SPARSE MATRICES

Annalisa Massini 2017-2018

COMPACT STORAGE FORMAT

Most of the material is from:

L. Formaggia, F. Saleri, A. Veneziani **Solving Numerical PDEs: Problems, Applications, Exercises -** Appendix *The treatment of sparse matrices*

BSR format from:

<u>https://software.intel.com/en-us/mkl-developer-reference-c-sparse-blas-bsr-</u> matrix-storage-format

- A matrix is sparse if it contains a large number of zeros:
 - \rightarrow the number of non-null entries (or non-zero entries) is O(n)
- This means that the average number of non-zero entries in each row is bounded independently from n
- If the location of the zero elements is known a-priori, so we can avoid reserving storage for them
- A non-sparse matrix is also said full and the number of nonzero elements is O(n²)

- The distribution of non-zero elements of a sparse matrix may be described by:
 - the sparsity pattern, defined as the set {(i, j) : Aij = 0}
 - the matrix graph, where nodes *i* and *j* are connected by an edge if and only if A*ij* = 0
- In order to take advantage of the large number of zero elements, *special schemes* are required to store sparse matrices

- The use of adequate storage techniques for sparse matrices is fundamental, especially with large-scale problems
- Let us make an example
 - Suppose we want to solve the Navier-Stokes equations on a twodimensional grid formed by 10.000 vertexes with finite elements P²-P¹(and this is a rather small problem!).
 - The number of degrees of freedom is around 10^5 for the pressure and 4×10^5 for each component of the velocity
 - The associated matrix will then be 90000×90000
 - If we store all 8.1×10⁹ coefficients, using double precision (8 bytes), around 60 Gigabytes are necessary!
 - This is too much even for a very large computer

- In case of a three-dimensional problem the situation becomes even worse, since the number of degrees of freedom grows very rapidly as the grid gets finer
 - nowadays it is common to deal with millions of degrees of freedom
- Therefore to store sparse matrices efficiently we need data formats that are more compact than the classical array

- The adoption of sparse formats may affect the speed of certain operations
- For example, with sparse formats we cannot access or search for a particular element (or group of elements) directly, using the two indexes *i* and *j* to determine where entry A_{ij} is located in the memory
- On the other hand, even if the operation of accessing an entry of a matrix in sparse format turns out to be less efficient, by adopting a sparse format we will nevertheless access only nonzero elements, thus executing only useful operations

- Hence, in general, the sparse format is preferable in terms of computing time as well as in terms of storage, as long as the matrix is sufficiently sparse
- The main goal is:
 - to represent only the nonzero elements
 - to be able to efficiently perform the common matrix operations

- We can distinguish different kinds of operations on a matrix
- The most important operations are:
- 1. accessing a generic element (random access)
- 2. accessing the elements of a whole row: important when multiplying a matrix by a vector
- 3. accessing the elements of a whole column, or equivalently, of a row in the transpose matrix (relevant for operations such as symmetrizing the matrix after imposing Dirichlet conditions)
- 4. adding a new element to the matrix pattern: this is a critical issue if the pattern is not known beforehand or it can change throughout the computations

- It is important to characterize formats for sparse matrices by the computational cost of these operations and by how the latter depends on the matrix size
- Different formats for sparse matrices exist due to the fact that there is *no format that is simultaneously optimal for all above operations*, and at the same time *efficient in terms of storage capacity*

- In the following:
 - *n* is the matrix' size
 - *nz* is the number of non-zero entries
 - We adopt the convention of indexing entries of matrices and vectors (arrays) starting from 1
 - *Aij* will denote the entry of the matrix A on row *i* and column *j*
- To estimate how much memory the matrix occupies we assume that:
 - an integer occupies 4 bytes
 - a real number (floating point repres.) 8 bytes (double precision)
 - For example, storing a square matrix having n = 12 would require 12 × 12 × 8 = 1152 bytes

- The simplest storage scheme for sparse matrices is the format by coordinate
- The data structure consists of three arrays:
 - A a real array containing all the real (or complex) values of the nonzero elements in any order
 - I an integer array containing their row indices
 - J a second integer array containing their column indices
 - I, J and A all have *nz* elements, as many as the number of non-zero elements of the matrix

Example

The matrix A

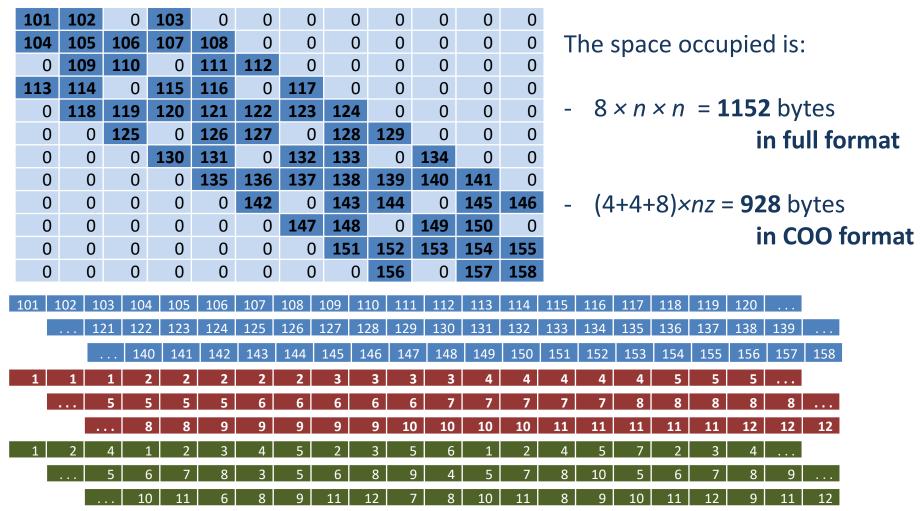
- **1.** 0. 0. **2.** 0.
- **3. 4.** 0. **5.** 0.
- **6.** 0. **7. 8. 9.**
- 0. 0. **10. 11.** 0.
- 0. 0. 0. 0. **12.**

Is represented (for example) by

- A 12.9.7.5.1.2.11.3.6.4.8.10.
- I 5 3 3 2 1 1 4 2 3 2 3 4
- J 5 5 3 4 1 4 4 1 1 2 4 3

Notice that elements are listed in an *arbitrary order*

Example



- COO format does not guarantee rapid access to an element, nor to rows or columns
- Finding the generic element of the matrix from the row and column indexes normally requires a number of operations proportional to *nz*
- In fact, it is necessary to go through all elements of I and J until one hits those indexes, using expensive comparison operations
- Using specific techniques to store the indexes in special search data structure, it is possible to reduce the cost to O(log₂(nz)), but a higher storing price

- The operation of multiplying a matrix and a vector can be done directly, by running through the elements of the three arrays
- We show a possible code for the product y = Ax using the MATLAB syntax

```
y=zeros(nz,1);
for k=1:nz
i=I(k); j=J(k);
y(i)=y(i) + A(k)*x(j);
end
```

- The additional cost of this operation, compared to the analogue for a full matrix, depends essentially on indirect addressing: accessing y(i) requires first of all to access I(k)
- Furthermore, the access and update of the arrays x and y does not proceed by consecutive elements, a fact that would greatly reduce the possibility of optimizing the use of the processor's cache
- Recall, however, that now we operate only on non-zero elements, and that, in general, nz << n²

- An advantage of this format is that it is easy to add a new element to the matrix
- In fact, it is enough to add a new entry to the arrays I, J and A
- That is why COO is often used when the pattern is not known a priori
- Obviously, to do so, it is necessary to handle memory allocation in a suitable dynamical way a more efficient, yet more static, format

The skyline format

- The format called skyline was among the first used to store matrices arising from the method of finite elements
- The idea is to store the area formed, on each row, by the elements between the first and last non-zero coefficient

101	102	0	103	0	0	0	0	0	0	0	0
104	105	106	107	108	0	0	0	0	0	0	0
0	109	110	0	111	112	0	0	0	0	0	0
113	114	0	115	116	0	117	0	0	0	0	0
0	118	119	120	121	122	123	124	0	0	0	0
0	0	125	0	126	127	0	128	129	0	0	0
0	0	0	130	131	0	132	133	0	134	0	0
0	0	0	0	135	136	137	138	139	140	141	0
0	0	0	0	0	142	0	143	144	0	145	146
0	0	0	0	0	0	147	148	0	149	150	0
0	0	0	0	0	0	0	151	152	153	154	155
0	0	0	0	0	0	0	0	156	0	157	158

• This forces to store some null entries

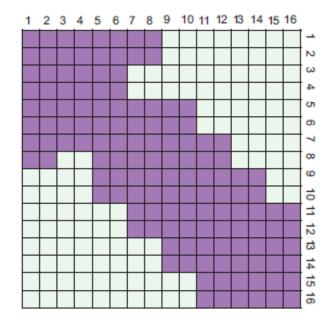
The skyline format

 This extra cost will be small if the matrix has non-zero entries clustered around the diagonal

101	102	0	103	0	0	0	0	0	0	0	0
104	105	106	107	108	0	0	0	0	0	0	0
0	109	110	0	111	112	0	0	0	0	0	0
113	114	0	115	116	0	117	0	0	0	0	0
0	118	119	120	121	122	123	124	0	0	0	0
0	0	125	0	126	127	0	128	129	0	0	0
0	0	0	130	131	0	132	133	0	134	0	0
0	0	0	0	135	136	137	138	139	140	141	0
0	0	0	0	0	142	0	143	144	0	145	146
0	0	0	0	0	0	147	148	0	149	150	0
0	0	0	0	0	0	0	151	152	153	154	155
0	0	0	0	0	0	0	0	156	0	157	158

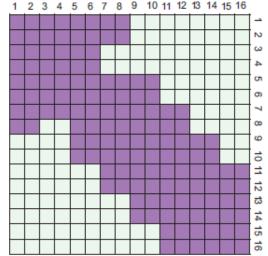
 Indeed, algorithms have been developed to cluster non zero elements by permuting the rows and columns of the matrix (see, for example, the Cuthill-McKee algorithm)

- If a matrix is **symmetric** we can store only:
 - Its lower triangular part (diagonal included)
 - Or we can store the diagonal on an auxiliary array and treat the off-diagonal entries separately, having the advantage of allowing the direct access to the diagonal elements

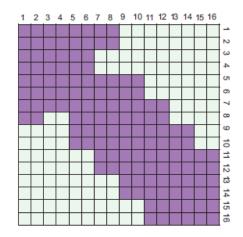


The *skyline* format with diagonal array is given by:

- **D** real array storing diagonal entries
- AL real array storing all *skyline* elements row-wise (except the diagonal). This can clearly include null coefficients
- I integer array storing *pointers to rows* of matrix A
 - The *k*th component of array I points to the first element of row (k + 1) in AL $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16}$



- All elements of AL from position I (k) to I (k+1) -1 are the off-diagonal elements belonging to row k + 1, in column order
- Notice that:
 - The first row is not stored, since it only has the diagonal element
 - I (k) points to the first non-zero element on the (k+1)th row
 - The difference I (k+1) I (k) gives the number of the offdiagonal elements on row k + 1 belonging to the *skyline*



Example

- We want to store using the *skyline* format the symmetric matrix constructed from the lower triangular part of matrix A seen before
- This matrix can be obtained with the Matlab instruction
 tril(A) + tril(A, -1)'

101	104	0	113	0	0	0	0	0	0	0	0
104	105	109	114	118	0	0	0	0	0	0	0
0	109	110	0	119	125	0	0	0	0	0	0
113	114	0	115	120	0	130	0	0	0	0	0
0	118	119	120	121	126	131	135	0	0	0	0
0	0	125	0	126	127	0	136	142	0	0	0
0	0	0	130	131	0	132	137	0	147	0	0
0	0	0	0	135	136	137	138	143	148	151	0
0	0	0	0	0	142	0	143	144	0	152	156
0	0	0	0	0	0	147	148	0	149	153	0
0	0	0	0	0	0	0	151	152	153	154	157
0	0	0	0	0	0	0	0	156	0	157	158

Example

Diagonal D

101 105 110 115 120 121 127 132 138 144 149 154 158

Pointer I and lower skyline elements AL

1 2 3 6 9 12 15 18 21 24 27 30

																													-
104	109	113	114	0	118	119	120	125	0	126	130	131	0	135	136	137	142	0	143	147	148	0	151	152	153	156	0	157	

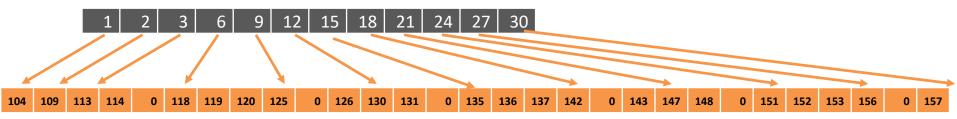
101	104	0	113	0	0	0	0	0	0	0	0
104	105	109	114	118	0	0	0	0	0	0	0
0	109	110	0	119	125	0	0	0	0	0	0
113	114	0	115	120	0	130	0	0	0	0	0
0	118	119	120	121	126	131	135	0	0	0	0
0	0	125	0	126	127	0	136	142	0	0	0
0	0	0	130	131	0	132	137	0	147	0	0
0	0	0	0	135	136	137	138	143	148	151	0
0	0	0	0	0	142	0	143	144	0	152	156
0	0	0	0	0	0	147	148	0	149	153	0
0	0	0	0	0	0	0	151	152	153	154	157
0	0	0	0	0	0	0	0	156	0	157	158

Example

Diagonal D

101 105 110 115 120 121 127 132 138 144 149 154 158

Pointers I and lower skyline elements AL



- Note that in the *n*th place of the array I we have left a pointer at the beginning of an hypothetical position. In this way:
 - I (n) 1 is the total number of elements in the skyline
 - We can compute the number of skyline elements in the last row, that is I (n) - I (n-1)

The product $\mathbf{y} = A\mathbf{x}$ following MATLAB syntax is given by:

```
y=D.*x;
for k=2:n
nex = I(k)-I(k-1);
ik = I(k-1):I(k)-1;
jcol= k-nex:k-1;
y(k) = y(k)+dot(AL(ik),x(jcol));
y(jcol)= y(jcol)+AL(ik)*x(k);
end
```

 We operate symmetrically on rows and columns to exploit the fact that only the lower triangular part was stored in AL

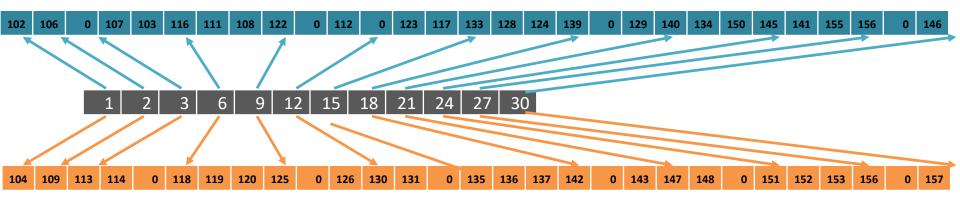
- The memory needed to store the matrix in this format depends on how effectively the skyline reproduces the actual pattern
- In our case:
 - Array AL contains 29 real numbers (including six 0s)
 - Array D of fixed length n=12 containing reals
 - Array I of fixed length n=12 containing integers
 - Total: (29 + 12) x 8 +n x 4 = 376
- In general we need $(n_{AL} + n) \times 8 + n \times 4$
- Generally, Skyline is more convenient than the COO format if the coefficients are well clustered around the diagonal

- As for non-symmetric matrices, a reasonable way to proceed is to split A into:
 - The diagonal D
 - The strictly lower triangular part E
 - The strictly upper triangular part F
- Using the Matlab syntax, these matrices would be defined as: D=diag(diag(A)); E=tril(A,-1); F=triu(A,1);

- In general, we need two arrays of indexes: one for pointer to array E and one for pointers to array FT
- If the pattern of A is symmetric, the skyline of E coincides with that of FT, and the same array of pointers I is for both triangular parts
- Diagonal D

 101
 105
 110
 115
 121
 127
 132
 138
 144
 149
 154
 158

Pointer I, lower skyline elements E and upper skyline elements FT



• The product matrix-vector $\mathbf{y} = A\mathbf{x}$ now reads

```
y=D.*x;
for k=2:n
nex = I(k)-I(k-1);
ik = I(k-1):I(k)-1;
jcol = k-nex:k-1;
y(k) = y(k)+dot(E(ik),x(jcol));
y(jcol)= y(jcol)+FT(ik)*x(k);
end
```

 icol and ik contain all indexes corresponding to the columns of row k, so the scalar product dot(E(ik),x(jcol)) and the multiplication vector-constant FT(ik) *x(k) are optimized

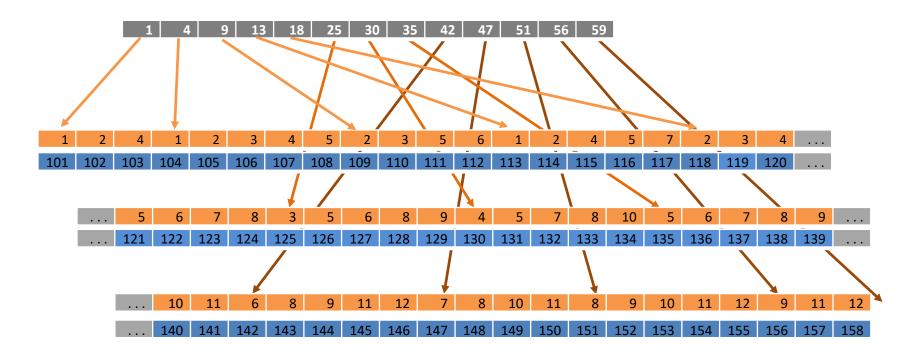
- Notice that in this format the access to diagonal entries is direct
- Being able to access diagonal entries directly has certain advantages. For instance there are methods that to impose essential boundary condition only need the access to diagonal elements
- The cost of extracting a row is independent of the matrix' size
- The fact that the data relative to a row are stored consecutively in the memory allows the system to optimize the processor's cache memory when multiplying a matrix by a vector
- The extraction of column is an expensive operation that requires many comparisons, and whose cost grows linearly in *n*

- The problem with the *skyline* format is that the memory used depends on the numeration of elements and is in general impossible to avoid the unnecessary storage of zero elements
- The CSR (Compressed Sparse Row) format can be seen as a compressed version of COO, and also as an improved *skyline*, that stores non-zero elements only

The CSR format uses three arrays:

- A real array of length *nz* storing the non-zero entries of the matrix, ordered row-wise. It coincides with array A of the COO format
- J integer array of length *nz*, whose entry J(k) indicates the column of the element A(k). It coincides with array J of the COO format
- I integer array of length *n* containing *pointers* to the rows. Then I (k) gives the position where the *k*th row in A and J begins

- Array I is usually of length n + 1, so that the number of non-zero entries on row k is always I (k+1) -1-I (k)
- To make this hold, the last element I (n+1) will contain nz + 1 and in this way we also have that nz=I (n+1) - I (1)



- The CSR format uses $8 \times nz + 4 \times (nz + n + 1)$ bytes
- CSR format suits square and rectangular matrices alike
- Operations:
 - quick extraction of row $i \rightarrow$ elements between I (i) and I (i+1) -1
 - column extraction requires localizing on *each row* the values of J corresponding to the wanted column
 - If we adopt no particular ordering, the cost operation is proportional to *nz*
 - If, instead, column indexes of each row in J are ordered in increasing order as in our example, with a binary-search algorithm the extraction cost for a column lowers becomes proportional to n log₂(m), where m is the mean number of elements on each row
 - the access to a generic element has normally a cost proportional to m, yet if we order columns it reduces to log₂m

The Compressed Sparse Row (CSR) format

The matrix-vector product $\mathbf{y} = A\mathbf{x}$ is given by

```
y=zeros(n,1);
% y=A(I(1:n)).*x if the diagonal is stored first
for k=1:n
ik=I(k):I(k+1)-1;
% ik=I(k)+1:I(k+1)-1; if the diagonal is stored first
jcol =J(ik); y(k)=y(k)+dot(A(ik),x(jcol));
end
```

The CSC (Compressed Sparse Column) format

- The CSC (Compressed Sparse Column) format stores matrices by ordering them column-wise
- It is easy to extract a column as opposed to rows
- The roles of vectors I and J is exchanged compared with the CSR format
- When performing matrix-vector multiplication with a sparse matrix in CSC format it is preferable to compute the result as a linear combination of the columns of the matrix
- Indeed, if \mathbf{c}_i indicates the *i*-th column of matrix A, we have that A $\mathbf{x} = \Sigma_i x_i \mathbf{c}_i$

The CSC (Compressed Sparse Column) format

 Therefore, the matrix-vector product y = Ax on a CSC matrix may be computed as:

```
y=zeros(n,1);
for k=1:n
    xcoeff=x(k);
    jk=I(k):I(k+1)-1;
    ik=J(jk);
    y(ik)=y(ik) + xcoeff * A(jk)';
end
```

The MSR (Modified Sparse Row) format

- The MSR (Modified Sparse Row) format is a special version of CSR for square matrices exploiting the fact that:
 - The diagonal elements of many matrices are usually nonzero (matrices generated by finite elements)
 - The diagonal elements are accessed more often than the rest of the elements
- **Diagonal** entries can be stored in one single array, since their *indexes are implicitly known* from their position in the array
- As for the symmetric skyline, only off-diagonal elements are stored in a special fashion, i.e. through a format akin to CSR

The MSR (Modified Sparse Row) format

The MSR format uses two arrays:

- V real array of values:
 - In the first *n* entries of V we store the diagonal
 - The place n+1 in V is left with no significant value (may sometimes carry some information concerning the matrix)
 - From place *n*+2 onwards off-diagonal elements are stored, row-wise
 - V has length *nz* + 1
- B Bind
 - B has the same length as V nz + 1
 - The first n + 1 point to where rows begin
 - From n+2 to nz+1 there are the column indexes of the elements stored in the corresponding places in V

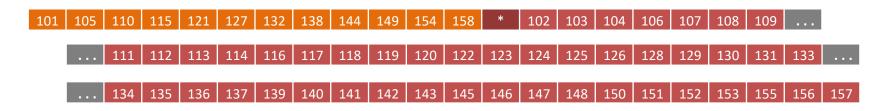
The MSR (Modified Sparse Row) format

Example

Array B

14	16	20	23	27	33	37	41	51	54	58	60	2	4	1	3	4	5	2	5		
		6	1	2	5	7	9	2	3	4	6	7	8	3	5	8	9	4	5	8	
		10	5	6	7	9	10	11	6	8	11	12	7	8	11	8	9	10	12	9 1	11

Array V



43

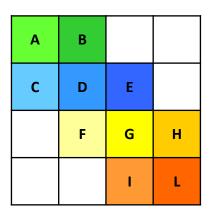
The MSR (Modified Sparse Row) format

- The MSR format turns out to be very efficient in memory terms
- It is one of the most *compact* formats for sparse matrices
- It is used in several linear algebra libraries for large problems
- The *drawback* is that it *only* applies to *square matrices*
- The matrix-vector product is coded as:

```
y=V(1:n).*x;
for k=1:n
ik=B(k):B(k+1)-1;
jcol =B(ik);
y(k)=y(k)+dot(A(ik),x(jcol));
end
```

- The BSR format is a CSR with dense submatrices of fixed shape instead of scalar items
- The block size must evenly divide the shape of the matrix

101	102	0	103	0	0	0	0	0	0	0	0
104	105	106	107	108	0	0	0	0	0	0	0
0	109	110	0	111	112	0	0	0	0	0	0
113	114	0	115	116	0	117	0	0	0	0	0
0	118	119	120	121	122	123	124	0	0	0	0
0	0	125	0	126	127	0	128	129	0	0	0
0	0	0	130	131	0	132	133	0	134	0	0
0	0	0	0	135	136	137	138	139	140	141	0
0	0	0	0	0	142	0	143	144	0	145	146
0	0	0	0	0	0	147	148	0	149	150	0
0	0	0	0	0	0	0	151	152	153	154	155
0	0	0	0	0	0	0	0	156	0	157	158



• In this example the block size is 3 x 3

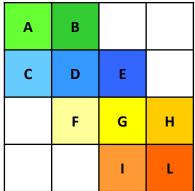
- The BSR format store the non-zero blocks of the sparse matrix
- A non-zero block is the block that contains at least one non-zero element

101	102	0	103	0	0	0	0	0	0	0	0
104	105	106	107	108	0	0	0	0	0	0	0
0	109	110	0	111	112	0	0	0	0	0	0
113	114	0	115	116	0	117	0	0	0	0	0
0	118	119	120	121	122	123	124	0	0	0	0
0	0	125	0	126	127	0	128	129	0	0	0
0	0	0	130	131	0	132	133	0	134	0	0
0	0	0	0	135	136	137	138	139	140	141	0
0	0	0	0	0	142	0	143	144	0	145	146
0	0	0	0	0	0	147	148	0	149	150	0
0	0	0	0	0	0	0	151	152	153	154	155
0	0	0	0	0	0	0	0	156	0	157	158

Α	В		
с	D	Е	
	F	G	н
		I	L

The **BSR format** consists of four arrays:

- Values real array containing the elements of the non-zero blocks of a sparse matrix
 - The elements are stored block-by-block in row-major order
 - All elements of non-zero blocks are stored, even if some of them are equal to zero
 - Within each non-zero block elements are stored in column-major order in the case of one-based indexing, and in row-major order in the case of the zero-based indexing



The **BSR format** consists of four arrays:

- Columns integer array where element *i* is the number of the column in the block matrix that contains the *i*-th non-zero block
- PointerB integer array where element *j* gives the index of the element in the *columns* array that is first non-zero block in row *j* of the block matrix
- PointerE integer array where element *j* gives the index of the element in the *columns* array that contains the last non-zero block in a row *j* of the block matrix plus 1

Example

• Values

113 0 0 114 118 0 0 119 125 115 120 0 116 121 126 0 122 117 123 0 0 128 0 0 129 130 0 0 131 135 0 0 136	101
117 123 0 0 124 128 0 0 129 130 0 0 131 135 0 0 136	
132 137 0 133 138 143 0 139 144 134 140 0 0 141 145 0 0	

- Columns PointerB
- PointerE

-	5	0	2
2	6	9	11
9	U U		

Α	В		
С	D	Е	
	F	G	н

- The length of the values array is equal to the number of all elements in the non-zero blocks
- The length of the columns array is equal to the number of nonzero blocks
- The length of the *pointerB* and *pointerE* arrays is equal to the number of block rows in the block matrix

А	В		
с	D	E	
	F	G	н
		I	L

Diagonal format

 Diagonally structured matrices are matrices whose nonzero elements are located along a small number of diagonals

The **diag format** consist of:

- **DIAG** a rectangular real array storing the diagonals
 - DIAG has size *n* x *Nd*, where *Nd* is the number of diagonals
- IOFF an integer array containing the offsets of each diagonal with respect to the main diagonal
 - IOFF ha size Nd

Diagonal format

- The order in which the diagonals are stored in of DIAG is generally unimportant
- Since several more operations are performed with the main diagonal, storing it in the first column may be slightly advantageous
- Note that all the diagonals except the main diagonal have fewer than n elements, so there are positions in DIAG that will not be used

Diagonal format

113

0

Example

Matrix

101	102	0	103	0	0	0	0	0	0	0	0
104	105	106	107	108	0	0	0	0	0	0	0
0	109	110	0	111	112	0	0	0	0	0	0
113	114	0	115	116	0	117	0	0	0	0	0
0	118	119	120	121	122	123	124	0	0	0	0
0	0	125	0	126	127	0	128	129	0	0	0
0	0	0	130	131	0	132	133	0	134	0	0
0	0	0	0	135	136	137	138	139	140	141	0
0	0	0	0	0	142	0	143	144	0	145	146
0	0	0	0	0	0	147	148	0	149	150	0
0	0	0	0	0	0	0	151	152	153	154	155
0	0	0	0	0	0	0	0	156	0	157	158

0

103

Element DIAG(i, j) is located in position a_{i,i+ioff(j)} of the original matrix

• DIAG

	-					
118	114	109	105	106	107	108
125	119	0	110	0	111	112
130	0	120	115	116	0	117
135	131	126	121	122	123	124
142	136	0	127	0	128	129
147	0	137	132	133	0	134
151	148	143	138	139	140	141
156	152	0	144	0	145	146
0	0	153	149	150	0	0
0	0	157	154	155	0	0
0	0	0	158	0	0	0

104 101 102

OFF -3 -2 -1 0 1 2 3

Ellpack-Itpack format

- The Ellpack-Itpack format is a general scheme, popular on vector machines
- The Ellpack-Itpack format consists of two rectangular arrays:
 - **COEF** real array (similar to DIAG) that contains the nonzero elements of A (completing the row by zeros as necessary)
 - JCOEF integer array that contains the column positions of each entry in COEF
 - COEF and JCOEF have size *n x Nd*, where *n* is the number of rows and *Nd* is the maximum number of nonzero elements per row, whith *Nd* small

Ellpack-Itpack format

Example

Matrix

101	102	0	103	0	0	0	0	0	0	0	0
										-	
104	105	106	107	108	0	0	0	0	0	0	0
0	109	110	0	111	112	0	0	0	0	0	0
113	114	0	115	116	0	117	0	0	0	0	0
0	118	119	120	121	122	123	124	0	0	0	0
0	0	125	0	126	127	0	128	129	0	0	0
0	0	0	130	131	0	132	133	0	134	0	0
0	0	0	0	135	136	137	138	139	140	141	0
0	0	0	0	0	142	0	143	144	0	145	146
0	0	0	0	0	0	147	148	0	149	150	0
0	0	0	0	0	0	0	151	152	153	154	155
0	0	0	0	0	0	0	0	156	0	157	158

101	102	103	0	0	0	0
104	105	106	107	108	0	0
109	110	111	112	0	0	0
113	114	115	116	117	0	
118	119	120	121	122	123	124
125	126	127	128	129	0	0
130	131	132	133	134	0	0
135	136	137	138	139	140	141
142	143	144	145	146	0	0
147	148	149	150	0	0	0
151	152	153	154	155	0	0
156	157	158	0	0	0	0

JCOEF								
1	2	4	0	0	0	0		
1	2	3	4	5	0	0		
2	3	5	6	0	0	0		
1	2	4	5	7	0			
2	3	4	5	6	7	8		
3	5	6	8	9	0	0		
4	5	7	8	10	0	0		
5	6	7	8	9	10	11		
6	8	9	11	12	0	0		
7	8	10	11	0	0	0		
8	9	10	11	12	0	0		
9	11	12	0	0	0	0		

MATLAB AND SPARSE MATRICES

Material from:

https://it.mathworks.com/help/matlab/math/constructing-sparse-matrices.html

- MATLAB never creates sparse matrices automatically
- A representation of the pattern is given by the command spy
- You must determine if a matrix contains a large enough percentage of zeros to benefit from sparse techniques
- The density of a matrix is the number of nonzero elements divided by the total number of matrix elements
- For matrix M, this would be nnz(M)/prod(size(M)) or nnz(M) / numel(M)
- Matrices with very low density are often good candidates for use of the sparse format

Converting Full to Sparse

 You can convert a full matrix to sparse storage using the sparse function with a single argument

S = sparse(A)

• For example, given the matrix A:

A = [0 0 0 5		(3,1)	1
0 2 0 0	S = sparse(A) produces:	(2,2)	2
1 3 0 0		(3,2)	3
0 0 4 0];		(4,3)	4
0 0 4 0],		(1,4)	5

- Output: nonzero elements of S, with their row and column indices
- The elements are sorted by columns

Converting Full to Sparse

- You can convert a sparse matrix to full storage using the full function, provided the matrix order is not too large
- For example **A** = **full(S)** reverses the example conversion
- Converting a full matrix to sparse storage is not the most frequent way of generating sparse matrices
- If the order of a matrix is small enough that full storage is possible, then conversion to sparse storage rarely offers significant savings

Creating Sparse Matrices Directly

 You can create a sparse matrix from a list of nonzero elements using the sparse function with five arguments

S = sparse(i,j,s,m,n)

where

- i and j are vectors of row and column indices, respectively, for the nonzero elements of the matrix
- s is a vector of nonzero values whose indices are specified by the corresponding (i,j) pairs
- **m** is the row dimension for the resulting matrix
- **n** is the column dimension
- The matrix S of the previous example can be generated with:
 - S = sparse([3 2 3 4 1], [1 2 2 3 4], [1 2 3 4 5], 4, 4)

Creating Sparse Matrices Directly

- The matrix representation of the second difference operator is a tridiagonal matrix with -2s on the diagonal and 1s on the super- and sub-diagonal
- One way to generate it is:
 - D = sparse(1:n, 1:n, -2*ones(1, n), n, n);
 - E = sparse(2:n, 1:n-1, ones(1, n-1), n, n);
 - S = E+D+E'

1

1

-2

1

1

-2

Creating Sparse Matrices Directly

For n = 5, MATLAB responds with					
S =					
(1,1)	-2				
(2,1)	1				
(1.2)	1				

$$\begin{array}{ccc}
(2,2) & -2 \\
(3,2) & 1 \\
(2,3) & 1 \\
(3,3) & -2 \\
\end{array}$$

(4,3)

(3, 4)

(4,4)

(5, 4)

(4,5)

(5,5)