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DEFINITIONS (I)
• Linear system:

...

Matricial form:
Ax = b

2

[A|b] =

0

B@
a1,1 . . . a1,n b1

...
...

am,1 . . . am,n bm

1

CA• Augmented matrix:

• Square matrix: # of rows = # of columns.

• Singular matrix: square matrix with determinant = 0.

• A square matrix is invertible if there exists a matrix such that 
   their product is the identity matrix: AA�1 = A�1A = I

a1,1x1 + . . .+ a1,nxn = b1

am,1x1 + . . .+ am,nxn = bm

0

B@
a1,1 · · · a1,n

...
am,1 · · · am,n

1

CA

0

B@
x1
...
xn

1

CA =

0

B@
b1
...
bm

1

CA



DEFINITIONS (II)
• Rank of a matrix: maximum number of  linearly independent rows =
                             maximum number of linearly independent columns. 

Example: rk

0

@
1 2 �2
�2 �1 0
�3 3 6

1

A = 2

The third row can be written as the sum of the first two rows 
multiplied by 3:

                rk(A)<=min{#rows, #columns} 

                A square matrix is nonsingular iff it has full rank

• If rk(A) = min{#rows, #columns}, A has full rank.
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(�3, 3� 6)� 3[(1, 2,�2) + (�2,�1, 0)] = (0, 0, 0)

                A square matrix is invertible iff it is nonsingular



SOLUTIONS
A linear system has one and only one solution iff its 

coefficient matrix is square and nonsingular

Two linear systems are equivalent if they have the same solution. 

Applying the following operations to the augmented matrix (A|b) doesn’t 
change the solution of the associated linear system, Ax=b: 

• OP1: Swap two rows.

• OP2: Multiply a row by a nonzero scalar.

• OP3: Add to one row a scalar multiple of another.
4

We will consider square and nonsingular matrices



SOLVING SOME SYSTEMS 
IS STRAIGHTFORWARD… 

• Diagonal matrix: 
0

B@
a1,1 · · · 0
...

. . .
...

0 · · · an,n

1

CA

0

B@
x1
...
xn

1

CA =

0

B@
b1
...
bn

1

CA
xi =

bi
ai,i

The solution is:

8i = 1, . . . , n

• Upper-triangular matrix: 
0

BBB@

a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n
...

...
. . .

...
0 0 · · · an,n

1

CCCA

0

BBB@

x1

x2
...
xn

1

CCCA

0

BBB@

b1

b2
...
bn

1

CCCA

The solution is:
xn = bn

an,n

xi =
1

ai,i

⇣
bi �

nP
k=i+1

ai,kxk

⌘

i = (n� 1, . . . , 1)

5

Backward substitution

ai,j 6= 0 =) i = j

ai,j 6= 0 =) i < j



SOLVING SOME SYSTEMS 
IS STRAIGHTFORWARD… 

• Orthogonal matrix: 

The solution is:
• Lower-triangular matrix: 

6

Forward substitution

0

BBB@

a1,1 0 · · · 0
a2,1 a2,2 · · · 0
...

...
. . .

...
an,1 an,2 · · · anun

1

CCCA

0

BBB@

x1

x2
...
xn

1

CCCA
=

0

BBB@

b1

b2
...
bn

1

CCCA
x1 = b1

a1,1

xi =
1

ai,i

⇣
bi �

i�1P
k=1

ai,kxk

⌘

i = 2, . . . , n

AT = A�1

The solution is: Ax = b ! A

T
Ax = A

T
b ! x = A

T
b

ai,j 6= 0 =) i > j



TWO CLASSES OF METHODS 
TO SOLVE LINEAR SYSTEMS

       Direct methods

Find the exact solution (ignoring roundoff) in a  
finite number of steps.

  Gaussian  
  elimination

  Cholesky 
  decomposition

       Iterative methods

Producing a sequence of approximate solution 
possibly converging to the exact solutions.

  Jacobi
  method
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  Gauss-Seidel
  method
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EXACT METHODS:
  1. GAUSSIAN ELIMINATION.
  2. CHOLESKY DECOMPOSITION.
ITERATIVE METHODS:
  1. JACOBI.
  2. GAUSS-SEIDEL



GAUSSIAN ELIMINATION
  Idea:  Applying repeatedly OP3 to transform the input 
          linear system into an upper-triangular one, then 
          use backward substitution to find the solution.

1° step:   
0

BBB@

a1,1
a2,1
...

an,1

1

CCCA
!

0

BBB@

a1,1
0
...
0

1

CCCA
!

0

BBBBBBBB@

a1,k
...

ak,k
0
...
0

1

CCCCCCCCA

k° step:

At every step k, the 
elements of the k° 
column with row index 
> k need to become 0.

9

0

BBBBBBBB@

a1,k
...

ak,k
ak+1,k

...
an,k

1

CCCCCCCCA



GAUSSIAN ELIMINATION
  Idea:  Applying repeatedly OP3 to transform the input 
          linear system into an upper-triangular one, then 
          use backward substitution to find the solution.

9

0
.
.
.
0

0
.
.
.
0

0
.
.
0

0
.
.
.
0

0
.
.
0

0
.
0

0
0 0

…

1° iteration 2° iteration (n-1)° iteration



GAUSSIAN ELIMINATION
Algorithm:

• For every step k: 1 to n-1
• For every i: k+1 to n (entries of column k with row index > k)

Compute the multipliers: mi,k = ai,k

ak,k

• For every j: k to n (entries of the i° rows)

Subtract the k° row multiplied by mi,k to the i° row:
ai,j  ai,j �mi,kak,j

bi  bi �mi,kbk

This will ensure the entries 
of the k° column with row 

index i > k to be 0:
ai,k � ai,k

ak,k
ak,k

10

=0



GAUSSIAN ELIMINATION
Algorithm:

• For every step k: 1 to n-1
• For every i: k+1 to n (entries of column k with row index > k)

Compute the multipliers: mi,k = ai,k

ak,k

• For every j: k to n (entries of the i° rows)

Subtract the k° row multiplied by mi,k to the i° row:
ai,j  ai,j �mi,kak,j

bi  bi �mi,kbk

10

• Solve the resulting linear system (backward substitution).



GAUSSIAN ELIMINATION
Algorithm:

• For every step k: 1 to n-1
• For every i: k+1 to n (entries of column k with row index > k)

Compute the multipliers: mi,k = ai,k

ak,k

• For every j: k to n (entries of the i° rows)

Subtract the k° row multiplied by mi,k to the i° row:
ai,j  ai,j �mi,kak,j

bi  bi �mi,kbk
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• Solve the resulting linear system (backward substitution).

O(n3) - expensive



AN EXAMPLE…

• k°=1° step
• i = 2:

0

@
1 �3 1
2 �8 8
�6 3 �15

1

A

0

@
x

y

z

1

A =

0

@
4
�2
9

1

A

m2,1 = 2
1 = 2

• i = 3: m3,1 = �6
1 = �6

(�6, 3,�15|9) + 6(1,�3, 1|4) = (0,�15,�9|33)

  Gaussian Elimination

• j=1,2,3

(2,�8, 8|� 2)� 2(1,�3, 1|4) = (0,�2, 6|� 10)

0

@
1 �3 1
0 �2 6
0 �15 �9

1

A

0

@
x

y

z

1

A =

0

@
4

�10
33

1

A

12



…AN EXAMPLE…

• k°=2° step
• i = 3:

0

@
1 �3 1
0 �2 6
0 �15 �9

1

A

0

@
x

y

z

1

A =

0

@
4

�10
33

1

A

m3,2 = �15
�2 = 15

2

(�15,�9|33)� 15
2 (�2, 6|� 10) = (0,�54|108)

j = 2,3
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0

@
1 �3 1
0 �2 6
0 0 �54

1

A

0

@
x

y

z

1

A =

0

@
4

�10
108

1

A

  Gaussian Elimination

0

B@
a(2)1,1 a(2)1,2 a(2)1,3

0 a(2)2,2 a(2)3,2

0 0 a(2)3,3

1

CA

0

B@
b(2)1

b(2)2

b(2)3

1

CAA(2) = b(2) =



…AN EXAMPLE…

• k°=2° step
• i = 3:

0

@
1 �3 1
0 �2 6
0 �15 �9

1

A

0

@
x

y

z

1

A =

0

@
4

�10
33

1

A

m3,2 = �15
�2 = 15

2

(�15,�9|33)� 15
2 (�2, 6|� 10) = (0,�54|108)

j = 2,3

13

0

@
1 �3 1
0 �2 6
0 0 �54

1

A

0

@
x

y

z

1

A =

0

@
4

�10
108

1

A

  Gaussian Elimination

The diagonal entries of the resulting matrix are called pivot.



…AN EXAMPLE
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0

@
1 �3 1
0 �2 6
0 0 �54

1

A

0

@
x

y

z

1

A =

0

@
4

�10
108

1

A

x3 = z = � 108
54 = �2

x2 = y = � 1
2 (�10� 6 · (�2)) = �1

x1 = x = (4� 3 + 2) = 3

So the solution is: 

  Backward substitution

(x, y, z)T = (3,�1,�2)T



LU DECOMPOSITION
It is the matricial form of the Gaussian elimination.
It consists in writing the matrix A of the linear system Ax=b as 
the product of a lower and a upper triangular matrix, A=LU.
U is the upper triangular matrix obtained by the standard Gaussian 
elimination. L is the lower triangular matrix whose entries are the 
multipliers found during the Gaussian elimination, and whose 
diagonal entries are all 1.
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0

BBB@

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,1
...

...
...

an,1 an,2 · · · an,n

1

CCCA
=

0

BBB@

1 0 · · · 0
m2,1 1 · · · 0
...

...
. . .

...
mn,1 mn,2 · · · 1

1

CCCA

0

BBBB@

a(k)1,1 a(k)1,2 · · · a(k)1,n

0 a(k)2,2 · · · a(k)2,n
...

...
. . .

...

0 0 · · · a(k)n,n

1

CCCCA

L UA



LU DECOMPOSITION
Once the LU decomposition of A is computed, one may rewrite 
the original system as follows:   

Ax = b =) LUx = b

In order to find the solution x, first solve           using the
forward substitution; 

Ly = b

Ux = y

Afterwards find the solution x by solving               with the
backward substitution. 

Notice that memory can be spared storing L and U in only 
one matrix.

16



FILL-IN 
If we have a sparse matrix, the Gaussian elimination may destroy its 
sparsity. 

0

BBBB@

1 1
10

1
10

1
10

1
10

1
10 1 0 0 0
1
10 0 1 0 0
1
10 0 0 1 0
1
10 0 0 0 1

1

CCCCA

LU 
factorization:

0

BBBB@

1 1
10

1
10

1
10

1
10

1
10

99
100 � 1

100 � 1
100 � 1

100
1
10 � 1

99
98
99 � 1

99 � 1
99

1
10 � 1

99 � 1
98

97
98 � 1

98
1
10 � 1

99 � 1
98 � 1

97
96
97

1

CCCCA

After the LU factorization, the matrix is no more sparse (fill-in). 

17



FILL-IN 
By swapping the first and the last row and the first and the last 
column, this phenomenon doesn’t verify anymore. 

0

BBBB@

1 1
10

1
10

1
10

1
10

1
10 1 0 0 0
1
10 0 1 0 0
1
10 0 0 1 0
1
10 0 0 0 1

1

CCCCA

Swap

18

0

BBBB@

1 0 0 0 1
10

0 1 0 0 1
10

0 0 1 0 1
10

0 0 0 1 1
10

1 1
10

1
10

1
10

1
10

1

CCCCA

0

BBBB@

1 0 0 0 1
10

0 1 0 0 1
10

0 0 1 0 1
10

0 0 0 1 1
10

1 1
10

1
10

1
10 � 3

100

1

CCCCA

LU 
factorization



PIVOTING

A problem may occur when computing the multipliers:

mi,k = ai,k

ak,k What if ak,k=/≃0?
Recall that swapping two rows in a linear system doesn’t effect 
the solution space (OP1). Hence one can swap the k° row with
a row of index i > k such that ai,k !=0 (pivoting).

So in the Gaussian elimination, it is enough to add a control line 
before computing the multiplier : 

19

If ak,k == 0  
    search in A(k+1:n,k) an entry ar,k!=0 and swap r° and k° rows. 



 PIVOTING, EXAMPLE 1
        zero pivot

0

@
1 2 3
2 4 3
3 1 3

1

A

m2,1 = 2
row2 � 2row1

m3,1 = 3
row3 � 3row1

0

@
1 2 3
0 0 1
0 �5 �6

1

A⇠

m3,2 = �5
0

Swap rows 2 and 3

0

@
1 2 3
0 �5 �6
0 0 1

1

A

20



PIVOTING
        small pivot

21

Well-known fact: computers can’t store all numbers (irrational 
numbers, extremely low and extremely great numbers, rational numbers 
with many decimal digits…) and so different techniques to approximate 
numbers are used.

• Most significant digit of a number: first nonzero digit (from  
left).

• Least significant digit of a number: if the number is an integer, it 
is the last nonzero digit. Else it is its last digit, even though that is a 0. 

 
 
 
Examples: 100200; 1234; 12340; 0.00102; 0.10000.



PIVOTING, EXAMPLE 2…
        small pivot

22

Extreme situation: assume that the maximum number of digits that a 
computer can store is 2.

✓
0.001 1 3
1 2 5

◆
(A|b) =

m2,1 =
1

0.001
= 1000

✓
0.001 1 3
0 �998 �2995

◆

✓
x1

x2

◆
=

✓
�1
3.001

◆
3 and 4 significant digits!

Real solution



PIVOTING, EXAMPLE 2…
        small pivot

22

Extreme situation: assume that the maximum number of digits that a 
computer can store is 2.

✓
0.001 1 3
1 2 5

◆
(A|b) =

m2,1 =
1

0.001
= 1000

✓
0.001 1 3
0 �998 �2995

◆

✓
x1

x2

◆
=

✓
�1
3.001

◆

✓
0.001 1 3
0 �1000 �3000

◆

✓
x1

x2

◆
=

✓
0
3

◆

Real solution Approximate solution



PIVOTING

          Partial Pivoting                                                                                                           

GEPP: before computing the multiplier, add:
find |ar,k| = maxk>=i>=n |ai,k| and swap rows k and r. 

at the k° step, find the maximum element (absolute value) in the 
sub column ak:n and swap the corresponding row and the k° row. 

Small pivot can make the solution very unstable, for this reason 
pivoting is used also when ak,k!=0.



PIVOTING
     Complete Pivoting                                                                                                           

GECP: before computing the multiplier, add:
find |ar,s| = maxk>=i>=n |ai,j|, swap rows k and r and columns k and s. 

Search for the maximum element (absolute value) 
|ar,s| in the sub matrix Ak:n,k:n and swap the k° row 
and the r° rows and the k° and the s° column. 

k>=j>=n

24

When you swap two columns you need to swap the 
corresponding variables as well!

0

BBB@

...
�1 4 3

· · · 5 0 �9
�1 3 �1

1

CCCA

0

BBB@

...
xn�2

xn�1

xn

1

CCCA
=

0

BBB@

...
1
2
3

1

CCCA

Swap rows n-2 and n-1
Swap columns n and n-2

0

BBB@

...
�9 0 5

· · · 3 4 �1
�1 3 �1

1

CCCA

0

BBB@

...
xn

xn�1

xn�2

1

CCCA
=

0

BBB@

...
2
1
3

1

CCCA



PIVOTING

25

When you swap two columns you need to swap the 
corresponding variables as well!

Search in the sub matrix Ak:n,k:n for an element that has 
maximum absolute value both in its row and in its column 

find |ar,s|=maxk>=i>=n|ai,s| = maxk>=j>=n|ar,j|, swap rows k and r and 
columns k and s.

GERP: before computing the multiplier, add:

           Rook Pivoting                                                                                                           

0

BBB@

...
�1 4 3

· · · 5 0 �9
�1 3 �1

1

CCCA

0

BBB@

...
xn�2

xn�1

xn

1

CCCA
=

0

BBB@

...
1
2
3

1

CCCA

Swap columns n-1 and n-2

0

BBB@

...
4 �1 3

· · · 0 4 �9
3 �1 �1

1

CCCA

0

BBB@

...
xn�1

xn�2

xn

1

CCCA
=

0

BBB@

...
1
2
3

1

CCCA



 PIVOTING, …EXAMPLE 2
        small pivot

26

✓
0.001 1 3
1 2 5

◆
(A|b) =

✓
1 2 5

0.001 1 3

◆
partial pivoting

m2,1 =
0.001

1
= 0.001

✓
1 2 5
0 0.998 2.995

◆

✓
1 2 5
0 1 3

◆ ✓
x1

x2

◆
=

✓
�1
3

◆

✓
x1

x2

◆
=

✓
�1
3.001

◆Real solution

Approximate 
solution



PIVOTING
Partial, complete and rook pivoting ensure stability since multipliers 
are always <=1 and avoid divisions by zero. 

If A is nonsingular, pivoting always succeeds,  meaning that one shall find 
a non zero element in the sub column and in the sub matrix at 
every step.

How expensive is pivoting?

Partial pivoting            Complete pivoting            Rook pivoting

O(n2)≤T(n)≤O(n3)

27

O(n2) O(n3)

+ communication time (time required for moving data) 



PIVOTING
Pivoting may be necessary when solving linear systems but it is 
expensive.

How to solve this? Either devising faster pivoting algorithms, or trying
to avoid pivoting.

We say that a matrix is Gauss-eliminable if the necessity of pivoting is 
never encountered during the execution of the Gaussian elimination.

28



RBT-DEFINITIONS
       Random Butterfly Transformations   

Linear transformations applied to the coefficient matrix that output 
with high probability a Gauss-eliminable matrix. 

Butterfly matrix:

1p
2

✓
R0 R1

R0 �R1

◆
where R0 and R are diagonal and 
 nonsingular matrices of size n/2.  

Direct sum of matrices:

Am⇥n, Bp⇥q C(m+p)⇥(n+q) =

✓
A 0
0 B

◆
= A�B

29

B<n> =



RBT-DEFINITIONS
Recursive butterfly matrix: 

U<n> = (U
<n

2 >
0 � U

<n
2 >

1 )B<n> =

 
U

<n
2 >

0 0

0 U
<n

2 >
1

!
B<n>

where B<n> is a butterfly matrix of dimension n.
U<1> = u

…Deriving compact formulation solving the recursive equation: 

U<n> =
n�1L
i=0

U<1>
i ·

log(n)�1Q
i=0

 
2

i�1L
j=0

B
< n

2i
>

j

!

What can we say about n?

…n must be a power of 2!

30



RBT
Random butterfly transformation: Ã = UTAV where U 
   and V are recursive random butterfly matrices. 

         Theorem: RBTs output Gauss-eliminable matrices   
with high probability.  

Algorithm: 

• If size(A)=n is not a power of 2, augment A to the next most power  
of 2 by adding ones to the diagonal and zeros in the extra entries.  

Given a linear system Ax=b:

• Generate recursive butterfly matrices U and V with random entries in 
[e-1/20,e1/20].

• Apply GE without pivoting (GENP) on Ãy=UTb (UTAVy=UTb) and solve  
the resulting upper-triangular linear system (backward substitution). 

31

• Output the solution x|1:n=Vy|1:n .



GAUSS-ELIMINABLE MATRICES
The following classes of matrices are Gauss-eliminable:

              Strictly diagonally dominant matrices

                              Positive-definite matrices

32

|ai,i| >
nP

j=1
j 6=i

|ai,j | 8i = 1 . . . n

In the complex field:
<(x⇤

Ax) > 0 8x 2 Cn 6= 0

where     is the conjugate transpose.x

⇤

In the real field:
x

T
Ax > 0 8x 2 Rn 6= 0



POSITIVE-DEFINITE MATRICES
Since positive-definite matrices are Gauss-eliminable, another way 
to avoid pivoting is transforming the coefficient matrix A into a 
positive-definite matrix.  
Two methods:  
• Multiply A by its transpose.

• Compute the exponential of A.

33

Given A (even non square), ATA and AAT are positive-
semi definite. 

Given a square and symmetric matrix A, exp(A) is 
positive-definite. 



TRANSPOSE METHOD
Given a linear system Ax=b:
• Compute ATAx = ATb.
• Apply GENP to the resulting linear system.
• Solve the resulting upper-triangular linear system with  

backward substitution. 

34



EXPONENTIAL MATRIX

How to compute the exponential matrix? 
Analitically: 

• Diagonalize A, e.g.:  
A. Compute the spectrum of A by solving the characteristic polynomial:  

det(A-λ I) = 0.
B. Compute the eigenvectors of A, that are the columns of matrix P.
C. Compute the diagonal matrix: D =P-1AP.  (if A is symmetric, P is orthogonal).

• exp(A)=Pexp(D)P-1. Notice that the exp(D)=exp(diag(λ1,…,λn))=  
=diag(eλ1,…,eλn).

35

exp(A) ⌘ e

A =
1P
k=0

Ak

k!

If A is a square matrix, then the matrix exponential of A is defined as:



EXPONENTIAL MATRIX

How to compute the exponential matrix? 
Matlab: 

• Follow the analytic approach using the Matlab function eig or other  
commands to find eigenvalues and eigenvectors, or.

• Compute directly the exponential using the Matlab function expm. 

35

exp(A) ⌘ e

A =
1P
k=0

Ak

k!

If A is a square matrix, then the matrix exponential of A is defined as:



EXPONENTIAL METHOD
Given a linear system Ax=b where A is symmetric:

• Compute the spectrum of A and its eigenvectors and store them 
column-wise in a matrix P. 

• Compute exp(D)=diag(eλ1,…,eλn) and exp(A)=Pexp(D)P-1=  
Pexp(D)PT.

• Compute F = diag(λ1/eλ1,…,λn/eλn) and b’ = PFPTb.
• Apply GENP on exp(A)x=b’ and solve the resulting linear system. 

36



RBT VS. POSITIVE-DEFINITE 
METHODS

RBT,  Transpose and Exponential methods are to be applied on  
dense matrices.  
The characteristics of positive-definite methods are the following: 
• No need to augment the input linear system (while it has to be 

augmented if its size is not a power of 2 in RBT methods). 
• They generate positive-definite matrices (we will see how this is  

advantageous).
• They are less stable than RBT.  Trick: multiply the matrix by a  

constant < 1 before applying the preconditioners. 
• Computing the matrix exponential is expensive, but it is  

parallelizable and Matlab has optimized functions to compute it.
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EXPERIMENTS

- matrix sizes: 500, 512, 600, 1000, 1024, 1100, 2000, 2048, 2100. 
- RBT trend is stair-like: 
  RBTtime600  RBTtime1024, RBTtime1100  RBTtime2100.

38

What are those time peaks for Exp and Trans in 
correspondence of matrix sizes 2k??



CACHE THRASHING
Eviction of useful data from the cache, either because the useful data 
fills the cache, so portions of data must be loaded in the cache in a 
different moment, or because useful datas have the same address in 
the cache (direct addressing) and so they are loaded in the same 
location. 
Consider allocating a matrix of size 2kx2k . If k is sufficiently large, the 
rows or the columns of the matrix refer to the same location in the 
cache, hence every time one of them is needed, it evicts the array that
is already in the cache.  This implies a lot of movement due to 
repeatedly loading and unloading of the cache, even if this is not full.  
Notice that this conflict between addresses doesn’t occur if the matrix 
size is augmented even just by 1. 
Solution: breaking the matrices into blocks of size != power of 2



NEW EXPERIMENTS

- Time peaks are completely flattered at the expense of a small  
  general overhead (for Exp and Trans).   
- Consistent time improvement for RBT, for all sizes: this is because 
  RBT always augments the input matrix to a power of 2. 


