix is a vector)

- Matrix indexing: subscripts or linear indices

/ \
b(1,1)—>{14 32}<—b(1,2) b(l)—>{14 32}<—b(3)

b(21) »|11 81 [« b(2,2) b(2) >|11 81 |« b(4)
Picking submatrices
»A = rand(5) % shorthand for 5x5 matrix
»A(1:3,1:2) % specify contiguous submatrix

»A([1 5 3], [1 4]) % specify rows and columns143398

Matlab — 2018/2019

Matrix Indexing

- MATLAB contains functions to help you find desired values within a vector
or matrix

»wec=[53197]

- To get the minimum value and its index:
»[minVal,minind] = min(vec);

- Max works the same way

- To find any the indices of specific values or ranges
»ind = find(vec == 9);
»ind = find(vec > 2 & vec < 6);
- To convert between subscripts and indices, use ind2sub and sub2ind

Matlab — 2018/2019

Scalar operators and functions

e Mathematical operators on scalars
add +, subtract -, divide /, multiply *, power *

e Trigonometric function
* Sin, COS
e tan
e asin, acos
e atan

The list of elementary math functions
- help elfun: trigonometric, esponential, complex, rounding and remainder

The list of specialized math functions
- help specfun: specialized, number theoretic, coordinate transforms

Matlab — 2018/2019

Scalar operators and functions

e Some mathematical operators on scalars:

e abs Absolute value and complex magnitude

* coNj Complex conjugate

e real,imag Real and Imaginary part of complex number
* exp Exponential

¢ log, log10 Natural and base 10 logarithm

e sqrt Square root

e ceil Round toward positive infinity

e floor Round toward negative infinity

e round Round to nearest integer

e Variables i and j are both functions denoting the imaginary unit and are
the square-root of -1

Matlab — 2018/2019

Matrix operations

Matrix operations:
e + addition of vectors or matrices (element-by-element)

* - subtraction of vectors or matrices (element-by-element)
e " multiplication of vectors or matrices (row-by-column)

Note that:

e addition / subtraction; matrices with the same number of rows and columns

e addition / subtraction with a scalar: the scalar is added/subtracted to each
element of the matrix

o multiplication: the number of columns in the first matrix must be the same as
the number of rows in the second matrix

Matlab — 2018/2019

Matrix operations

Matlab has a set of dot operators, a dot and a normal algebraic
operator, performing element-wise algebraic operations on a matrix

* .* element-wise product
» .| element-wise division
» .M element-wise power

\ and / operators for the solution of linear systems:
o X = B/A is the solution of the equation x*A=B
* X = A\B denote the solution to the equation A*x = B

Matlab — 2018/2019

Systems of Linear Equations

- Given a system of linear equations
x+2y-3z=5
-3X-y+z=-8
x-y+z=0

- Construct matrices so the system is described by Ax=b
»A=[12-3;-3-11;1 11];
»b=[5;-8;0];

- And solve with a single line of code!
»X=A\b;

- X is a 3x1 vector containing the values of x, y, and z

- The \ will work with square or rectangular systems
- Gives least squares solution for rectangular systems

Matlab — 2018/2019

Matrix functions

e Matrix functions:
e Transpose matrix A’

e Inverse matrix inv(A)
e Matrix determinant det(A)
e Eigenvalues eig(A)
* Rank of matrix rank(A)
e Dimensions size(A)

The list of elementary matrices and matrix manipulation

- help elmat: elementary matrices, basic array information, matrix manipulation,
special variables e costants, specialized matrices, ...

Matlab — 2018/2019

MATLAB Programming

Script and Function
- The simplest type of MATLAB program is called a script

- A script is a file that contains multiple sequential lines of MATLAB
commands and function calls

- You can run a script by typing its name at the command line

- Script and Function are M-files with a .m extension
- Scripts

- have no input or output arguments

- use workspace data
- Functions

- accept input arguments and produce output

- have their own workspace, separate from the base workspace
- function variables are local

Matlab — 2018/2019

MATLAB Programming

You can:
e Add comments to code using the percent symbol %.

» Create help text by inserting comments at the beginning of your
program.

 Help text appears in the Command Window when you use the help
function > help ProgramName

e |f your program includes a function, position the help text immediately
below the function definition line (the line with the function keyword)

Matlab — 2018/2019

MATLAB Programming

Function - The definition statement is the first executable line
Each function definition includes:
e function keyword (required) (lowercase characters)

e Qutput arguments (optional)
e function output= myfunction (x)
e function [one, two,three] = myfunction (x)
e function myfun(x) Oor function []=myfunction (x)

e Function name (required)

e Input arguments (optional)
e function y = myfunction (one, two, three)

Remark: use the same name for both the file and the function

Matlab — 2018/2019

MATLAB Programming

Example

o\°

mean computes the function m=valmean (V)

mean of a random
n=length (v)

values array and the
m=sum (v) /n

mean among the

o° o° o0©° o©

minimum and maximum

v=rand (50, 1) function mm=minmax (v)
mean=valmean (v)

meanmm=minmax (v) mini=min (v)
maxli=max (Vv)

mm= (mini+maxi) /2

Matlab — 2018/2019

Relational and logical operators

The relational operators are:

e &, >, <= >= == and ~=

Relational operators perform element-by-element comparisons between two
arrays

They return a logical array of the same size, with elements set to:

- logical 1(true) where the relation is true

- logical 0 (false) where the relation is false

The logical operators are:
- & (and), | (or), ~ (not)
- xor (xor), all (all true), any (any true)

Matlab — 2018/2019

Relational and logical operators

- Examples

>> a=10; b=3; c=25;

>> a==Db
ans=

0
>> a>b
ans=

1
>> a+b > c
ans=

0)

Matlab — 2018/2019

Programming: loop control

With loop control statements, you can repeatedly execute a block of code

for statements loop a specific number of times, and keep track of each
iteration with an incrementing index variable
- for index=starting value:increment:final value

program statements
end

Remark indent the loops for readability, especially when they are nested

Matlab — 2018/2019

Programming: loop control

e Example
X = ones(1,10);
for n = 2:10
x(n) =2 * x(n - 1);
end

e Example
for i1i=1:m
for j=1:n
H(i,3)=1/(i+j-1);
end
end

Matlab — 2018/2019

Programming: loop control

while repeatedly executes one or more program statements in a loop as
long as an expression remains true

while expression
statements
end

e Expressions can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~)

 To programmatically exit the loop, use a break statement

e To skip the rest of the instructions in the loop and begin the next iteration,
use a continue statement

Matlab — 2018/2019

Programming: loop control

Examples
X = 3.;
while x < 25
X =x + 2
end

- Fibonacci
a(l)=1l; a(2)=1; c=15;
n=2;
while a(n) < c¢
a(n+l) = a(n) + a(n-1);
n=n+1;
end

Matlab — 2018/2019

Programming: loop control

e 1f expression, statements, end

evaluates an expression, and executes the statements when the
expression is true

* elseif and else are optional, and execute statements only when
previous expressions in the if block are false

 An if block can include multiple elsei £ statements

if expression
statements
elseif expression
statements
else
statements
end

Matlab — 2018/2019

Programming: loop control

Example
if x>0
y = sqrt(x);
elseif x ==
y = 0;
else
y = NaN;

disp(‘'y undefined’)
end

Matlab — 2018/2019

Programming: loop control

switch case otherwise

Switch among several cases based on expression

switch switch expr

case case expr
statements

case {case exprl,case expr2,case expr3,...}
statements

otherwise
statements

end

Matlab — 2018/2019

Programming: loop control
Example

name=’' rose’ ;
switch name
case 'rose’

disp(’' the flower is a rose’)
case 'tulip’

disp(’ the flower is a tulip’)
case ’'daisy’

disp(’' the flower is a daisy’)
otherwise

disp('it’s a flower’)
end

Matlab — 2018/2019

Strings

- strcat Concatenate strings
t = strcat(sl,s2,s3,...) horizontally concatenates
corresponding rows of the character arrays s1, s2, s3 efc.

All input arrays must have the same number of rows (or any can be a
single string). When the inputs are all character arrays, the output is
also a character array

- strcmp Compare strings

tf = strcmp(sl,s2) compares the strings s1 and s2 and
returns logical 1 (true) if they are identical, and 0 (false) otherwise

- strfind Find one string within another

k = strfind(text,pattern) returnsthe starting indices
of any occurrences of the string pattern in the string text

Matlab — 2018/2019

Advanced Data Structures

- We have used 2D matrices
- Can have n-dimensions
- Every element must be the same type (ex. integers, doubles, characters...)
- Matrices are space-efficient and convenient for calculation

Sometimes, more complex data structures are more appropriate

- Cell array: it's like an array, but elements don't have to be the
same type

 Structs: can bundle variable names and values into one
structure

Matlab — 2018/2019

Cell

- Acell is just like a matrix, but each field can contain anything (even
other matrices):

3x3 Cell Array

Jiohln ~ /9
~ 45 | |7
Wary] |- 43 -

- One cell can contain people's names, ages, and the ages of their
children

Matlab — 2018/2019

Cell

- To initialize a cell, specify the size
»a=cell (3,10);
- a will be a cell with 3 rows and 10 columns
- or do it manually, with curly braces {}
»c={'hello world',[1 5 6 2],rand(3,2)};
- cis a cell with 1 row and 3 columns
- Each element of a cell can be anything
- To access a cell element, use curly braces {}

»a{l,1}=[1 3 4 -10];
»a{2,1}="hello world 2';
»a{l,2}=c{3};

Matlab — 2018/2019

Structs

- Structs allow you to name and bundle relevant variables
- Like C-structs, which are objects with fields

- To initialize an empty struct:

»s=struct;
- size(s) will be 1x1
- Initialization is optional but is recommended when using large structs

- To add fields:

»s.name = 'Jack Bauer';
»s.scores = [95 98 67];
»s.year = 'G3';

- Fields can be anything: matrix, cell, even struct
- Useful for keeping variables together

Matlab — 2018/2019

Structs

- To initialize a struct array, give field, values pairs
»ppl=struct('name', {'John', 'Mary','Leo'},...
'age', {45,43,32}, 'childage',{[9;7],6,[1})

- size(s2)=1x3

- every cell must have the same size
»person=ppl (2) ;

- person is now a struct with fields name, age, children

- the values of the fields are the second index into each cell

»person.name ppl ppl(1) ppl(2) ppl(3)

- returns 'Mary' name | —> |john mary| leo
»ppl (1) .age
- returns 45

age —> | 45 | 43 32
children age [9.71 [6] | []

Matlab — 2018/2019

Structs

- To access 1x1 struct fields, give name of the field
»stu=s.name;

»SCOXr=s.scores,

- 1x1 structs are useful when passing many variables to a function. put them
all in a struct, and pass the struct

- To access nx1 struct arrays, use indices
»person=ppl (2) ;
- person is a struct with name, age, and child age

»personName=ppl (2) .name; ppl ppI(1) ppl(2) ppl(3)
- personName is 'Mary' name | —> |john mary | leo
a=lppl.agel; age ——> | 45 | 43 | 32
- ais a 1x3 vector of the ages

children age [9.71 [6] | []

Matlab — 2018/2019

Polynomial

- A polynomial is represented by an array containing the coefficients of
the polynom in descending powers of the polynomial decreasing order

- The polynomial 3x3+ 2x + 8 can be represented as:
» pol= [3 0 2 8]

- To evaluate a polynomial in x, where x can be a vector, you can use
polyval (p,x) Where p is the polynomial

» polyval (pol, 1)
ans =
13

Matlab — 2018/2019

Polynomial

e roots computes the roots of the polynomial

e r=roots (p) returns a column vector whose elements are the roots
of the polynomial p

e Row vector p contains the coefficients of the polynomial
o Example: the polynomial x3-6 x2 + 11 x -6
» p= [1 -6 11 -6],; format long;
» roots (p)
ans =
3.00000000000000
3.00000000000000
3.00000000000000

Matlab — 2018/2019

Polynomial

Remark There are some complications with multiple roots

The polynomial r3+3r2 +3r+1 have just one root r = -1, but
roots([1 3 3 1])

returns three different (though close) values
ans =

-1.00000913968880

-0.99999543015560 + 0.000007915131861
-0.99999543015560 - 0.000007915131861

Even worse for p(x)=(x+1)" (coefficients [1 7 21 35 35 21 7 1])

Matlab — 2018/2019

Polynomial

Operations with polynomials

e p=conv (u,v) multiplication of the polynomials whose coefficients
are the elements of u and v

 [g,r]=deconv (u,v) polynomial division - the quotient is
returned in vector g and the remainder in vector r such that v =
conv (u,q)+r

e p=polyfit (x,y,n) finds the coefficients of a polynomial p (x)
of degree n that fits the data, p (x (1)) to y (i), inaleast
squares sense. The result p is a row vector of length n+1 containing
the polynomial coefficients in descending powers

Matlab — 2018/2019

Polynomial

e poly gives the polynomial with specified roots

e p=roots (r) where r is a vector, returns a row vector whose

elements are the coefficients of the polynomial whose roots are the
elements of r

e p=roots (A) Wwhere Ais an n-by-n matrix, returns an n+1 element

row vector whose elements are the coefficients of the characteristic
polynomial, det(Al — A)

Remark poly (A) generates the characteristic polynomial of A, and

roots (poly (A)) finds the roots of that polynomial, which are the
eigenvalues of A

