Intensive computation Prof. A. Massini

Mid Term Exam – April 18, 2018

- Student's Name	-
- <i>Matricola</i> number	-

Exercise 1 (6 points)	
Question 1 (4 points)	
Exercise 2 (6 points)	
Question 2 (4 points)	
Question 3 (4 points)	
Exercise 3 (4 points)	
Exercise 4 (4 points)	
Total (32 points)	

Exercise 1 (6 points) - Sparse matrices

Consider the sparse matrix 10x10 here below

0,9502	0,1712	0	0,8003	0	0	0	0	0	0
0	0,0344	0,7060	0	0,1419	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0,5469	0,8491	0	0,3816	0,2769	0	0,9157	0	0	0
0	0,9575	0,9340	0	0,7655	0,0462	0	0,7922	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0,1576	0,7577	0	0,1869	0,8235	0	0,6557
0	0	0	0	0,9706	0,7431	0	0,4898	0,6948	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0,4854	0,6555	0	0,6463

a)	Write which arrays you need when the DIAG compressed representation is used. Show the DIAG representation (using symbolic names m_{ij} for nonzero elements).
b)	Show the DIAG representation after the insertion of element $m_{4,6}$.
c)	Compare the memory occupation of the compressed representation before and after the insertion.

d)	Write which arrays you need when the Skyline compressed representation is used. Show the Skyline representation, using symbolic names m_{ij} for nonzero elements.
e)	Show the Skyline representation after the insertion of element $m_{4,6}$.
_	
_	
_	
f)	Compare the memory occupation of the compressed representation before and after the insertion.

Question 1 (4 points) - Linear systems Briefly describe the Jacobi method and the Gauss Seidel method.

Exercise 2 (6 points) - Linear systems

Solve the system

$$\begin{cases} 5x_1 - 2 x_2 + 3 x_3 = -1 \\ -3x_1 + 9 x_2 + x_3 = 2 \\ 2x_1 - x_2 - 7 x_3 = 3 \end{cases}$$

with the **Jacobi** method and the **Gauss Seidel** method, using $\mathbf{x}^{(0)} = (0, 0, 0)$ as starting solution.

Complete the table below, doing three iterations.

	t	he Jacobi metho	d	Gauss Seidel method		
k	X1 ^(k)	X2 ^(k)	X3 ^(k)	X1 ^(k)	X2 ^(k)	X3 ^(k)
0	0	0	0	0	0	0
1						
2						
3						

3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	titerative Chol	esky method.		
3 (4 points) Bri	efly describe the	terative Chol	esky method.		
3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	terative Chol	esky method.		
3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	titerative Chol	esky method.		
3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	terative Chol	esky method.		
3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		
3 (4 points) Bri	efly describe the	e iterative Chol	esky method.		

Exercise 3 (4 points) - Linear systems

Apply the Cholesky factorization method to the matrix $\begin{pmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ 5 & 0 & 11 \end{pmatrix}$

Exercise 4 (4 points) - Errors

Show the contribution of <i>computational error</i> and <i>propagated data error</i> when computing $\sin(5\pi/6)$, considering two different approximations for function $\sin(x)$, namely Taylor series stopping after one term and after two terms				
two different approximations for function sin(x),	, namely rayior series stopping after one term and after two terms			