[INEAR SYSTEMS (1)

Intensive Computation 201 /7-18
prof. Annalisa Massini Viviana Arrigoni

DEFINITIONS (I

* Linear system: Matricial form:
aA1,1T1 + ... 1T+ 01 nTy = b1 ACE = b
» a1 -t Q1n 1 b1

Am 1L1 T ... T Ay nTy = 0 &7

Am,1 - Am.n L bm

* Square matrix: # of rows = # of columns.

* A square matrix is invertible If there exists a matrix such that
their product Is the identity matrix. AA™'=A""A=1

* Singular matrix: square matrix with determinant = 0.

aq,1 et a1.n bl
» Augmented matrix: |[Alb] =

DEFINITIONS (I

Rank of a matrix: maximum number of linearly independent rows =
maximum number of linearly independent columns.

ol ey
Elpleistrs [=2 ~1 0 | =2
=) =S 6

The third row can be written as the sum of the first two rows
mU|t|p||ed by 3: (_37 3 — 6) d 3[(17 27 _2) i (_27 _17 O)] > (07 07 O)

rk(A)<=min{#rows, #columns}

* It rk(A) = min{#rows, #columns}, A has full rank.

A square matrix Is nonsingular iff it has full rank

A square matrix Is invertible Iff it 1s nonsingular

SOLUTIONS

A linear system has one and only one solution iff Its

coefficient matrix Is square and nonsingular

VWe will consider square and nonsingular matrices

Iwo linear systems are equivalent if they have the same solution.

Applying the following operations to the augmented matrix (A|b) doesn’t
change the solution of the associated linear system, Ax=Db:

- OPI: Swap two rows.

- OP2: Multiply a row by a nonzero scalar.

« OP3: Add to one row a scalar multiple of another.

4

BOEVING SOME SYSTEMS
S STRAIGHTFORWARD...

ai,j#() — Z:]

* Diagonal matrix:

(al.,l () \

\0 an:,'n/

i
Lo o

Backward substitution

5

afl,n\

a2 n

e
\&n/

* Upper-triangular matrix:

o)

(52
\bn/

The solution Is:

ai,j#() ——

i

bo

b

The solution Is:

(i ~
1 Ty
L
% (k:;ﬂa kmk)
3= (. LI 1)
i

BOIEVING SOME SYSTEMS
S STRAIGHTFORWARD...

« Lower-triangular matrix: Gayi=l — >
/a1,1 Ve siitt 0 \ /5131\ /51\ The solution is:
WYL D 0 bQ CBl _ b w

. : - ; : ; P
: ' : : ' : e |
\CLn,l CLn,Q e afnun) \CEn) \bn/ Lj — a; ; (bz kzzjl Clz,kxk)
L 7. =S n J
Forward substitution

» Orthogonal matrix: A7 = A1

The solutionis: Arxr=b— AT Ax = ATy 5 = ATp

VO CLASSES OF METHRCE
S SOLVE LINEAR SYS FERSS

Gausslan

Direct methods

elimination

Find the exact solution (ignoring roundoft) In a
finite number of steps. Cholesky

decomposition
[terative methods

Producing a sequence of approximate solution
possibly converging to the exact solutions.

Jacobl
method

(Gauss-Seidel

method

[T

ERACT
PR AL
e HOL

:RA_

1V

| |JACO
2. GAUSS-S

M

54

3.

S HIODS:
SSIAN

ELIMINA
=SKY DECOM
ETHO

& =l

oy

ON.

Bn¥s;

J[ON.

GAUSSIAN ELIMINATION

ldea: Applying repeatedly OP3 to transform the input

iInear system Into an upper-triangular one, then
use backward substitution to find the solution.

| @)

/aL1\

a2 1

step:

E .

K stem:

([avk)

Qg k
Ak+1,k

o

AL eVer/AsTE DR
elements of the k°
column with row Index
> k need to become 0.

GAUSSIAN ELIMINATION

ldea: Applying repeatedly OP3 to transform the input

iInear system Into an upper-triangular one, then
use backward substitution to find the solution.

0

olo ololololo

| @)

iteration 2° rteration (n-1)° rteration

9

GAUSSIAN ELIMINATION

Algorithm:

SRReevery step ik | to n-|

* For every I:k+| to n (entries of column k with row index > k)

aq, k
Ak Kk

Compute the multipliers: Mk =

* For every |:k to n (entries of the i° rows)

Subtract the k® row multiplied by mik to the I° row:

Qi j < Qi 5 — M; kQk,; ==l This will ensure the entries
of the k°® column with row
b; <= b; — my by index i > k to be 0:

a; k
Ak k

Q; k ag. k=0

GAUSSIAN ELIMINATION

Algorithm:

SRReevery step ik | to n-|

* For every I:k+| to n (entries of column k with row index > k)

aq, k
Ak Kk

Compute the multipliers: Mk =

* For every |:k to n (entries of the i° rows)

Subtract the k® row multiplied by mik to the I° row:

B 0 G g
bi S bz — mi,kbk

* Solve the resulting linear system (backward substritution).

10

GAUSSIAN ELIMINATION

O(n?) - expensive

* For every I:k+| to n (entries of column k with row index > k)

Algorithm:

» For every step k: | to n-|

aq, k
Ak Kk

Compute the multipliers: Mk =

* For every |:k to n (entries of the i° rows)

Subtract the k® row multiplied by mik to the I° row:

B 0 G g
bi S bz — mi,kbk

» Solve the resulting linear system (backward substrtution).

10

AN EXAMEPLES

1 -3 1 4
PR R = | =2 (Gaussian Elimination
— {0+ A0 Y 5t 9

R e=[step M=

W= o= 5 =2 *

(27 _87 8‘ o 2) ST 2(17 _37 1|4) N (07 _27 6‘ Y 10)

B s == = -6 *

(—6,3, —15|9) + 6(1, —3, 1|]4) = (0, —15, —9|33)

ad ERUAE"

Wi

NG e

N

AN EXANMPEE S

R 1

95 4
J y| =|—-10 Gaussian Elimination
0 —15 -9 Z 33
g =) " step =k
B ==L J,
(—15,-9|33) — £2(—2,6| — 10) = (0, —54|108)
1 -3 1 €T 4
U =2 @ v = || =10
0 0 -—-54 Z 108
By 0} o A
AP =TS) @ — | P

\ 0 0 ag} \5”/

AN EXANMPEE S

1 =3 1 T 4
R 6 y| =1{-10 Gaussian Elimination
0 —15 =9 7 33

« k®=2° step ok

¥

— (0, —54[108)

4
—10
108

The diagonal entries of the resulting matrix are called pivot.

AN EXANMITER

1 -3 1 T 4
) U § y| = | —10 Backward substitution
0 0 -—-54 7 108

So the solution is: (x, ¥, z)T = (3, —1, —2)T

LU DECOMPOSITION

t I1s the matricial form of the Gaussian elimination.

t consists In writing the matrix A of the linear system Ax=b as
the product of a lower and a upper triangular matrix, A=LU.

U Is the upper triangular matrix obtained by the standard Gaussian
elimination. L is the lower triangular matrix whose entries are the

multipliers found during the Gaussian elimination, and whose
diagonal entries are all |.

il 1 G O A e 1 (s /agkl) aglfz) g aglz
/a2,1 DR R a2,1\ = (m2,1 1 o \ agg o aé’f%
\a;,l a;,z L an,n/ \m;l,l m;z,Q 2 1/ \ 6 6) aq(,;’f)l)

A L U

LU DECOMPOSITION

Once the LU decomposition of A Is computed, one may rewrite
the original system as follows:

Ay = == W =1,

In order to find the solution X, first solve Ly = busing the
forward substitution;

Afterwards find the solution x by solving Uz = y with the
backward substitution.

Notice that memory can be spared storing L and U in only
one matrix.

FILL-IN

T we have a sparse matrix, the Gaussian elimination may destroy Its
sparsity.

e

1 1 1 1 e e 1 1 1 1
/1 10 10 10 1—0\ faCtOrlzathn. /1 @ 10 10 10
a0 0 0 Lo 29 T Tl e
10 10 10? 100 190 190
BT 0 0 T 5T O
10 10 99 99 99 99
£ 00 1 0 -2 % & £
1 1 1 1 1 9
g0 0 0 1 . ow w w

After the LU factorization, the matrix is no more sparse (fill-in).

FILL-IN

By swapping the first and the last row and the first and the last
column, this phenomenon doesn’t verity anymore.

Tl o AW R)
0 0 0 0 1 0 0 4
L 0 0 » 0 0 1 0 & »
TGO 1 0 0. 0% 0 e
gt 0 0 1) \l & % ©

LU

factorization / ik

0
0
0

= e @l e
tle e e e

PIVOTING

A problem may occur when computing the multipliers:

ik
L AV i [e =0

Recall that swapping two rows In a linear system doesn't effect
the solution space (OP|). Hence one can swap the k® row with
a row of index |1 > k such that ajx =0 (pivoting).

mq k —

S0 In the Gaussian elimination, it Is enough to add a control line
before computing the multiplier:
f S —

search in A(k+ [:nk) an entry am!=0 and swap r° and k® rows.

|9

PIVOTING, EXAMPLE |

|t 3
~ 0 O 1
(fe g (0

Mma1 = 2 rows — 2row mso = %5 6
| e, 3
Swap rows 2 and 3 e

w N =
oD
Lo LW W

ms3i1 = 3 rows — 37“0”(1)1
0 O 1

20

PIVOTING

small pivot

Well-known fact: computers can’t store all numbers (irrational
numbers, extremely low and extremely great numbers, rational numbers

with many decimal digits...) and so different techniques to approximate
numbers are used.

* Most significant digit of a number: first nonzero digit (from
el

* Least significant digit of a number: if the number Is an integer, it
s the last nonzero digit. Else 1t is its last digit, even though that is a 0.

Eples 100200; | 254; 12340; 0.00102; 0.10000.

2

FVO | ING, EXAMPLE 258

small pivot

Extreme situation: assume that the maximum number of digits that a
computer can store Is 2.

0.001 1 3
(A|b) o, (1 9 5>
ma 1 = Wlol = 1000
Real solution (

0.001 1 3
0 [—998 —2995

AT —1 - : gy
< > = (3.001> 3 and 4 significant digits!

L2

ik

FVO | ING, EXAMPLE 258

small pivot

Extreme situation: assume that the maximum number of digits that a
computer can store Is 2.

0.001 1 3
(Alb) = (1 9 5>
ma 1 = Wlol = 1000
Real solution (‘ Approximate solution

0.001 1 3
0 —1000 —3000

(=)=)

0.001 1 3
0 [—998 —2995

(+) = (5001

ik

PIVOTING

Small pivot can make the solution very unstable, for this reason
pivoting Is used also when ay!=0.

Partial Pivoting

at the k® step, find the maximum element (absolute value) in the
sub column akn and swap the corresponding row and the k® row.

GEPP: before computing the multiplier; add:

find |ark| = mMaxi>=i>=n |aix| and swap rows k and r.

PIVOTING

Search for the maximum element (absolute value)
Complete PiVOting |ars| In the sub matrix Axnkn and swap the k® row
and the r® rows and the k® and the s® column.

GECP: before computing the multiplier; ada:

find |ars| = Maxi>=i>=n |aij|, swap rows k and r and columns k and s.

(s e VRN [e
— I e Tb o] g | -9 0 5
) T e

Swap rows n-2 and n- |
Swap columns n and n-2

corresponding variables as welll
Dl

Ln
Ln—1

\n—2/

VWhen you swap two columns you need to swap the

PIVOTING

Rook Pivotin Search in the sub matrix Axnkn for an element that has
¥ g maximum absolute value both in its row and in its column

GERP: before computing the multiplier; add:

find |ars|=mMaxi>=i>=n|ais| = Maxi>=j>=n|as|, swap rows k and r and
columns k and s.

(ey eV R () [I
—143’33”_2_1» /ST) e ||

5) 0 -9 Ln—1 D 0 4 —9 Lpn—92 2

. -1 (3 —1/ Sy ey 3 1) e R

Swap columns n-1 and n-2

VWhen you swap two columns you need to swap the

corresponding variables as welll
25

PIVOTING, ...EXAMPLE 2

small pivot
partial pivoting
~(0.001 1 3 1 e 5
) — (i 5) » <0.001 1 3) »

0.001
mai1 = T = (0.001

Real solution

L (-G
= G-

Approximate
solution

PIVOTING

Partial, complete and rook pivoting ensure stability since multipliers
are always <=1| and avoid divisions by zero.

[T A Is nonsingular, pivoting always succeeds, meaning that one shall find
a non zero element in the sub column and in the sub matrix at
every step.

How expensive Is pivoting!

Partial pivoting Complete pivoting Rook pivoting
O(n?) O(n3) O(n)=T(n)=O(n%)

+ communication time (time required for moving data)

LT

PIVOTING

Pivoting may be necessary when solving linear systems but it Is
expensive.

How to solve this! Erither devising faster pivoting algorithms, or trying
to avoid pivoting.

We say that a matrix 1s Gauss-eliminable if the necessity of pivoting is
never encountered during the execution of the Gaussian elimination.

28

RB [-DEFINITIONS

Random Butterfly Transformations

Linear transformations applied to the coefficient matrix that output
with high probability a Gauss-eliminable matrix.

Butterfly matrix:

. (Ro R,) where Ro and R are diagonal and
~ V2R Ry nonsingular matrices of size n/2.

Direct sum of matrices:

A 0
Amxns Bpxq Clmtp)x(n+q) = (o B) e

29

RB [-DEFINITIONS

Recursive butterfly matrix:

S

sz = (U< 2 an U< >)B<n> = UO <O_> B<n>
0 U ?

U<1> — 4

where B="" Is a butterfly matrix of dimension n.

..Deriving compact formulation solving the recursive equation:

s nél U-<1> : log(ﬁ)—l (Teal B< 2L >)

i=0 i=0 =0
VWhat can we say about n?

..n must be a power of 2!

30

RB [

Random butterfly transformation: A = UTAV where U
andV are recursive random butterfly matrices.

Theorem: RBTs output Gauss-eliminable matrices

with high probabllity.

Algorithm:

Gliven a linear system Ax=b:

* |f size(A)=n Is not a power of 2, augment A to the next most power
of 2 by adding ones to the diagonal and zeros in the extra entries.

 (Generate recursive butterfly matrices U andV with random entries in
1120 011207

+ Apply GE without pivoting (GENP) on Ay=UTb (UTAVy=U'b) and solve
the resulting upper-triangular linear system (backward substrtution).

» Output the solution x|i1:n=VYy|in .

31

GAUSS-ELIMINABLE MATRICES

The following classes of matrices are Gauss-eliminable:

Strictly diagonally dominant matrices

mn
GRS N, || Vi=1...n
j=1

j#i
Positive-definite matrices
In the complex field: In the real field:
R(z*Az) >0 Vo € C™ £0 zT Az > 0 Vo e REE

where ™ is the conjugate transpose.

£y

POSITIVE-DEFINITE MATRICES

Since positive-definite matrices are Gauss-eliminable, another way
to avold pivoting Is transforming the coefficient matrix A into a
positive-definite matrix.

Two methoa

S.

- Multiply A

Dy 1S transpose.

Given A (even non square), A'A and AA" are positive-

semi definite.

- Compute the exponential of A.

Gliven a square and symmetric matrix A, exp(A) Is

positive-definite.

S

ERANSPOSE METHICHS

Gliven a linear system Ax=b:
» Compute A'Ax = A'b.
* Apply GENP to the resulting linear system.

» Solve the resulting upper-triangular linear system with
backward substitution.

B2

EXPONENTIAL MATRIX

T A Is a square matrix, then the matrix exponential of A Is defined as:

& k
exp(A) = e = N %
k=0

How to compute the exponential matrix?
Analitically:
Diagonalize A, e.g.:

A. Compute the spectrum of A by solving the characteristic polynomial:
det(A-A 1) = 0.
B. Compute the eigenvectors of A, that are the columns of matrix P
C. Compute the diagonal matrix: D =P-'AR (if A is symmetric, P is orthogonal).

* exp(A)=Pexp(D)P-'. Notice that the exp(D)=exp(diag(Ai,...,An))=
=diag(e}!,... e,
ES

EXPONENTIAL MATRIX

[T A Is a square matrix, then the matrix exponential of A Is defined as:

& k
exp(A) = e = N %
k=0

How to compute the exponential matrix?
Matlab:

* Follow the analytic approach using the Matlab function eig or other
commands to find eigenvalues and eigenvectors, or.

Compute directly the exponential using the Matlab function expm.

ES

EXPONENTIAL METHOD

Given a linear system Ax=b where A Is symmetric:

» Compute the spectrum of A and its eigenvectors and store them

column-wise In a matrix P

» Compute exp(D)=diag(er!,...,eM) and exp(A)=

Pexp(D)P'.
» Compute F = diag(Ai/eM,... . A/er) and b’ = PF
» Apply GENP on exp(A)x=b"and solve the resu

36

Pexp(D)P-'=

DTb.

ting linear system.

RBT VS, POSITIVE-DEFINITE
e T O3

RBT, Transpose and Exponential methods are to be applied on

dense matrices.
The characteristics of positive-definite methods are the following:

* No need to augment the input linear system (while 1t has to be
augmented If its size 1s not a power of 2 In RBT methods).

* [hey generate positive-definite matrices (we will see how this Is
advantageous).

* They are less stable than RBT. Trick: multiply the matrix by a
constant < | before applying the preconditioners.

« Computing the matrix exponential Is expensive, but 1t Is
parallelizable and Matlab has optimized functions to compute It.

B

EXPERIMENTS

Plain GENP on Sym[0,1]

' |—*—RBT

10 ~—Exp
Trans
P e —
® 10° ¢
=
O
&)
f:_J
) LSS
S <nl
10"}
10°F &
0.V O O Ak O Q.0
oS A A
matrix size

Plain GENP on Condex
| [~*—RBT _
10° f | > Exp /‘ 3
¢ Trans /
E > 1 -?'v ‘_sr/’k\
g:J 107 ¢ f / \
E z '
© [//
g) ‘/ 2= o
o Em—— =
2 , A -
© 10! / VN
J ,"A‘
,!
/ =~
.;;_,'1_ 2
'v__.k't— ¥
10°F &
NP QO Ak O 0.0
PALS Q Q
o A AP P
matrix size

Siictepcsizes: 500, 5 1 2, 600, 1000, 1024, 1100, 2000, 204823186k

- RBT trend is stair-like:

RBTtimegoo ~ RBItime g4, RBTtime 100 ~ RBTtimesoo.

38

What are those time peaks for Exp and Trans in
correspondence of matrix sizes 2477

CACHE THRASHING

Eviction of useful data from the cache, erther because the useful data
fills the cache, so portions of data must be loaded In the cache In a
different moment, or because useful datas have the same address in
the cache (direct addressing) and so they are loaded in the same
location.

Consider allocating a matrix of size 2°x2*. If k is sufficiently large, the
rows or the columns of the matrix refer to the same location in the
cache, hence every time one of them Is needed, It evicts the array that
s already In the cache. This implies a lot of movement due to
repeatedly loading and unloading of the cache, even If this is not full.
Notice that this conflict between addresses doesn't occur If the matrix
size 1s augmented even just by |.

Solution: breaking the matrices into blocks of size |= power of 2

NEW EXPERIMENTS

Optimized GENP on Sym([0,1]

Optimized GENP on Condex

' [~e—RBT ' [~e—RBT

10 —Exp i 10 f [~ Exp
Trans ¢ Trans

o 10°} o 10° it & 3
= E ‘ —
@ 44 |
o) o |
:E / E f
ol f o 10! fo

E A - =

10° : 10° ; !

AV D QA0 O .20 QAU D QA0 0.0
matrix size matrix size

- [Ime peaks are completely flattered at the expense of a small
oeneral overhead (for Exp and Trans).

- Consistent time improvement for RBT, for all sizes: this is because
RBT always augments the input matrix to a power of 2.

