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Computer Architecture - A Quantitative Approach, Fifth Edition

Hennessy Patterson

• Chapter 4 - Data-Level Parallelism in Vector, SIMD, and GPU Architectures

• Section 4.2 - Vector Architecture
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SIMD architectures

• SIMD (Single Instruction Multiple Data) architectures are 
effective for applications having a significant data-level 
parallelism (DLP):
• matrix-oriented computations of scientific computing

• media oriented image

• sound processing

• Since a single instruction can launch many data operations, 
SIMD is potentially more energy efficient than MIMD (Multiple 
Instruction Multiple Data), which needs to fetch and execute 
one instruction per data operation
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SIMD architectures

• Perhaps the biggest advantage of SIMD versus MIMD is that the 
programmer continues to think sequentially yet achieves 
parallel speedup by having parallel data operations

• For problems with lots of data parallelism, all SIMD variations 
share the advantage of being easier for the programmer than 
classic parallel MIMD programming

• We will consider two variations of SIMD: 
• vector architectures 

• graphics processing units (GPUs)

• We do not consider SIMD extension of instruction set, architectures that support 
multimedia applications
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SIMD architectures

• Vector architectures means essentially pipelined execution of 
many data operations

• Vector architectures are easier to understand and to compile 
to than other SIMD variations, but they were considered too 
expensive for microprocessors until recently

• Part of that expense was in transistors and part was in the cost 
of sufficient DRAM bandwidth, given the widespread 
dependence on caches to meet memory performance 
demands on conventional microprocessors
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SIMD architectures

GPUs

• Represent a variation on SIMD offering higher potential 
performance than is found in traditional multicore 
computers today

• Share features with vector architectures, but they have their 
own distinguishing characteristics, in part due to the context 
in which they evolved

• The GPU and its graphics memory is associated to a system 
processor and system memory, and the architecture is 
referred to as heterogeneous (the system processor is called 
host and the GPU is called device)
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VECTOR PROCESSORS: 

HYSTORY
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Vector processors

• Development of vector processors was in the mid 70s 

• In vector processors, a scalar processor is integrated with a 
collection of function units that operate on vectors of data out 
of one memory in a pipelined fashion

• The ability to operate on vectors anywhere in memory:
• eliminates the need to map application data structures onto a rigid 

interconnection structure 

• greatly simplifies the problem of getting data aligned so that local 
operations can be performed
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Vector processors

• The first vector processor, the CDC Star 100, provided vector 
operations in its instruction set that combined two source 
vectors from memory and produced a result vector in memory

• The machine only operated at full speed if the vectors were 
contiguous and a large fraction of the execution time was spent 
simply transposing matrices
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CDC STAR 100 

• CDC's approach in the Star architecture used what is today known 
as a memory-memory architecture

• This referred to the way the machine gathered data

• It set up its pipeline to read from and write to memory directly 

• This allowed the Star to use vectors of any length making it 
highly flexible

• BUT:

• the pipeline had to be very long in order to allow it to have 
enough instructions in flight to make up for the slow memory

Intensive Computation - 2018/2019 11



CDC STAR 100 

Other drawbacks

• The machine incurred a high cost when switching from 
processing vectors to performing operations on individual 
randomly located operands

• The low scalar performance of the machine meant that after 
the switch had taken place and the machine was running scalar 
instructions, the performance was quite poor
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Cray-1

• A dramatic change in 1976 with the introduction of the Cray-1

• The concept of a load-store architecture employed in the CDC 
architectures is extended to apply to vectors (rediscovered in 
modern RISC machines) 

• Seymour Cray was able to look at the failure of the STAR and 
learn from it

• He decided that in addition to fast vector processing, his 
design would also require:

• Excellent all-around scalar performance  when the machine 
switched modes, it would still provide superior performance

• Also, the workloads could be dramatically improved in most cases 
through the use of registers
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Cray-1

• Registers are significantly more expensive in terms of circuitry, 
so only a limited number could be provided

• Cray's design has less flexibility in terms of vector sizes

• Instead of reading any sized vector several times as in the STAR, 
the Cray-1 reads only a portion of the vector at a time, but it 
could then run several operations on that data prior to writing 
the results back to memory

• Vectors in memory, of any fixed stride, were transferred to or 
from contiguous vector registers by vector load and store 
instructions
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Cray-1

• The vector system of the new design had its own separate 
pipeline

• Arithmetic was performed on the vector registers

• The multiplication and addition units were implemented as 
separate hardware, so the results of one could be internally 
pipelined into the next

• The use of a very fast scalar processor (operating at the 
unprecedented rate of 80 MHz) tightly integrated with the 
vector operations utilizing a large semiconductor memory
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Cray-1

• Cray-1 was the first Cray design to use integrated circuits (ICs)

• ICs were mounted on large five-layer printed circuit boards, 
with up to 144 ICs per board

• Boards were mounted back to back for cooling and placed in 
24 racks (of size 28-inch-high - 71 cm) containing 72 double-
boards

• The typical module (distinct processing unit) required one or 
two boards

• In all, the machine contained 1662 modules in 113 varieties
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Cray-1

• The high-performance circuitry generated considerable heat 
much effort on the design of the refrigeration system 

• Each circuit board was paired with a second, placed back to 
back with a sheet of copper between them  liquid Freon
running in stainless steel pipes was used for the cooling unit 
below the machine
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• In order to bring maximum speed out of the 
machine, the entire chassis was bent into a 
large C-shape

• Speed-dependent portions of the system were 
placed on the inside edge of the chassis, where 
the wire-lengths were shorter



Cray 1
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Over the next twenty years 
Cray Research led the 
supercomputing market by:
• increasing the bandwidth 

for vector memory 
transfers

• increasing the number of 
processors, the number 
of vector pipelines, and 
the length of the vector 
registers



Cray 1
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Cray-1 features

• 64-bit system

• Addressing was 24-bit, with 
a maximum of 1,048,576 
64-bit words (1 megaword) 
of main memory

• Each word also had 8 parity
bits for a total of 72 bits per 
word (64 data bits and 8 
check bits)

The Cray-1 had 12 
pipelined functional units



Cray 1
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• Memory was spread across 16 
interleaved memory banks, each 
with a 50 ns cycle time, allowing up 
to four words to be read per cycle

• The main register set consisted of:

• 8 64-bit scalar (S) registers 

• 8 24-bit address (A) registers

• 8 64-element by 64-bit vector 
registers (V)

• A vector length (VL) register

• A vector mask (VM) register

• A 64-bit real-time clock register 

• 4 64-bit instruction buffers that 
held sixty-four 16-bit instructions



VECTOR 

ARCHITECTURES
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Vector Architectures

• Basic idea:
• Read sets of data elements scattered about memory

• Place them into vector registers

• Operate on those registers

• Disperse the results back into memory

• Registers are controlled by compiler
• Used to hide memory latency

• Leverage memory bandwidth

• Since vector loads and stores are deeply pipelined, the program 
pays the long memory latency only once per vector load or 
store versus once per element, thus amortizing the latency
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VMIPS

• Example architecture:  VMIPS
• Loosely based on Cray-1

• Vector registers
• Each register holds a 64-element, 64 bits/element vector

• Register file has 16 read ports and 8 write ports

• Vector functional units
• Fully pipelined

• Data and control hazards are detected

• Vector load-store unit
• Fully pipelined

• One word per clock cycle after initial latency

• Scalar registers
• 32 general-purpose registers

• 32 floating-point registers
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Basic structure of VMIPS vector 
architecture :
• scalar architecture just like MIPS 
• eight 64-element vector 
• all the functional units are vector 

functional units 
• vector units for logical and integer 

operations 
• the vector and scalar registers have 

a significant number of read and 
write ports to allow multiple 
simultaneous vector operations

• a set of crossbar switches (thick gray 
lines) connects these ports to the 
inputs and outputs of the vector 
functional units 
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DAXPY in MIPS Instructions

Example:  DAXPY (double precision a*X+Y)

• Requires almost 600 MIPS instructions

L.D F0,a ; load scalar a

DADDIU R4,Rx,#512 ; last address to load

Loop: L.D F2,0(Rx) ; load X[i]

MUL.D F2,F2,F0 ; a x X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ; a x X[i] + Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx,#8 ; increment index to X

DADDIU Ry,Ry,#8 ; increment index to Y

SUBBU R20,R4,Rx ; compute bound

BNEZ R20,Loop ; check if done
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DAXPY in VMIPS Instructions

Example:  DAXPY (double precision a*X+Y)

• Requires 6 VMIPS instructions
• ADDVV.D:  add two vectors

• ADDVS.D:  add vector to a scalar

• LV/SV:  vector load and vector store from address

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV.D V4,V2,V3 ; add

SV V4,Ry ; store the result
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Vector Execution Time

• Execution time depends on three factors:
• Length of operand vectors

• Structural hazards

• Data dependences

• We can compute the time for a single vector instruction given 
• The vector length

• The initiation rate, rate at which a vector unit consumes new operands 
and produces new results

• Assuming initiation rate of one element per clock cycle for 
individual operations we obtain that the execution time is 
approximately the vector length
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Vector Execution Time - Convoy

• To discuss vector execution and vector performance, we use 
the notion of convoy
• Set of vector instructions that could potentially execute together

• We can estimate performance of a section of code by counting 
the number of convoys

• the instructions in a convoy must not contain any structural 
hazards

• if such hazards were present, the instructions would need to be 
serialized and initiated in different convoys 

• to simplify, we assume that a convoy of instructions must 
complete execution before any other instructions (scalar or vector) 
can begin execution
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Vector Execution Time - Chaining

• Sequences with read-after-write dependency hazards can be in 
the same convoy via chaining

• Chaining
• Allows a vector operation to start as soon as the individual elements of 

its vector source operand become available

• The results from the first functional unit in the chain are forwarded to 
the second functional unit

• Early implementations of chaining worked just like forwarding in scalar 
pipelining

• Recent implementations use flexible chaining, which allows a vector 
instruction to chain to any other active vector instruction, assuming we 
do not generate a structural hazard
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Vector Execution Time - Chimes

• To turn convoys into execution time we need a timing metric to 
estimate the time for a convoy: chime that is the unit of time to 
execute one convoy
• A vector sequence that consists of m convoys executes in m

chimes

• For vector length of n, requires approximately m x n clock cycles

• The chime approximation ignores some processor-specific 
overheads, many of which are dependent on vector length

• Measuring time in chimes is a better approximation for long 
vectors than for short ones

• source of overhead ignored by the chime model is vector start-up 
time (principally due to pipelining latency)
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Vector Execution Time - Chime 

• The most important source of overhead ignored by the chime 
model is vector start-up time

• Start-up time  is determined by the pipelining latency of vector 
functional unit

• For VMIPS we assume the same pipeline depths as Cray-1

• Floating-point add => 6 clock cycles

• Floating-point multiply => 7 clock cycles

• Floating-point divide => 20 clock cycles

• Vector load => 12 clock cycles

32Intensive Computation - 2018/2019



Optimizations

• Given these vector basics, there are several optimizations that 
improve the performance on vector architectures

• Multiple Lanes: > 1 element per clock cycle

• Vector Length Registers: Non-64 wide vectors

• Vector Mask Registers: IF statements in vector code

• Memory Banks: Memory system optimizations to support 
vector processors

• Stride: Multiple dimensional matrices

• Scatter-Gather: Sparse matrices

• Programming Vector Architectures: Program structures 
affecting performance
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Multiple Lanes

• The advantage of a vector instruction set is that it allows 
software to pass a large amount of parallel work to hardware 
using only a single short instruction 

• The parallel semantics of a vector instruction allow an 
implementation to execute these elemental operations using:

• a deeply pipelined functional unit

• an array of parallel functional units

• a combination of parallel and pipelined functional units
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Multiple Lanes

• In the VMIPS instruction set, all vector arithmetic instructions 
only allow element N of one vector register to take part in 
operations with element N from other vector registers

• A parallel vector unit can be build by multiple parallel lanes
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Multiple Lanes

• Figure illustrates how to improve vector performance by using 
parallel pipelines to execute a vector add instruction
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Using multiple functional units improves 

the performance of a single vector add 

instruction C = A + B

Figure(a) The vector processor has a 

single add pipeline and can complete 

one addition per cycle

Figure (b) The vector processor has 

four add pipelines and can complete 

four additions per cycle. The elements 

within a single vector add instruction are 

interleaved across the four pipelines. 

The set of elements moving through the 

pipelines together is an element group



Vector Length Registers Handling Loops Not Equal to 64

• Real vector length n in a program is unlikely to match VMIPS 
vector length, which is 64

• Vector length is not known at compile time

• The solution is to create a vector-length register (VLR):

• controls the length of any vector operation, including a vector load or 
store 

• but the value in the VLR cannot be greater than the length of the 
vector registers

• Then also the maximum vector length (MVL) is used:

• determines the number of data elements in a vector of an architecture
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Vector Length Registers Handling Loops Not Equal to 64

• If the value of n is greater than the MVL, a technique called 
strip mining is used:

• Generation of code such that each vector operation is done for a size 
less than or equal to the MVL: 

• one loop that handles any number of iterations that is a multiple of the MVL 

• another loop that handles any remaining iterations and must be less than the 
MVL

• In practice, compilers usually create a single strip-mined loop 
that is parameterized to handle both portions by changing the 
length
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Vector Length Registers Handling Loops Not Equal to 64

• For example, consider the code for DAXPY:
for (i=0; i <n; i=i+1)

Y[i] = a ∗ X[i] + Y[i];

• The strip-mined version of the DAXPY loop in C:
low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) {   /*outer loop*/

for (i = low; i < (low+VL); i=i+1)  /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ;         /*main operation*/

low = low + VL;                      /*start of next vector*/

VL = MVL;       /*reset the length to maximum vector length*/

}

• The length of the first segment is (n % MVL), and all subsequent 
segments are of length MVL
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Vector Mask Registers IF Statements in Vector Loops

• The presence of conditionals (IF statements) inside loops
introduce control dependences into the loop

• Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

• This loop cannot normally be vectorized because of the 
conditional execution of the body

• If the inner loop could be run for the iterations for which 
X[i]≠0, then the subtraction could be vectorized
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Vector Mask Registers IF Statements in Vector Loops

• The solution is vector-mask control

• Mask registers provide conditional execution of vector instruction

• When the vector-mask register is enabled, any vector instructions 
operate only on the vector elements whose corresponding entries 
in the vector-mask register are 1

• Use vector mask register to “disable” elements (if conversion):
LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

• GFLOPS rate decreases
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Memory Banks Bandwidth for Vector Load/Store Units

• Memory systems must be designed to support high bandwidth 
for vector loads and stores

• Spreading accesses across multiple independent memory 
banks usually delivers the desired rate

• Control bank addresses independently

• Load or store non sequential words

• Support multiple vector processors sharing the same memory
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Stride Handling MultidimensionalArrays in Vector Architectures

• The position in memory of adjacent elements in a vector may 

not be sequential

• Consider this code for matrix multiply in C :

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

• Must vectorize multiplication of rows of B with columns of D

• An array in memory is linearized in either row-major (as in C) or 

column-major (as in Fortran) order, then either the elements in 

the row or in the column are not adjacent in memory
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Stride Handling MultidimensionalArrays in Vector Architectures

• For vector processors, the technique to fetch elements of a 
vector that are not adjacent in memory exploits the stride that 
is the distance separating elements to be gathered into a single 
register 
• In our example, matrix D has a stride of 100 double words (800 bytes), 

and matrix B has a stride of 1 double word (8 bytes). For column-major 
order, the strides would be reversed

• A vector processor can handle strides greater than one, called 
non-unit strides, using only vector load and vector store 
operations with stride capability

• This ability to access nonsequential memory locations and to 
reshape them into a dense structure is one of the major 
advantages of a vector processor
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Stride Handling MultidimensionalArrays in Vector Architectures

Example

• 8 memory banks with a bank busy time of 6 cycles and a total 
memory latency of 12 cycles 

• How long will it take to complete a 64-element vector load with a 
stride of 1? With a stride of 32?

• Answer

• Stride of 1: number of banks is greater than the bank busy time, so 
it takes 12+64 = 76 clock cycles  1.2 cycle per element

• Stride of 32: the worst case is when the stride value is a multiple of 
the number of banks, as in this case. Every access to memory will 
collide with the previous one. Thus, the total time will be:

12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element
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Scatter-Gather Handling Sparse Matrices

• It is important to have techniques to allow programs with 
sparse matrices to execute in vector mode 

• In a sparse matrix, the elements of a vector are usually stored in 
some compacted form and then accessed indirectly

• Consider sparse vectors A and C, and index vectors K and M, 
where A and C have the same number (n) of non-zeros:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];   

• The primary mechanism for supporting sparse matrices is 
gather-scatter operations using index vectors

• Such operations support moving between a compressed 
representation and normal representation of a sparse matrix
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Scatter-Gather Handling Sparse Matrices

• A gather operation takes an index vector and fetches the vector 
whose elements are at the addresses given by adding a base 
address to the offsets given in the index vector. The result is a 
dense vector in a vector register

• After these elements are operated on in dense form, the sparse 
vector can be stored in expanded form by a scatter store, using 
the same index vector

• This technique allows code with sparse matrices to run in 
vector mode

• Hardware support for such operations is called gather-scatter

• The VMIPS instructions are LVI (load vector indexed or gather) 
and SVI (store vector indexed or scatter)

47Intensive Computation - 2018/2019



Scatter-Gather Handling Sparse Matrices

• Example: 
for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

• The VMIPS instructions are LVI (load vector indexed or gather)
and SVI (store vector indexed or scatter)

• Inner loop - Ra, Rc, Rk and Rm the starting addresses of vectors

LV Vk, Rk ;load K

LVI Va, (Ra+Vk) ;load A[K[]]

LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

SVI (Ra+Vk), Va ;store A[K[]]
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• Compilers can provide feedback to programmers

• Programmers can provide hints to compiler
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Level of vectorization among 

the Perfect Club benchmarks 

executed on the Cray Y-MP 

[Vajapeyam 1991]

The first column shows the 

vectorization level obtained 

with the compiler without 

hints

The second column shows 

the results after the codes 

have been improved with 

hints from a team of Cray 

Research programmers
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