
Vector Architectures

Intensive Computation

Annalisa Massini
2018/2019

SIMD

ARCHITECTURES

2Intensive Computation - 2018/2019

Computer Architecture - A Quantitative Approach, Fifth Edition

Hennessy Patterson

• Chapter 4 - Data-Level Parallelism in Vector, SIMD, and GPU Architectures

• Section 4.2 - Vector Architecture

3Intensive Computation - 2018/2019

SIMD architectures

• SIMD (Single Instruction Multiple Data) architectures are
effective for applications having a significant data-level
parallelism (DLP):
• matrix-oriented computations of scientific computing

• media oriented image

• sound processing

• Since a single instruction can launch many data operations,
SIMD is potentially more energy efficient than MIMD (Multiple
Instruction Multiple Data), which needs to fetch and execute
one instruction per data operation

Intensive Computation - 2018/2019 4

SIMD architectures

• Perhaps the biggest advantage of SIMD versus MIMD is that the
programmer continues to think sequentially yet achieves
parallel speedup by having parallel data operations

• For problems with lots of data parallelism, all SIMD variations
share the advantage of being easier for the programmer than
classic parallel MIMD programming

• We will consider two variations of SIMD:
• vector architectures

• graphics processing units (GPUs)

• We do not consider SIMD extension of instruction set, architectures that support
multimedia applications

Intensive Computation - 2018/2019 5

SIMD architectures

• Vector architectures means essentially pipelined execution of
many data operations

• Vector architectures are easier to understand and to compile
to than other SIMD variations, but they were considered too
expensive for microprocessors until recently

• Part of that expense was in transistors and part was in the cost
of sufficient DRAM bandwidth, given the widespread
dependence on caches to meet memory performance
demands on conventional microprocessors

Intensive Computation - 2018/2019 6

SIMD architectures

GPUs

• Represent a variation on SIMD offering higher potential
performance than is found in traditional multicore
computers today

• Share features with vector architectures, but they have their
own distinguishing characteristics, in part due to the context
in which they evolved

• The GPU and its graphics memory is associated to a system
processor and system memory, and the architecture is
referred to as heterogeneous (the system processor is called
host and the GPU is called device)

Intensive Computation - 2018/2019 7

VECTOR PROCESSORS:

HYSTORY

8Intensive Computation - 2018/2019

Vector processors

• Development of vector processors was in the mid 70s

• In vector processors, a scalar processor is integrated with a
collection of function units that operate on vectors of data out
of one memory in a pipelined fashion

• The ability to operate on vectors anywhere in memory:
• eliminates the need to map application data structures onto a rigid

interconnection structure

• greatly simplifies the problem of getting data aligned so that local
operations can be performed

Intensive Computation - 2018/2019 9

Vector processors

• The first vector processor, the CDC Star 100, provided vector
operations in its instruction set that combined two source
vectors from memory and produced a result vector in memory

• The machine only operated at full speed if the vectors were
contiguous and a large fraction of the execution time was spent
simply transposing matrices

Intensive Computation - 2018/2019 10

CDC STAR 100

• CDC's approach in the Star architecture used what is today known
as a memory-memory architecture

• This referred to the way the machine gathered data

• It set up its pipeline to read from and write to memory directly

• This allowed the Star to use vectors of any length making it
highly flexible

• BUT:

• the pipeline had to be very long in order to allow it to have
enough instructions in flight to make up for the slow memory

Intensive Computation - 2018/2019 11

CDC STAR 100

Other drawbacks

• The machine incurred a high cost when switching from
processing vectors to performing operations on individual
randomly located operands

• The low scalar performance of the machine meant that after
the switch had taken place and the machine was running scalar
instructions, the performance was quite poor

Intensive Computation - 2018/2019 12

Cray-1

• A dramatic change in 1976 with the introduction of the Cray-1

• The concept of a load-store architecture employed in the CDC
architectures is extended to apply to vectors (rediscovered in
modern RISC machines)

• Seymour Cray was able to look at the failure of the STAR and
learn from it

• He decided that in addition to fast vector processing, his
design would also require:

• Excellent all-around scalar performance  when the machine
switched modes, it would still provide superior performance

• Also, the workloads could be dramatically improved in most cases
through the use of registers

Intensive Computation - 2018/2019 13

Cray-1

• Registers are significantly more expensive in terms of circuitry,
so only a limited number could be provided

• Cray's design has less flexibility in terms of vector sizes

• Instead of reading any sized vector several times as in the STAR,
the Cray-1 reads only a portion of the vector at a time, but it
could then run several operations on that data prior to writing
the results back to memory

• Vectors in memory, of any fixed stride, were transferred to or
from contiguous vector registers by vector load and store
instructions

Intensive Computation - 2018/2019 14

Cray-1

• The vector system of the new design had its own separate
pipeline

• Arithmetic was performed on the vector registers

• The multiplication and addition units were implemented as
separate hardware, so the results of one could be internally
pipelined into the next

• The use of a very fast scalar processor (operating at the
unprecedented rate of 80 MHz) tightly integrated with the
vector operations utilizing a large semiconductor memory

Intensive Computation - 2018/2019 15

Cray-1

• Cray-1 was the first Cray design to use integrated circuits (ICs)

• ICs were mounted on large five-layer printed circuit boards,
with up to 144 ICs per board

• Boards were mounted back to back for cooling and placed in
24 racks (of size 28-inch-high - 71 cm) containing 72 double-
boards

• The typical module (distinct processing unit) required one or
two boards

• In all, the machine contained 1662 modules in 113 varieties

Intensive Computation - 2018/2019 16

Cray-1

• The high-performance circuitry generated considerable heat 
much effort on the design of the refrigeration system

• Each circuit board was paired with a second, placed back to
back with a sheet of copper between them  liquid Freon
running in stainless steel pipes was used for the cooling unit
below the machine

Intensive Computation - 2018/2019 17

• In order to bring maximum speed out of the
machine, the entire chassis was bent into a
large C-shape

• Speed-dependent portions of the system were
placed on the inside edge of the chassis, where
the wire-lengths were shorter

Cray 1

Intensive Computation - 2018/2019 18

Over the next twenty years
Cray Research led the
supercomputing market by:
• increasing the bandwidth

for vector memory
transfers

• increasing the number of
processors, the number
of vector pipelines, and
the length of the vector
registers

Cray 1

Intensive Computation - 2018/2019 19

Cray-1 features

• 64-bit system

• Addressing was 24-bit, with
a maximum of 1,048,576
64-bit words (1 megaword)
of main memory

• Each word also had 8 parity
bits for a total of 72 bits per
word (64 data bits and 8
check bits)

The Cray-1 had 12
pipelined functional units

Cray 1

Intensive Computation - 2018/2019 20

• Memory was spread across 16
interleaved memory banks, each
with a 50 ns cycle time, allowing up
to four words to be read per cycle

• The main register set consisted of:

• 8 64-bit scalar (S) registers

• 8 24-bit address (A) registers

• 8 64-element by 64-bit vector
registers (V)

• A vector length (VL) register

• A vector mask (VM) register

• A 64-bit real-time clock register

• 4 64-bit instruction buffers that
held sixty-four 16-bit instructions

VECTOR

ARCHITECTURES

21Intensive Computation - 2018/2019

Vector Architectures

• Basic idea:
• Read sets of data elements scattered about memory

• Place them into vector registers

• Operate on those registers

• Disperse the results back into memory

• Registers are controlled by compiler
• Used to hide memory latency

• Leverage memory bandwidth

• Since vector loads and stores are deeply pipelined, the program
pays the long memory latency only once per vector load or
store versus once per element, thus amortizing the latency

22Intensive Computation - 2018/2019

VMIPS

• Example architecture: VMIPS
• Loosely based on Cray-1

• Vector registers
• Each register holds a 64-element, 64 bits/element vector

• Register file has 16 read ports and 8 write ports

• Vector functional units
• Fully pipelined

• Data and control hazards are detected

• Vector load-store unit
• Fully pipelined

• One word per clock cycle after initial latency

• Scalar registers
• 32 general-purpose registers

• 32 floating-point registers

23Intensive Computation - 2018/2019

Basic structure of VMIPS vector
architecture :
• scalar architecture just like MIPS
• eight 64-element vector
• all the functional units are vector

functional units
• vector units for logical and integer

operations
• the vector and scalar registers have

a significant number of read and
write ports to allow multiple
simultaneous vector operations

• a set of crossbar switches (thick gray
lines) connects these ports to the
inputs and outputs of the vector
functional units

24Intensive Computation - 2018/2019

VMIPS

Intensive Computation - 2018/2019 25

VMIPS Instructions

DAXPY in MIPS Instructions

Example: DAXPY (double precision a*X+Y)

• Requires almost 600 MIPS instructions

L.D F0,a ; load scalar a

DADDIU R4,Rx,#512 ; last address to load

Loop: L.D F2,0(Rx) ; load X[i]

MUL.D F2,F2,F0 ; a x X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ; a x X[i] + Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx,#8 ; increment index to X

DADDIU Ry,Ry,#8 ; increment index to Y

SUBBU R20,R4,Rx ; compute bound

BNEZ R20,Loop ; check if done

26Intensive Computation - 2018/2019

DAXPY in VMIPS Instructions

Example: DAXPY (double precision a*X+Y)

• Requires 6 VMIPS instructions
• ADDVV.D: add two vectors

• ADDVS.D: add vector to a scalar

• LV/SV: vector load and vector store from address

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV.D V4,V2,V3 ; add

SV V4,Ry ; store the result

27Intensive Computation - 2018/2019

Vector Execution Time

• Execution time depends on three factors:
• Length of operand vectors

• Structural hazards

• Data dependences

• We can compute the time for a single vector instruction given
• The vector length

• The initiation rate, rate at which a vector unit consumes new operands
and produces new results

• Assuming initiation rate of one element per clock cycle for
individual operations we obtain that the execution time is
approximately the vector length

28Intensive Computation - 2018/2019

Vector Execution Time - Convoy

• To discuss vector execution and vector performance, we use
the notion of convoy
• Set of vector instructions that could potentially execute together

• We can estimate performance of a section of code by counting
the number of convoys

• the instructions in a convoy must not contain any structural
hazards

• if such hazards were present, the instructions would need to be
serialized and initiated in different convoys

• to simplify, we assume that a convoy of instructions must
complete execution before any other instructions (scalar or vector)
can begin execution

29Intensive Computation - 2018/2019

Vector Execution Time - Chaining

• Sequences with read-after-write dependency hazards can be in
the same convoy via chaining

• Chaining
• Allows a vector operation to start as soon as the individual elements of

its vector source operand become available

• The results from the first functional unit in the chain are forwarded to
the second functional unit

• Early implementations of chaining worked just like forwarding in scalar
pipelining

• Recent implementations use flexible chaining, which allows a vector
instruction to chain to any other active vector instruction, assuming we
do not generate a structural hazard

30Intensive Computation - 2018/2019

Vector Execution Time - Chimes

• To turn convoys into execution time we need a timing metric to
estimate the time for a convoy: chime that is the unit of time to
execute one convoy
• A vector sequence that consists of m convoys executes in m

chimes

• For vector length of n, requires approximately m x n clock cycles

• The chime approximation ignores some processor-specific
overheads, many of which are dependent on vector length

• Measuring time in chimes is a better approximation for long
vectors than for short ones

• source of overhead ignored by the chime model is vector start-up
time (principally due to pipelining latency)

31Intensive Computation - 2018/2019

Vector Execution Time - Chime

• The most important source of overhead ignored by the chime
model is vector start-up time

• Start-up time is determined by the pipelining latency of vector
functional unit

• For VMIPS we assume the same pipeline depths as Cray-1

• Floating-point add => 6 clock cycles

• Floating-point multiply => 7 clock cycles

• Floating-point divide => 20 clock cycles

• Vector load => 12 clock cycles

32Intensive Computation - 2018/2019

Optimizations

• Given these vector basics, there are several optimizations that
improve the performance on vector architectures

• Multiple Lanes: > 1 element per clock cycle

• Vector Length Registers: Non-64 wide vectors

• Vector Mask Registers: IF statements in vector code

• Memory Banks: Memory system optimizations to support
vector processors

• Stride: Multiple dimensional matrices

• Scatter-Gather: Sparse matrices

• Programming Vector Architectures: Program structures
affecting performance

33Intensive Computation - 2018/2019

Multiple Lanes

• The advantage of a vector instruction set is that it allows
software to pass a large amount of parallel work to hardware
using only a single short instruction

• The parallel semantics of a vector instruction allow an
implementation to execute these elemental operations using:

• a deeply pipelined functional unit

• an array of parallel functional units

• a combination of parallel and pipelined functional units

34Intensive Computation - 2018/2019

Multiple Lanes

• In the VMIPS instruction set, all vector arithmetic instructions
only allow element N of one vector register to take part in
operations with element N from other vector registers

• A parallel vector unit can be build by multiple parallel lanes

35Intensive Computation - 2018/2019

Multiple Lanes

• Figure illustrates how to improve vector performance by using
parallel pipelines to execute a vector add instruction

36Intensive Computation - 2018/2019

Using multiple functional units improves

the performance of a single vector add

instruction C = A + B

Figure(a) The vector processor has a

single add pipeline and can complete

one addition per cycle

Figure (b) The vector processor has

four add pipelines and can complete

four additions per cycle. The elements

within a single vector add instruction are

interleaved across the four pipelines.

The set of elements moving through the

pipelines together is an element group

Vector Length Registers Handling Loops Not Equal to 64

• Real vector length n in a program is unlikely to match VMIPS
vector length, which is 64

• Vector length is not known at compile time

• The solution is to create a vector-length register (VLR):

• controls the length of any vector operation, including a vector load or
store

• but the value in the VLR cannot be greater than the length of the
vector registers

• Then also the maximum vector length (MVL) is used:

• determines the number of data elements in a vector of an architecture

37Intensive Computation - 2018/2019

Vector Length Registers Handling Loops Not Equal to 64

• If the value of n is greater than the MVL, a technique called
strip mining is used:

• Generation of code such that each vector operation is done for a size
less than or equal to the MVL:

• one loop that handles any number of iterations that is a multiple of the MVL

• another loop that handles any remaining iterations and must be less than the
MVL

• In practice, compilers usually create a single strip-mined loop
that is parameterized to handle both portions by changing the
length

38Intensive Computation - 2018/2019

Vector Length Registers Handling Loops Not Equal to 64

• For example, consider the code for DAXPY:
for (i=0; i <n; i=i+1)

Y[i] = a ∗ X[i] + Y[i];

• The strip-mined version of the DAXPY loop in C:
low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/

}

• The length of the first segment is (n % MVL), and all subsequent
segments are of length MVL

39Intensive Computation - 2018/2019

Vector Mask Registers IF Statements in Vector Loops

• The presence of conditionals (IF statements) inside loops
introduce control dependences into the loop

• Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

• This loop cannot normally be vectorized because of the
conditional execution of the body

• If the inner loop could be run for the iterations for which
X[i]≠0, then the subtraction could be vectorized

40Intensive Computation - 2018/2019

Vector Mask Registers IF Statements in Vector Loops

• The solution is vector-mask control

• Mask registers provide conditional execution of vector instruction

• When the vector-mask register is enabled, any vector instructions
operate only on the vector elements whose corresponding entries
in the vector-mask register are 1

• Use vector mask register to “disable” elements (if conversion):
LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

• GFLOPS rate decreases

41Intensive Computation - 2018/2019

Memory Banks Bandwidth for Vector Load/Store Units

• Memory systems must be designed to support high bandwidth
for vector loads and stores

• Spreading accesses across multiple independent memory
banks usually delivers the desired rate

• Control bank addresses independently

• Load or store non sequential words

• Support multiple vector processors sharing the same memory

42Intensive Computation - 2018/2019

Stride Handling MultidimensionalArrays in Vector Architectures

• The position in memory of adjacent elements in a vector may

not be sequential

• Consider this code for matrix multiply in C :

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

• Must vectorize multiplication of rows of B with columns of D

• An array in memory is linearized in either row-major (as in C) or

column-major (as in Fortran) order, then either the elements in

the row or in the column are not adjacent in memory

43Intensive Computation - 2018/2019

Stride Handling MultidimensionalArrays in Vector Architectures

• For vector processors, the technique to fetch elements of a
vector that are not adjacent in memory exploits the stride that
is the distance separating elements to be gathered into a single
register
• In our example, matrix D has a stride of 100 double words (800 bytes),

and matrix B has a stride of 1 double word (8 bytes). For column-major
order, the strides would be reversed

• A vector processor can handle strides greater than one, called
non-unit strides, using only vector load and vector store
operations with stride capability

• This ability to access nonsequential memory locations and to
reshape them into a dense structure is one of the major
advantages of a vector processor

44Intensive Computation - 2018/2019

Stride Handling MultidimensionalArrays in Vector Architectures

Example

• 8 memory banks with a bank busy time of 6 cycles and a total
memory latency of 12 cycles

• How long will it take to complete a 64-element vector load with a
stride of 1? With a stride of 32?

• Answer

• Stride of 1: number of banks is greater than the bank busy time, so
it takes 12+64 = 76 clock cycles  1.2 cycle per element

• Stride of 32: the worst case is when the stride value is a multiple of
the number of banks, as in this case. Every access to memory will
collide with the previous one. Thus, the total time will be:

12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element

45Intensive Computation - 2018/2019

Scatter-Gather Handling Sparse Matrices

• It is important to have techniques to allow programs with
sparse matrices to execute in vector mode

• In a sparse matrix, the elements of a vector are usually stored in
some compacted form and then accessed indirectly

• Consider sparse vectors A and C, and index vectors K and M,
where A and C have the same number (n) of non-zeros:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

• The primary mechanism for supporting sparse matrices is
gather-scatter operations using index vectors

• Such operations support moving between a compressed
representation and normal representation of a sparse matrix

46Intensive Computation - 2018/2019

Scatter-Gather Handling Sparse Matrices

• A gather operation takes an index vector and fetches the vector
whose elements are at the addresses given by adding a base
address to the offsets given in the index vector. The result is a
dense vector in a vector register

• After these elements are operated on in dense form, the sparse
vector can be stored in expanded form by a scatter store, using
the same index vector

• This technique allows code with sparse matrices to run in
vector mode

• Hardware support for such operations is called gather-scatter

• The VMIPS instructions are LVI (load vector indexed or gather)
and SVI (store vector indexed or scatter)

47Intensive Computation - 2018/2019

Scatter-Gather Handling Sparse Matrices

• Example:
for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

• The VMIPS instructions are LVI (load vector indexed or gather)
and SVI (store vector indexed or scatter)

• Inner loop - Ra, Rc, Rk and Rm the starting addresses of vectors

LV Vk, Rk ;load K

LVI Va, (Ra+Vk) ;load A[K[]]

LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

SVI (Ra+Vk), Va ;store A[K[]]

48Intensive Computation - 2018/2019

• Compilers can provide feedback to programmers

• Programmers can provide hints to compiler

49Intensive Computation - 2018/2019

Level of vectorization among

the Perfect Club benchmarks

executed on the Cray Y-MP

[Vajapeyam 1991]

The first column shows the

vectorization level obtained

with the compiler without

hints

The second column shows

the results after the codes

have been improved with

hints from a team of Cray

Research programmers

Programming Vector Architectures

