
INTENSIVE COMPUTATION

Annalisa Massini Lecture 2

2018-2019

INTRODUCTION TO MATLAB

Introduction

 MATLAB stands for MATrix LABoratory

 MATLAB is a high-level interpreted language and interactive

environment for numerical computation, data analysis, visualisation and

algorithm development

 MATLAB enables you to perform computationally intensive tasks faster

than with traditional programming languages such as C, C++ and Fortran

Matlab - 2018/2019 3

Introduction

• MATLAB started its life in the late 1970s as an interactive calculator built

on top of LINPACK and EISPACK, which were then state-of-the-art

Fortran subroutine libraries for matrix computation

• In the 80s Cleve Moler write the first version of MATLAB to give his

students at the University of New Mexico easy access to these libraries

without writing Fortran

• Matlab has many specialized toolboxes

Matlab - 2018/2019 4

Matlab Screen Workspace

 View program variables

 Double click on a

variable to see it in the

Array Editor

Matlab - 2018/2019 5

 Command Window

 Type commands

 Current Directory

 View folders and m-files

 Command History

 view past commands

 save a whole session

using diary

Helpful commands

 help lists all the help topic – the most important function to learn Matlab

 help name the help text for the functionality specified by name,

such as a function, method, class, or toolbox

 who/whos show the current variables in the workspace

 dir list files in the current directory

 clear all delete all the variables present in the workspace

 clear var1 var2 clear variables var1 and var2

 lookfor search for keyword in all help entries

 lookfor topic

Matlab - 2018/2019 6

Variables and expressions

 In the Command window, the command prompt is " >> "

 Two types of statement:

evaluation of an expression

“>> expression”

assignment “>> variable = expression”

 The evaluation of an expression generates a matrix

assigned to the specified variable

 If you do not specify the name of the variable associated

to the result, the system “ans” is used

Examples:

• >> 8+2

ans =

10

• >> a = 5*ans

a =

50

• >> 6.9

ans =

6.9000

Matlab - 2018/2019 7

Variables and expressions

 If an expression ends with symbol “;” its value is not
displayed on the screen

 MATLAB names are case-sensitive

 No need to declare variables

 No need for types

• Built-in variables. Don’t use these names!

• i and j can be used to indicate complex numbers

• pi has the value 3.1415926…

• ans stores the last unassigned value (like on a calculator)

• Inf and –Inf are positive and negative infinity

• NaN represents ‘Not a Number’

Examples:

» b = 6+a;

» b

b =

56

Matlab - 2018/2019 8

Variables and expressions

 All variables are created with double precision

 The variables are 1x1 matrices with double precision

 Double precision values consist of 8 bytes

 The default display format for variables is 5-digit scaled, fixed-point

values

 We can ask for different display formats with command format

 The format function affects only how numbers display in the Command

Window, not how MATLAB computes or saves them

Matlab - 2018/2019 9

The command FORMAT

Command format changes the display format to the specified style

Let us consider x = 4/3

• format short 1.3333 0.0000 - 5-digit scaled, fixed-point default

• format long 1.33333333333333 - 15-digit fixed point

• format short e 1.3333e+000 - 5-digit floating point

• format long e 1.333333333333333e+000 - 15-digit floating point

• format short g 1.3333 – best between fixed point and floating point

• format long g 1.33333333333333 – best between fixed and floating pt

• format bank 1.33 – currency format (dollar or euro)

• format rat 4/3 - ratio of small integers

• format hex 3ff5555555555555 - hexadecimal (double-precision)

Matlab - 2018/2019 10

Double precision values

• Only a number of double precision values can be represented

• There is always a small gap between two consecutive values

• The command eps provides the floating-point relative accuracy

• eps returns the distance from 1.0 to the next largest double-precision

number, that is eps = 2^(-52)

• eps(x) is the positive distance from abs(X) to the next larger in magnitude

floating point number of the same precision as X

• realmin returns the smallest positive normalized floating-point number in

IEEE double precision about 2.2251e-308 that is 2^(-1022)

• realmax returns the largest finite floating-point number in IEEE double

precision, about 1.7976e+308 that is 2^1023

Matlab - 2018/2019 11

 The simplest way to create a matrix is to use the matrix constructor

operator []

 Create a row in the matrix by entering elements within the brackets

 Separate row elements with a comma or space

 For a new row, terminate the current row with a semicolon or return

» A = [7 8; 8.9 7; 9 8] » B = [1 2 3
4 5 6]

A =
7.0000 8.0000 B =
8.9000 7.0000 1 2 3
9.0000 8.0000 4 5 6

Matlab - 2018/2019 12

Matrices

Matrices

• Examples of functions for creating different kinds of matrices

• zeros(n,m) matrix nxm of all zeros

• ones(n,m) matrix nxm of all ones

• eye(n,m) matrix with ones on the diagonal (zeros elsewhere)

• rand(n,m) matrix of uniformly distributed random numbers

• diag([a11, a22, a33, ..., aNN]) diagonal matrix

• ….

Matlab - 2018/2019 13

Matrices

• Increase matrices by adding a row or a column having the correct size

• Column

• Given A = [1 2; 3 4; 5 6];

• Add the column of elements 7 8 9

A = [A [7; 8; 9]] oppure A=[A [7 8 9]’])

1 2 1 2 7

3 4 3 4 8

5 6 5 6 9

Matlab - 2018/2019 14

Matrices

 » A = [7 8; 8.9 7; 9 8]

A =

7.0000 8.0000

8.9000 7.0000

9.0000 8.0000

Note that elements of the matrix

are displayed as 5-digit values

• A(n,m) access element (n,m)

of matrix A

» A(1,2)

ans =

8

To access elements of a matrix matrices’ name followed by round
brackets containing a reference to the row and column number

Matlab - 2018/2019 15

Matrices

The colon operator

 The colon operator (first:last) generates a 1-by-n matrix (or

vector) of sequential numbers from the first value to the last

 The default sequence is made up of values incrementing by 1

A = 10:15 A = 10 11 12 13 14 15

 The numeric sequence can include negative and fractional numbers

A = -2.5:2.5 A = -2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

Matlab - 2018/2019 16

Matrices

The colon operator

 You can also specify a step value with the colon operator in between the
starting and ending value (first:step:last).

 To generate a series of numbers from 10 to 50 incrementing by 5:

A = 10:5:50 A = 10 15 20 25 30 35 40 45 50

 You can increment by noninteger values

A = 3:0.2:3.8 A = 3.0000 3.2000 3.4000 3.6000 3.8000

 Yo can decrement, specifying a negative step value:

A = 9:-1:1 A = 9 8 7 6 5 4 3 2 1

Matlab - 2018/2019 17

• A(n,:) extracts row n of matrix
A

» A(2,:)

ans =

8.9000 7.0000

A(:,m) extracts column m of
matrix A

» A(:,1)

ans =

7.0000

8.9000

9.0000

Accessing matrix rows or matrix columns

The colon notation“:” allows to specify a sequence of values

The whole row (column) is extracted because the interval is not specified

Matlab - 2018/2019 18

Matrices

Matrices
diag(A)

 If A is a square matrix, diag(A) returns the main diagonal of A

» A=[5 6 ; 7 8] » diag(A)

A = ans =

5 6 5

7 8 8

• If A is a vector with n components, returns an n-by-n diagonal matrix having A as its main

diagonal

» diag(ans)

ans =

5 0

0 8

Matlab - 2018/2019 19

Matrices
 sum(A)
 If A is a vector, then sum(A) returns the sum of the elements

» sum(A)
ans =

36

 If A is a matrix, then sum(A) treats the columns of A as vectors and

returns a row vector whose elements are the sums of each column

» A=[0 1 2 ;3 4 5 ;6 7 8] » B=sum(A)
A = B =

0 1 2 9 12 15
3 4 5
6 7 8

Matlab - 2018/2019 20

Vectors

 A matrix with only one row or column (that is, a 1-by-n or n-by-1 array)

is a vector, such as:

C = [1, 2, 3] row vector

D = [10; 20; 30] column vector

 An array can be created with the colon operator

x = 1:6 x = 1 2 3 4 5 6

x = 0.5:0.1:0.7 x = 0.5000 0.6000 0.7000

Matlab - 2018/2019 21

Vectors

• A vector can be created by using linspace(a,b) or

linspace(a,b,N) that generates vectors of (N) points linearly

spaced between and including a and b

x = linspace(-1,1) -1 0 1

x = linspace(-1,1,4) -1.0000 -0.3333 0.3333 1.0000

●The logspace functions - logspace(a,b) or

logspace(a,b,N)-generate logarithmically spaced vectors

●The logspace function is useful for creating frequency vectors

● It is a logarithmic equivalent of linspace and the ":" or colon operator

Matlab - 2018/2019 22

Vector Indexing

• IMPORTANT: MATLAB indexing starts with 1, not 0

• The index argument can be a vector

• In this case, each element is looked up individually, and returned as a

vector of the same size as the index vector

»x=[12 13 5 8];

»a=x(2:3); a=[13 5];

»b=x(1:end-1); b=[12 13 5];

Matlab - 2018/2019 23

Matrix Indexing

• Matrices can be indexed in two ways

• using subscripts(row and column)

• using linear indices(as if matrix is a vector)

• Matrix indexing: subscripts or linear indices

Matlab - 2018/2019 24

Picking submatrices

»A = rand(5) % shorthand for 5x5 matrix

»A(1:3,1:2) % specify contiguous submatrix

»A([1 5 3], [1 4]) % specify rows and columns143398

)2,2(

)2,1(

8111

3214

)1,2(

)1,1(

b

b

b

b

)4(

)3(

8111

3214

)2(

)1(

b

b

b

b

Matrix Indexing

• MATLAB contains functions to help you find desired values within a vector

or matrix

»vec = [5 3 1 9 7]

• To get the minimum value and its index:

»[minVal,minInd] = min(vec);

• Max works the same way

• To find any the indices of specific values or ranges

»ind = find(vec == 9);

»ind = find(vec > 2 & vec < 6);

• To convert between subscripts and indices, use ind2sub and sub2ind

Matlab - 2018/2019 25

Scalar operators and functions

 Mathematical operators on scalars
add +, subtract -, divide /, multiply *, power ^

 Trigonometric function

 sin, cos

 tan

 asin, acos

 atan

The list of elementary math functions

• help elfun: trigonometric, esponential, complex, rounding and remainder

The list of specialized math functions

• help specfun: specialized, number theoretic, coordinate transforms

Matlab - 2018/2019 26

Scalar operators and functions
 Some mathematical operators on scalars:

 abs Absolute value and complex magnitude

 conj Complex conjugate

 real, imag Real and Imaginary part of complex number

 exp Exponential

 log, log10 Natural and base 10 logarithm

 sqrt Square root

 ceil Round toward positive infinity

 floor Round toward negative infinity

 round Round to nearest integer

 Variables i and j are both functions denoting the imaginary unit and are

the square-root of -1

Matlab - 2018/2019 27

Matrix operations

Matrix operations:

 + addition of vectors or matrices (element-by-element)

 - subtraction of vectors or matrices (element-by-element)

 * multiplication of vectors or matrices (row-by-column)

Note that:

 addition / subtraction: matrices with the same number of rows and columns

 addition / subtraction with a scalar: the scalar is added/subtracted to each

element of the matrix

 multiplication: the number of columns in the first matrix must be the same as

the number of rows in the second matrix

Matlab - 2018/2019 28

Matlab has a set of dot operators, a dot and a normal algebraic

operator, performing element-wise algebraic operations on a matrix

 .* element-wise product

 ./ element-wise division

 .^ element-wise power

\ and / operators for the solution of linear systems:

 x = B/A is the solution of the equation x*A = B

 x = A\B denote the solution to the equation A*x = B

Matlab - 2018/2019 29

Matrix operations

Systems of Linear Equations

• Given a system of linear equations

x+2y-3z=5

-3x-y+z=-8

x-y+z=0

• Construct matrices so the system is described by Ax=b

»A=[1 2 -3;-3 -1 1;1 -1 1];

»b=[5;-8;0];

• And solve with a single line of code!

»x=A\b;

• x is a 3x1 vector containing the values of x, y, and z

• The \ will work with square or rectangular systems

• Gives least squares solution for rectangular systems

Matlab - 2018/2019 30

Matrix functions

 Matrix functions:

 Transpose matrix A'

 Inverse matrix inv(A)

 Matrix determinant det(A)

 Eigenvalues eig(A)

 Rank of matrix rank(A)

 Dimensions size(A)

The list of elementary matrices and matrix manipulation

• help elmat: elementary matrices, basic array information, matrix manipulation,
special variables e costants, specialized matrices, …

Matlab - 2018/2019 31

MATLAB Programming

Script and Function

• The simplest type of MATLAB program is called a script

• A script is a file that contains multiple sequential lines of MATLAB

commands and function calls

• You can run a script by typing its name at the command line

• Script and Function are M-files with a .m extension

• Scripts
• have no input or output arguments

• use workspace data

• Functions
• accept input arguments and produce output

• have their own workspace, separate from the base workspace

• function variables are local

Matlab - 2018/2019 32

MATLAB Programming

You can:

 Add comments to code using the percent symbol %.

 Create help text by inserting comments at the beginning of your

program.

 Help text appears in the Command Window when you use the help
function help ProgramName

 If your program includes a function, position the help text immediately

below the function definition line (the line with the function keyword)

Matlab - 2018/2019 33

MATLAB Programming

Function - The definition statement is the first executable line

Each function definition includes:

 function keyword (required) (lowercase characters)

 Output arguments (optional)

 function output= myfunction(x)

 function [one,two,three] = myfunction(x)

 function myfun(x) or function []=myfunction(x)

 Function name (required)

 Input arguments (optional)

 function y = myfunction(one,two,three)

Remark: use the same name for both the file and the function

Matlab - 2018/2019 34

MATLAB Programming

Example

% mean computes the

% mean of a random

% values array and the

% mean among the

% minimum and maximum

v=rand(50,1)

mean=valmean(v)

meanmm=minmax(v)

function m=valmean(v)

n=length(v)

m=sum(v)/n

function mm=minmax(v)

mini=min(v)

maxi=max(v)

mm=(mini+maxi)/2

Matlab - 2018/2019 35

Relational and logical operators

The relational operators are:

• <, >, <=, >=, ==, and ~=

Relational operators perform element-by-element comparisons between two

arrays

They return a logical array of the same size, with elements set to:

• logical 1(true) where the relation is true

• logical 0 (false) where the relation is false

The logical operators are:

• & (and), | (or), ~ (not)

• xor (xor), all (all true), any (any true)

Matlab - 2018/2019 36

Relational and logical operators

• Examples

>> a=10; b=3; c=25;

>> a==b

ans=

0

>> a>b

ans=

1

>> a+b > c

ans=

0

Matlab - 2018/2019 37

Programming: loop control

With loop control statements, you can repeatedly execute a block of code

for statements loop a specific number of times, and keep track of each

iteration with an incrementing index variable

• for index=starting value:increment:final value

program statements

end

Remark indent the loops for readability, especially when they are nested

Matlab - 2018/2019 38

Programming: loop control
 Example

x = ones(1,10);

for n = 2:10

x(n) = 2 * x(n - 1);

end

 Example
for i=1:m

for j=1:n

H(i,j)=1/(i+j-1);

end

end

Matlab - 2018/2019 39

Programming: loop control

while repeatedly executes one or more program statements in a loop as
long as an expression remains true

while expression

statements

end

 Expressions can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~)

 To programmatically exit the loop, use a break statement

 To skip the rest of the instructions in the loop and begin the next iteration,
use a continue statement

Matlab - 2018/2019 40

Programming: loop control

Examples
• x = 3.;

while x < 25

x = x + 2

end

• Fibonacci

a(1)=1; a(2)=1; c=15;

n=2;

while a(n) < c

a(n+1) = a(n) + a(n-1);

n=n+1;

end

Matlab - 2018/2019 41

Programming: loop control

 if expression, statements, end

evaluates an expression, and executes the statements when the
expression is true

 elseif and else are optional, and execute statements only when
previous expressions in the if block are false

 An if block can include multiple elseif statements

if expression

statements

elseif expression

statements

else

statements

end

Matlab - 2018/2019 42

Programming: loop control

Example

if x > 0

y = sqrt(x);

elseif x == 0

y = 0;

else

y = NaN;

disp(‘y undefined’)

end

Matlab - 2018/2019 43

Programming: loop control

switch case otherwise

Switch among several cases based on expression

switch switch_expr

case case_expr

statements

case {case_expr1,case_expr2,case_expr3,...}

statements

...

otherwise

statements

end

Matlab - 2018/2019 44

Programming: loop control

Example

name=’rose’;

switch name

case ’rose’

disp(’the flower is a rose’)

case ’tulip’

disp(’the flower is a tulip’)

case ’daisy’

disp(’the flower is a daisy’)

otherwise

disp(’it’s a flower’)

end

Matlab - 2018/2019 45

Strings

• strcat Concatenate strings

t = strcat(s1,s2,s3,...) horizontally concatenates

corresponding rows of the character arrays s1, s2, s3 etc.

All input arrays must have the same number of rows (or any can be a

single string). When the inputs are all character arrays, the output is

also a character array

• strcmp Compare strings

tf = strcmp(s1,s2) compares the strings s1 and s2 and

returns logical 1 (true) if they are identical, and 0 (false) otherwise

• strfind Find one string within another

k = strfind(text,pattern) returns the starting indices

of any occurrences of the string pattern in the string text

Matlab - 2018/2019 46

Advanced Data Structures

• We have used 2D matrices

• Can have n-dimensions

• Every element must be the same type (ex. integers, doubles, characters…)

• Matrices are space-efficient and convenient for calculation

Sometimes, more complex data structures are more appropriate

• Cell array: it's like an array, but elements don't have to be the

same type

• Structs: can bundle variable names and values into one

structure

Matlab - 2018/2019 47

Cell

• A cell is just like a matrix, but each field can contain anything (even

other matrices):

• One cell can contain people's names, ages, and the ages of their

children

Matlab - 2018/2019 48

45

43

3x3 Cell Array

[6]

9

7
J o h n

M a r y

Cell

• To initialize a cell, specify the size

»a=cell(3,10);

• a will be a cell with 3 rows and 10 columns

• or do it manually, with curly braces {}

»c={'hello world',[1 5 6 2],rand(3,2)};

• c is a cell with 1 row and 3 columns

• Each element of a cell can be anything

• To access a cell element, use curly braces {}

»a{1,1}=[1 3 4 -10];

»a{2,1}='hello world 2';

»a{1,2}=c{3};

Matlab - 2018/2019 49

Structs

• Structs allow you to name and bundle relevant variables

• Like C-structs, which are objects with fields

• To initialize an empty struct:

»s=struct;

• size(s) will be 1x1

• initialization is optional but is recommended when using large structs

• To add fields:

»s.name = 'Jack Bauer';

»s.scores = [95 98 67];

»s.year = 'G3';

• Fields can be anything: matrix, cell, even struct

• Useful for keeping variables together

Matlab - 2018/2019 50

Structs

• To initialize a struct array, give field, values pairs

»ppl=struct('name',{'John','Mary','Leo'},...

'age',{45,43,32},'childAge',{[9;7],6,[]});

• size(s2)=1x3

• every cell must have the same size

»person=ppl(2);

• person is now a struct with fields name, age, children

• the values of the fields are the second index into each cell

»person.name

• returns 'Mary'

»ppl(1).age

• returns 45

Matlab - 2018/2019 51

ppl ppl(1) ppl(2) ppl(3)

45 43

[6]

name

age

children age

john mary leo

[9,7]

32

[]

Structs

• To access 1x1 struct fields, give name of the field

»stu=s.name;

»scor=s.scores;

• 1x1 structs are useful when passing many variables to a function. put them

all in a struct, and pass the struct

• To access nx1 struct arrays, use indices

»person=ppl(2);

• person is a struct with name, age, and child age

»personName=ppl(2).name;

• personName is 'Mary'

a=[ppl.age];

• a is a 1x3 vector of the ages

Matlab - 2018/2019 52

ppl ppl(1) ppl(2) ppl(3)

45 43

[6]

name

age

children age

john mary leo

[9,7]

32

[]

Polynomial

• A polynomial is represented by an array containing the coefficients of
the polynom in descending powers of the polynomial decreasing order

• The polynomial 3x3 + 2x + 8 can be represented as:

» pol= [3 0 2 8]

• To evaluate a polynomial in x, where x can be a vector, you can use
polyval(p,x) where p is the polynomial

» polyval(pol, 1)
ans =

13

Matlab - 2018/2019 53

Polynomial

 roots computes the roots of the polynomial

 r=roots(p) returns a column vector whose elements are the roots

of the polynomial p

 Row vector p contains the coefficients of the polynomial

 Example: the polynomial x3 -6 x2 + 11 x – 6

» p= [1 -6 11 -6]; format long;

» roots(p)

ans =

3.00000000000000

3.00000000000000

3.00000000000000

Matlab - 2018/2019 54

Polynomial

Remark There are some complications with multiple roots

The polynomial r3+3r2 +3r+1 have just one root r = -1, but

roots([1 3 3 1])

returns three different (though close) values

ans =

-1.00000913968880

-0.99999543015560 + 0.00000791513186i

-0.99999543015560 - 0.00000791513186i

Even worse for p(x)=(x+1)7 (coefficients [1 7 21 35 35 21 7 1])

Matlab - 2018/2019 55

Polynomial

Operations with polynomials

 p=conv(u,v) multiplication of the polynomials whose coefficients

are the elements of u and v

 [q,r]=deconv(u,v) polynomial division - the quotient is

returned in vector q and the remainder in vector r such that v =
conv(u,q)+r

 p=polyfit(x,y,n) finds the coefficients of a polynomial p(x)

of degree n that fits the data, p(x(i)) to y(i), in a least

squares sense. The result p is a row vector of length n+1 containing

the polynomial coefficients in descending powers

Matlab - 2018/2019 56

Polynomial

 poly gives the polynomial with specified roots

 p=roots(r) where r is a vector, returns a row vector whose
elements are the coefficients of the polynomial whose roots are the
elements of r

 p=roots(A) where A is an n-by-n matrix, returns an n+1 element
row vector whose elements are the coefficients of the characteristic
polynomial, det(λI – A)

Remark poly(A) generates the characteristic polynomial of A, and
roots(poly(A)) finds the roots of that polynomial, which are the
eigenvalues of A

Matlab - 2018/2019 57

