
INTRODUCTION TO MATLAB

Intensive Computation

2017-2018

Annalisa Massini

Introduction

 MATLAB stands for MATrix LABoratory

 MATLAB is a high-level interpreted language and interactive

environment for numerical computation, data analysis, visualisation and

algorithm development

 MATLAB enables you to perform computationally intensive tasks faster

than with traditional programming languages such as C, C++ and Fortran

Matlab - 2017/2018 2

Introduction

• MATLAB started its life in the late 1970s as an interactive calculator built

on top of LINPACK and EISPACK, which were then state-of-the-art

Fortran subroutine libraries for matrix computation

• In the 80s Cleve Moler write the first version of MATLAB to give his

students at the University of New Mexico easy access to these libraries

without writing Fortran

• Matlab has many specialized toolboxes

Matlab - 2017/2018 3

Matlab Screen  Workspace

 View program variables

 Double click on a

variable to see it in the

Array Editor

Matlab - 2017/2018 4

 Command Window

 Type commands

 Current Directory

 View folders and m-files

 Command History

 view past commands

 save a whole session

using diary

Helpful commands

 help lists all the help topic – the most important function to learn Matlab

 help name the help text for the functionality specified by name,

such as a function, method, class, or toolbox

 who/whos show the current variables in the workspace

 dir list files in the current directory

 clear all delete all the variables present in the workspace

 clear var1 var2 clear variables var1 and var2

 lookfor search for keyword in all help entries

 lookfor topic

Matlab - 2017/2018 5

Variables and expressions

 In the Command window, the command prompt is " >> "

 Two types of statement:

evaluation of an expression

“>> expression”

assignment “>> variable = expression”

 The evaluation of an expression generates a matrix

assigned to the specified variable

 If you do not specify the name of the variable associated

to the result, the system “ans” is used

Examples:

• >> 8+2

ans =

10

• >> a = 5*ans

a =

50

• >> 6.9

ans =

6.9000

Matlab - 2017/2018 6

Variables and expressions

 If an expression ends with symbol “;” its value is not
displayed on the screen

 MATLAB names are case-sensitive

 No need to declare variables

 No need for types

• Built-in variables. Don’t use these names!

• i and j can be used to indicate complex numbers

• pi has the value 3.1415926…

• ans stores the last unassigned value (like on a calculator)

• Inf and –Inf are positive and negative infinity

• NaN represents ‘Not a Number’

Examples:

» b = 6+a;

» b

b =

56

Matlab - 2017/2018 7

Variables and expressions

 All variables are created with double precision

 The variables are 1x1 matrices with double precision

 Double precision values consist of 8 bytes

 The default display format for variables is 5-digit scaled, fixed-point

values

 We can ask for different display formats with command format

 The format function affects only how numbers display in the Command

Window, not how MATLAB computes or saves them

Matlab - 2017/2018 8

The command FORMAT

Command format changes the display format to the specified style

Let us consider x = 4/3

• format short 1.3333 0.0000 - 5-digit scaled, fixed-point default

• format long 1.33333333333333 - 15-digit fixed point

• format short e 1.3333e+000 - 5-digit floating point

• format long e 1.333333333333333e+000 - 15-digit floating point

• format short g 1.3333 – best between fixed point and floating point

• format long g 1.33333333333333 – best between fixed and floating pt

• format bank 1.33 – currency format (dollar or euro)

• format rat 4/3 - ratio of small integers

• format hex 3ff5555555555555 - hexadecimal (double-precision)

Matlab - 2017/2018 9

Double precision values

• Only a number of double precision values can be represented

• There is always a small gap between two consecutive values

• The command eps provides the floating-point relative accuracy

• eps returns the distance from 1.0 to the next largest double-precision

number, that is eps = 2^(-52)

• eps(x) is the positive distance from abs(X) to the next larger in magnitude

floating point number of the same precision as X

• realmin returns the smallest positive normalized floating-point number in

IEEE double precision about 2.2251e-308 that is 2^(-1022)

• realmax returns the largest finite floating-point number in IEEE double

precision, about 1.7976e+308 that is 2^1023

Matlab - 2017/2018 10

 The simplest way to create a matrix is to use the matrix constructor

operator []

 Create a row in the matrix by entering elements within the brackets

 Separate row elements with a comma or space

 For a new row, terminate the current row with a semicolon or return

» A = [7 8; 8.9 7; 9 8] » B = [1 2 3
4 5 6]

A =
7.0000 8.0000 B =
8.9000 7.0000 1 2 3
9.0000 8.0000 4 5 6

Matlab - 2017/2018 11

Matrices

Matrices

• Examples of functions for creating different kinds of matrices

• zeros(n,m) matrix nxm of all zeros

• ones(n,m) matrix nxm of all ones

• eye(n,m) matrix with ones on the diagonal (zeros elsewhere)

• rand(n,m) matrix of uniformly distributed random numbers

• diag([a11, a22, a33, ..., aNN]) diagonal matrix

• ….

Matlab - 2017/2018 12

Matrices

• Increase matrices by adding a row or a column having the correct size

• Column

• Given A = [1 2; 3 4; 5 6];

• Add the column of elements 7 8 9

A = [A [7; 8; 9]] oppure A=[A [7 8 9]’])

1 2 1 2 7

3 4  3 4 8

5 6 5 6 9

Matlab - 2017/2018 13

Matrices

 » A = [7 8; 8.9 7; 9 8]

A =

7.0000 8.0000

8.9000 7.0000

9.0000 8.0000

Note that elements of the matrix

are displayed as 5-digit values

• A(n,m) access element (n,m)

of matrix A

» A(1,2)

ans =

8

To access elements of a matrix  matrices’ name followed by round
brackets containing a reference to the row and column number

Matlab - 2017/2018 14

Matrices

The colon operator

 The colon operator (first:last) generates a 1-by-n matrix (or

vector) of sequential numbers from the first value to the last

 The default sequence is made up of values incrementing by 1

A = 10:15  A = 10 11 12 13 14 15

 The numeric sequence can include negative and fractional numbers

A = -2.5:2.5  A = -2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

Matlab - 2017/2018 15

Matrices

The colon operator

 You can also specify a step value with the colon operator in between the
starting and ending value (first:step:last).

 To generate a series of numbers from 10 to 50 incrementing by 5:

A = 10:5:50  A = 10 15 20 25 30 35 40 45 50

 You can increment by noninteger values

A = 3:0.2:3.8  A = 3.0000 3.2000 3.4000 3.6000 3.8000

 Yo can decrement, specifying a negative step value:

A = 9:-1:1  A = 9 8 7 6 5 4 3 2 1

Matlab - 2017/2018 16

Matrices

• A(n,:) extracts row n of matrix
A

» A(2,:)

ans =

8.9000 7.0000

A(:,m) extracts column m of
matrix A

» A(:,1)

ans =

7.0000

8.9000

9.0000

Accessing matrix rows or matrix columns

The colon notation“:” allows to specify a sequence of values

The whole row (column) is extracted because the interval is not specified

Matlab - 2017/2018 17

Matrices
diag(A)

 If A is a square matrix, diag(A) returns the main diagonal of A

» A=[5 6 ; 7 8] » diag(A)

A = ans =

5 6 5

7 8 8

• If A is a vector with n components, returns an n-by-n diagonal matrix having A as its main

diagonal

» diag(ans)

ans =

5 0

0 8

Matlab - 2017/2018 18

Matrices
 sum(A)
 If A is a vector, then sum(A) returns the sum of the elements

» sum(A)
ans =

36

 If A is a matrix, then sum(A) treats the columns of A as vectors and

returns a row vector whose elements are the sums of each column

» A=[0 1 2 ;3 4 5 ;6 7 8] » B=sum(A)
A = B =

0 1 2 9 12 15
3 4 5
6 7 8

Matlab - 2017/2018 19

Vectors

 A matrix with only one row or column (that is, a 1-by-n or n-by-1 array)

is a vector, such as:

C = [1, 2, 3] row vector

D = [10; 20; 30] column vector

 An array can be created with the colon operator

x = 1:6  x = 1 2 3 4 5 6

x = 0.5:0.1:0.7  x = 0.5000 0.6000 0.7000

Matlab - 2017/2018 20

Vectors

• A vector can be created by using linspace(a,b) or

linspace(a,b,N) that generates vectors of (N) points linearly

spaced between and including a and b

x = linspace(-1,1)  -1 0 1

x = linspace(-1,1,4)  -1.0000 -0.3333 0.3333 1.0000

●The logspace functions - logspace(a,b) or

logspace(a,b,N)-generate logarithmically spaced vectors

●The logspace function is useful for creating frequency vectors

● It is a logarithmic equivalent of linspace and the ":" or colon operator

Matlab - 2017/2018 21

Vector Indexing

• IMPORTANT: MATLAB indexing starts with 1, not 0

• The index argument can be a vector

• In this case, each element is looked up individually, and returned as a

vector of the same size as the index vector

»x=[12 13 5 8];

»a=x(2:3);  a=[13 5];

»b=x(1:end-1);  b=[12 13 5];

Matlab - 2017/2018 22

Matrix Indexing

• Matrices can be indexed in two ways

• using subscripts(row and column)

• using linear indices(as if matrix is a vector)

• Matrix indexing: subscripts or linear indices

Matlab - 2017/2018 23

Picking submatrices

»A = rand(5) % shorthand for 5x5 matrix

»A(1:3,1:2) % specify contiguous submatrix

»A([1 5 3], [1 4]) % specify rows and columns143398

)2,2(

)2,1(

8111

3214

)1,2(

)1,1(

b

b

b

b

















)4(

)3(

8111

3214

)2(

)1(

b

b

b

b

















Matrix Indexing

• MATLAB contains functions to help you find desired values within a vector

or matrix

»vec = [5 3 1 9 7]

• To get the minimum value and its index:

»[minVal,minInd] = min(vec);

• Max works the same way

• To find any the indices of specific values or ranges

»ind = find(vec == 9);

»ind = find(vec > 2 & vec < 6);

• To convert between subscripts and indices, use ind2sub and sub2ind

Matlab - 2017/2018 24

Scalar operators and functions

 Mathematical operators on scalars
add +, subtract -, divide /, multiply *, power ^

 Trigonometric function

 sin, cos

 tan

 asin, acos

 atan

The list of elementary math functions

• help elfun: trigonometric, esponential, complex, rounding and remainder

The list of specialized math functions

• help specfun: specialized, number theoretic, coordinate transforms

Matlab - 2017/2018 25

Scalar operators and functions
 Some mathematical operators on scalars:

 abs Absolute value and complex magnitude

 conj Complex conjugate

 real, imag Real and Imaginary part of complex number

 exp Exponential

 log, log10 Natural and base 10 logarithm

 sqrt Square root

 ceil Round toward positive infinity

 floor Round toward negative infinity

 round Round to nearest integer

 Variables i and j are both functions denoting the imaginary unit and are

the square-root of -1

Matlab - 2017/2018 26

Matrix operations

Matrix operations:

 + addition of vectors or matrices (element-by-element)

 - subtraction of vectors or matrices (element-by-element)

 * multiplication of vectors or matrices (row-by-column)

Note that:

 addition / subtraction: matrices with the same number of rows and columns

 addition / subtraction with a scalar: the scalar is added/subtracted to each

element of the matrix

 multiplication: the number of columns in the first matrix must be the same as

the number of rows in the second matrix

Matlab - 2017/2018 27

Matlab has a set of dot operators, a dot and a normal algebraic

operator, performing element-wise algebraic operations on a matrix

 .* element-wise product

 ./ element-wise division

 .^ element-wise power

\ and / operators for the solution of linear systems:

 x = B/A is the solution of the equation x*A = B

 x = A\B denote the solution to the equation A*x = B

Matlab - 2017/2018 28

Matrix operations

Systems of Linear Equations

• Given a system of linear equations

x+2y-3z=5

-3x-y+z=-8

x-y+z=0

• Construct matrices so the system is described by Ax=b

»A=[1 2 -3;-3 -1 1;1 -1 1];

»b=[5;-8;0];

• And solve with a single line of code!

»x=A\b;

• x is a 3x1 vector containing the values of x, y, and z

• The \ will work with square or rectangular systems

• Gives least squares solution for rectangular systems

Matlab - 2017/2018 29

Matrix functions

 Matrix functions:

 Transpose matrix A'

 Inverse matrix inv(A)

 Matrix determinant det(A)

 Eigenvalues eig(A)

 Rank of matrix rank(A)

 Dimensions size(A)

The list of elementary matrices and matrix manipulation

• help elmat: elementary matrices, basic array information, matrix manipulation,
special variables e costants, specialized matrices, …

Matlab - 2017/2018 30

MATLAB Programming

Script and Function

• The simplest type of MATLAB program is called a script

• A script is a file that contains multiple sequential lines of MATLAB

commands and function calls

• You can run a script by typing its name at the command line

• Script and Function are M-files with a .m extension

• Scripts
• have no input or output arguments

• use workspace data

• Functions
• accept input arguments and produce output

• have their own workspace, separate from the base workspace

• function variables are local

Matlab - 2017/2018 31

MATLAB Programming

You can:

 Add comments to code using the percent symbol %.

 Create help text by inserting comments at the beginning of your

program.

 Help text appears in the Command Window when you use the help
function  help ProgramName

 If your program includes a function, position the help text immediately

below the function definition line (the line with the function keyword)

Matlab - 2017/2018 32

MATLAB Programming

Function - The definition statement is the first executable line

Each function definition includes:

 function keyword (required) (lowercase characters)

 Output arguments (optional)

 function output= myfunction(x)

 function [one,two,three] = myfunction(x)

 function myfun(x) or function []=myfunction(x)

 Function name (required)

 Input arguments (optional)

 function y = myfunction(one,two,three)

Remark: use the same name for both the file and the function

Matlab - 2017/2018 33

MATLAB Programming

Example

% mean computes the

% mean of a random

% values array and the

% mean among the

% minimum and maximum

v=rand(50,1)

mean=valmean(v)

meanmm=minmax(v)

function m=valmean(v)

n=length(v)

m=sum(v)/n

function mm=minmax(v)

mini=min(v)

maxi=max(v)

mm=(mini+maxi)/2

Matlab - 2017/2018 34

Relational and logical operators

The relational operators are:

• <, >, <=, >=, ==, and ~=

Relational operators perform element-by-element comparisons between two

arrays

They return a logical array of the same size, with elements set to:

• logical 1(true) where the relation is true

• logical 0 (false) where the relation is false

The logical operators are:

• & (and), | (or), ~ (not)

• xor (xor), all (all true), any (any true)

Matlab - 2017/2018 35

Relational and logical operators

• Examples

>> a=10; b=3; c=25;

>> a==b

ans=

0

>> a>b

ans=

1

>> a+b > c

ans=

0

Matlab - 2017/2018 36

Programming: loop control

With loop control statements, you can repeatedly execute a block of code

for statements loop a specific number of times, and keep track of each

iteration with an incrementing index variable

• for index=starting value:increment:final value

program statements

end

Remark indent the loops for readability, especially when they are nested

Matlab - 2017/2018 37

Programming: loop control
 Example

x = ones(1,10);

for n = 2:10

x(n) = 2 * x(n - 1);

end

 Example
for i=1:m

for j=1:n

H(i,j)=1/(i+j-1);

end

end

Matlab - 2017/2018 38

Programming: loop control

while repeatedly executes one or more program statements in a loop as
long as an expression remains true

while expression

statements

end

 Expressions can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~)

 To programmatically exit the loop, use a break statement

 To skip the rest of the instructions in the loop and begin the next iteration,
use a continue statement

Matlab - 2017/2018 39

Programming: loop control

Examples
• x = 3.;

while x < 25

x = x + 2

end

• Fibonacci

a(1)=1; a(2)=1; c=15;

n=2;

while a(n) < c

a(n+1) = a(n) + a(n-1);

n=n+1;

end

Matlab - 2017/2018 40

Programming: loop control

 if expression, statements, end

evaluates an expression, and executes the statements when the
expression is true

 elseif and else are optional, and execute statements only when
previous expressions in the if block are false

 An if block can include multiple elseif statements

if expression

statements

elseif expression

statements

else

statements

end

Matlab - 2017/2018 41

Programming: loop control

Example

if x > 0

y = sqrt(x);

elseif x == 0

y = 0;

else

y = NaN;

disp(‘y undefined’)

end

Matlab - 2017/2018 42

Programming: loop control

switch case otherwise

Switch among several cases based on expression

switch switch_expr

case case_expr

statements

case {case_expr1,case_expr2,case_expr3,...}

statements

...

otherwise

statements

end

Matlab - 2017/2018 43

Programming: loop control

Example

name=’rose’;

switch name

case ’rose’

disp(’the flower is a rose’)

case ’tulip’

disp(’the flower is a tulip’)

case ’daisy’

disp(’the flower is a daisy’)

otherwise

disp(’it’s a flower’)

end

Matlab - 2017/2018 44

Strings

• strcat Concatenate strings

t = strcat(s1,s2,s3,...) horizontally concatenates

corresponding rows of the character arrays s1, s2, s3 etc.

All input arrays must have the same number of rows (or any can be a

single string). When the inputs are all character arrays, the output is

also a character array

• strcmp Compare strings

tf = strcmp(s1,s2) compares the strings s1 and s2 and

returns logical 1 (true) if they are identical, and 0 (false) otherwise

• strfind Find one string within another

k = strfind(text,pattern) returns the starting indices

of any occurrences of the string pattern in the string text

Matlab - 2017/2018 45

Advanced Data Structures

• We have used 2D matrices

• Can have n-dimensions

• Every element must be the same type (ex. integers, doubles, characters…)

• Matrices are space-efficient and convenient for calculation

Sometimes, more complex data structures are more appropriate

• Cell array: it's like an array, but elements don't have to be the

same type

• Structs: can bundle variable names and values into one

structure

Matlab - 2017/2018 46

Cell

• A cell is just like a matrix, but each field can contain anything (even

other matrices):

• One cell can contain people's names, ages, and the ages of their

children

Matlab - 2017/2018 47

45

43

3x3 Cell Array

[6]

9

7
J o h n

M a r y

Cell

• To initialize a cell, specify the size

»a=cell(3,10);

• a will be a cell with 3 rows and 10 columns

• or do it manually, with curly braces {}

»c={'hello world',[1 5 6 2],rand(3,2)};

• c is a cell with 1 row and 3 columns

• Each element of a cell can be anything

• To access a cell element, use curly braces {}

»a{1,1}=[1 3 4 -10];

»a{2,1}='hello world 2';

»a{1,2}=c{3};

Matlab - 2017/2018 48

Structs

• Structs allow you to name and bundle relevant variables

• Like C-structs, which are objects with fields

• To initialize an empty struct:

»s=struct;

• size(s) will be 1x1

• initialization is optional but is recommended when using large structs

• To add fields:

»s.name = 'Jack Bauer';

»s.scores = [95 98 67];

»s.year = 'G3';

• Fields can be anything: matrix, cell, even struct

• Useful for keeping variables together

Matlab - 2017/2018 49

Structs

• To initialize a struct array, give field, values pairs

»ppl=struct('name',{'John','Mary','Leo'},...

'age',{32,27,18},'childAge',{[2;4],1,[]});

• size(s2)=1x3

• every cell must have the same size

»person=ppl(2);

• person is now a struct with fields name, age, children

• the values of the fields are the second index into each cell

»person.name

• returns 'Mary'

»ppl(1).age

• returns 32

Matlab - 2017/2018 50

ppl ppl(1) ppl(2) ppl(3)

32 27

[1]

name

age

children age

John Mary Leo

[2,4]

18

[]

Structs

• To access 1x1 struct fields, give name of the field

»stu=s.name;

»scor=s.scores;

• 1x1 structs are useful when passing many variables to a function. put them

all in a struct, and pass the struct

• To access nx1 struct arrays, use indices

»person=ppl(2);

• person is a struct with name, age, and child age

»personName=ppl(2).name;

• personName is 'Mary'

a=[ppl.age];

• a is a 1x3 vector of the ages

Matlab - 2017/2018 51

ppl ppl(1) ppl(2) ppl(3)

32 27

[1]

name

age

children age

John Mary Leo

[2,4]

18

[]

Polynomial

• A polynomial is represented by an array containing the coefficients of
the polynom in descending powers of the polynomial decreasing order

• The polynomial 3x3 + 2x + 8 can be represented as:

» pol= [3 0 2 8]

• To evaluate a polynomial in x, where x can be a vector, you can use
polyval(p,x) where p is the polynomial

» polyval(pol, 1)
ans =

13

Matlab - 2017/2018 52

Polynomial

 roots computes the roots of the polynomial

 r=roots(p) returns a column vector whose elements are the roots

of the polynomial p

 Row vector p contains the coefficients of the polynomial

 Example: the polynomial x3 -6 x2 + 11 x – 6

» p= [1 -6 11 -6]; format long;

» roots(p)

ans =

3.00000000000000

3.00000000000000

3.00000000000000

Matlab - 2017/2018 53

Polynomial

Remark There are some complications with multiple roots

The polynomial r3+3r2 +3r+1 have just one root r = -1, but

roots([1 3 3 1])

returns three different (though close) values

ans =

-1.00000913968880

-0.99999543015560 + 0.00000791513186i

-0.99999543015560 - 0.00000791513186i

Even worse for p(x)=(x+1)7 (coefficients [1 7 21 35 35 21 7 1])

Matlab - 2017/2018 54

Polynomial

Operations with polynomials

 p=conv(u,v) multiplication of the polynomials whose coefficients

are the elements of u and v

 [q,r]=deconv(u,v) polynomial division - the quotient is

returned in vector q and the remainder in vector r such that v =
conv(u,q)+r

 p=polyfit(x,y,n) finds the coefficients of a polynomial p(x)

of degree n that fits the data, p(x(i)) to y(i), in a least

squares sense. The result p is a row vector of length n+1 containing

the polynomial coefficients in descending powers

Matlab - 2017/2018 55

Polynomial

 poly gives the polynomial with specified roots

 p=roots(r) where r is a vector, returns a row vector whose
elements are the coefficients of the polynomial whose roots are the
elements of r

 p=roots(A) where A is an n-by-n matrix, returns an n+1 element
row vector whose elements are the coefficients of the characteristic
polynomial, det(λI – A)

Remark poly(A) generates the characteristic polynomial of A, and
roots(poly(A)) finds the roots of that polynomial, which are the
eigenvalues of A

Matlab - 2017/2018 56

Plotting

The function plot creates a 2D line plot - it can be used in different ways

• Example

» n = 31

» x = linspace(0,2*pi,n)

» y = sin(x)

» plot(x,y)

x is a vector of linearly spaced values between 0 and 2π

y is the vector of values of sine function evaluated at the values in x

Matlab - 2017/2018 57

Plotting

• Command plot is:

• plot(X, Y, options)

Where X is for abscissas and Y is for ordinates

options sets the line style, marker symbol, and color

• To plot multiple lines in the same windows, we can use two ways:

y2 = sin(x - .4);

y3 = sin(x - .8);

y4 = sin(x - 1.2);

• plot(x,y,x,y2,x,y3,x,y4)

• plot(x,[y;y2;y3;y4])

Matlab - 2017/2018 58

Plotting

 Another way to plot multiple line in the same window is by using
commands hold on and hold off:

» x = linspace(0,2*pi)

» y1 = cos(x)

» y2 = sin(x)

» plot(x,y1,’-’)

» hold on

» plot(x,y2,’--’)

» hold off

Matlab - 2017/2018 59

Plotting

 You can add a title and axis labels to the graph

» title(‘title of the graph’)

» xlabel(‘x axis’)

» ylabel(‘y axis’)

 axis - axis scaling and appearance

 legend - graph legend

 text - create text object in current axes
» text(x(70)+0.5,r(70),'r = -2x')

 grid on add grid lines for 2D and 3D plots

Matlab - 2017/2018 60

Plotting

Other functions for graphs are:

• loglog Log-log scale plot

• semilogx Semilogarithmic plot (x logarithmic, y linear)

• semilogy Semilogarithmic plot (x linear, y logarithmic)

• errorbar Plot error bars along curve

• bar Bar graph

• stairs Stairstep graph

• scatter Scatter plot

Matlab - 2017/2018 61

Plotting

subplot divides the current figure into grid, it numbers the cells by rows

» subplot(m,n,p)

divides the current figure into an m-by-n grid and plots in the grid
position specified by p

1

4

2

3

Matlab - 2017/2018 62

Plotting

fplot(fun, lims) plots a function

 fun, that must be a string

 between the limits specified by lims, specifying the x-axis limits

([xmin xmax]), or the x- and y-axes limits, ([xmin xmax ymin ymax])

» fun=‘1/(1+x^2)’;

» lims=[-5,5];

» fplot(fun,lims);

or the equivalent

» fplot(‘1/(1+x^2)’, [-5,5]);

Matlab - 2017/2018 63

Plotting

 fplot(fun,limits,LineSpec) plots fun using the line

specification LineSpec

fplot(fun, lims, ‘- -’)

fplot(fun, lims, ‘r -’)

 fplot can plot a vector of functions

fplot(‘[sin(t), sin(t-.25), sin(t-.5)]’,[0,2*pi])

Matlab - 2017/2018 64

Plotting

 ezplot plots the expression fun(x) over the default domain -2π < x <

2π, where fun(x) is an explicit function of only x

 ezplot(fun,[xmin,xmax]) plots fun(x) over the domain: xmin

< x < xmax

 Both for fplot and ezplot fun can be a function handle

fh = @tanh;

fplot(fh,[-2,2])

Matlab - 2017/2018 65

Plotting

3D plot with mesh and surf

 mesh and surf plot a surface

 mesh and surf create 3D surface plots of matrix data generated by
the command meshgrid

» n=30; m=n;

» x=linspace(-2,2,n);

» y=linspace(-2,2,n);

» [X,Y]=meshgrid(x,y); % matrices X e Y for the grid

» Z=(1-Y).*cos(X.^2)+(X-1).*cos(Y.^2);

» mesh(X,Y,Z);

Matlab - 2017/2018 66

Data and file management

You can load variables from file into workspace with load

For example if you want analyze data coming from a program, like the

following, that are in the file data.dat

1 0.2000 -5

2 0.2500 -9

3 0.0740 -23

4 0.0310 -53

5 0.0160 -105

6 0.0090 -185

7 0.0050 -299

8 0.0030 -453

9 0.0020 -653

10 0.0020 -905

Matlab - 2017/2018 67

Data and file management

If you load these data with the function load, a matrix is created of size

10x3

>> load data.dat

>> whos

Name Size Bytes Class

data 10x3 240 double array

Grand total is 30 elements using 240 bytes

load filename is the command form

load ’filename’ is the function form

Matlab - 2017/2018 68

Data and file management

>> M = load('data.dat')

M =

1.0000 2.0000 -5.0000

2.0000 0.2500 -9.0000

3.0000 0.0740 -23.0000

4.0000 0.0310 -53.0000

5.0000 0.0160 -105.0000

6.0000 0.0090 -185.0000

7.0000 0.0050 -299.0000

8.0000 0.0030 -453.0000

9.0000 0.0020 -653.0000

10.0000 0.0020 -905.0000

Matlab - 2017/2018 69

Data and file management

save save workspace variables to file

 save (filename)

saves all variables from the current workspace in a formatted binary file (MAT-
file) called filename

if filename is not specified the file Matlab.mat is created

 save(filename,variables)

saves only the variables or fields of a structure array specified by variables

 save(filename,variables,fmt)

saves in the file format specified by fmt - variables is optional

Matlab - 2017/2018 70

Data and file management

Example

% mytable.m

n=input(‘Insert the number of values n:');

x=linspace(0,pi,n);

s=sin(x);

c=cos(x);

v=(1:n);

save mytable.dat v x s c -ascii

Matlab - 2017/2018 71

Data and file management

Example

To visualize the table saved in the previous example with save we can load
the file and display the table

% viewtable.m

load mytable.dat

A=mytable;

disp('--------------------------------------');

fprintf('k\t x(k)\t sin(x(k))\t cos(x(k))\n');

disp('--------------------------------------');

fprintf('%d\t %3.2f\t %8.5f\t %8.5f\n',A);

Matlab - 2017/2018 72

Data and file management

dir List directory

dir directory_name or dir(’directory_name’) lists the

files in a directory -- Pathnames and wildcards may be used

dir *.m lists all the M-files in the current directory

D = dir('directory_name') returns the results in an M-by-1

structure with the fields:

name -- filename

date -- modification date

bytes -- number of bytes allocated to the file

isdir -- 1 if name is a directory and 0 if not

datenum -- modification date as a MATLAB serial date number

Matlab - 2017/2018 73

Improving performance

Techniques for Improving Performance

 Preallocating Arrays

 for and while loops that incrementally increase the size of a data structure

each time through the loop can adversely affect performance and memory use

 resizing arrays often requires MATLAB to spend extra time looking for larger

contiguous blocks of memory, and then moving the array into those blocks

 you can improve code execution time by preallocating the maximum amount

of space required for the array

Matlab - 2017/2018 74

Improving performance

Techniques for Improving Performance

 Preallocating a Nondouble Matrix

 When you preallocate a block of memory to hold a matrix of some type other

than double, avoid using the method

A = int8(zeros(100))

 This statement preallocates a 100-by-100 matrix of int8, first by creating a

full matrix of double values, and then by converts each element to int8

 Creating the array as int8 values saves time and memory

A = zeros(100, 'int8')

Matlab - 2017/2018 75

Improving performance

Techniques for Improving Performance

 Vectorization

 MATLAB is optimized for operations involving matrices and vectors

 The process of revising loop-based, scalar-oriented code to use MATLAB

matrix and vector operations is called vectorization

 Vectorizing your code is worthwhile for several reasons:

 Appearance: Vectorized mathematical code appears more like the

mathematical expressions, making the code easier to understand

 Less Error Prone: Without loops, vectorized code is often shorter, and fewer

lines of code mean fewer programming errors

 Performance: Vectorized code often runs much faster

Matlab - 2017/2018 76

Improving performance

 Vectorizing Code for General Computing

 This code computes the sine of 1,001 values ranging from 0 to 10:
i = 0;

for t = 0:.01:10

i = i + 1;

y(i) = sin(t);

end

 This is a vectorized version of the same code:
t = 0:.01:10;

y = sin(t);

Matlab - 2017/2018 77

Improving performance

 Vectorizing Code for Specific Tasks

 This code computes the cumulative sum of a vector at every fifth element:
x = 1:10000;

ylength = (length(x) - mod(length(x),5))/5;

y(1:ylength) = 0;

for n= 5:5:length(x)

y(n/5) = sum(x(1:n));

end

 This code shows one way to accomplish the task:
x = 1:10000;

xsums = cumsum(x);

y = xsums(5:5:length(x));

Matlab - 2017/2018 78

Improving performance

 Array Operations

 Array operators perform the same operation for all elements in the data set

 Example

 collect the volume (V) of various cones by recording their diameter (D) and height (H)

 The volume for that single cone: V = 1/12*pi*(D^2)*H

 Consider 10,000 cones

 The vectors D and H each contain 10,000 elements

for n = 1:10000

V(n) = 1/12*pi*(D(n)^2)*H(n));

end

 Vectorized Calculation
V = 1/12*pi*(D.^2).*H;

Matlab - 2017/2018 79

More examples

Use built-in Matlab functions

• find is a very important function

• Returns indices of nonzero values

• Can simplify code and help avoid loops

• Basic syntax: index=find(cond)

»x=rand(1,100);

»inds = find(x>0.4 & x<0.6);

• Inds will contain the indices at which x has values between 0.4 and 0.6.

• This is what happens:

• x>0.4 returns a vector with 1 where true and 0 where false

• x<0.6 returns a similar vector

• The & combines the two vectors using an and

• The find returns the indices of the 1's

Matlab - 2017/2018 80

More examples

• Given x= sin(linspace(0,10*pi,100)), how many of the entries are positive?

• Using a loop and if/else

count=0;

for n=1:length(x)

if x(n)>0

count=count+1;

end

end

• Being more clever

count=length(find(x>0));

• Avoid loops! Built-in functions will make it faster to write and execute

Matlab - 2017/2018 81

IMAGES AND MATLAB

Matlab - 2017/2018 82

• A digital image can be considered as a large array of discrete dots,

each of which has a brightness associated with it

• These dots are called picture elements or more simply pixels

• The pixels surrounding a given pixel constitute its neighborhood

• A neighborhood can be characterized by its shape in the same way as

a matrix: 3x3 neighborhood, 5x7 neighborhood…

Images

83 Matlab - 2017/2018

• Binary: Each pixel is just black or white. Since there are only two

possible values for each pixel (0,1), we only need one bit per pixel

Types of digital image

84 Matlab - 2017/2018

• Grayscale: Each pixel is a shade of gray, normally from 0 (black) to

255 (white), that is each pixel can be represented exactly one byte

• Other greyscale ranges can be used, generally power of 2

85 Matlab - 2017/2018

Types of digital image

• True Color, or RGB: Each pixel has a particular color, described by

the amount of red, green and blue

• Each components has a range 0–255, for a total of 2563 different

possible colors

• Three matrices representing the red, green and blue values for

each pixel

86 Matlab - 2017/2018

Types of digital image

• Read and write images in Matlab

img = imread('apple.jpg');

dim = size(img);

figure;

imshow(img);

imwrite(img, 'output.bmp', 'bmp');

• Alternatives to imshow

imagesc(I)

imtool(I)

image(I)

87 Matlab - 2017/2018

Image Import and Export

Column 1 to 256

R
o

w
 1

 to
 2

5
6

How to build a matrix (or image)?

Intensity Image:

row = 256;

col = 256;

img = zeros(row, col);

img(100:105, :) = 0.5;

img(:, 100:105) = 1;

figure;

imshow(img);

88 Matlab - 2017/2018

Image and Matrices
[0, 0]

[256, 256]

Binary Image

row = 256;

col = 256;

img = rand(row,

col);

img = round(img);

figure;

imshow(img);

89 Matlab - 2017/2018

Image and Matrices

• image - create and display image object

• imagesc - scale and display as image

• imshow - display image

• colorbar - display colorbar

• getimage - get image data from axes

• truesize - adjust display size of image

• zoom - zoom in and zoom out of 2D plot

90 Matlab - 2017/2018

Image display

91

iminfo returns information
about the image

impixel(i,j) returns the
value of the pixel (i,j)

Matlab - 2017/2018

Image information

• gray2ind - intensity image to index image

• im2bw - image to binary

• im2double - image to double precision

• im2uint8 - image to 8-bit unsigned integers

• im2uint16 - image to 16-bit unsigned integers

• ind2gray - indexed image to intensity image

• mat2gray - matrix to intensity image

• rgb2gray - RGB image to grayscale

• rgb2ind - RGB image to indexed image

92 Matlab - 2017/2018

Image conversion

Arithmetic operations act by applying a simple function y=f(x) to
each gray value in the image

• Simple functions include adding or subtract a constant value
to each pixel: y = x±C (imadd, imsubtract)

• Multiplying each pixel by a constant: y = C·x (immultiply,
imdivide)

• Complement: For a grayscale image is its photographic
negative.

93 Matlab - 2017/2018

Point Processing: Arithmetic operations

Image: I Image: I+50

94 Matlab - 2017/2018

Addition

Image: I Image: I-80

95 Matlab - 2017/2018

Subtraction

Image: I Image: I*3

96 Matlab - 2017/2018

Multiplication

Image: I Image: I/2

97 Matlab - 2017/2018

Division

Image: I Image: 255-I

98 Matlab - 2017/2018

Complement

Image filtering

• Filtering is used to enhance or attenuate some characteric of the image

• Filtering modifies the pixels in an image based on some function of a

local neighborhood of each pixel

• Filtering generates a new image

• Linear filtering (cross-correlation, convolution) replace each pixel by a

linear combination of its neighbors

Filtering IMG FIMG I

Matlab - 2017/2018 99

Image filtering

• Linear filtering uses a matrix of coefficients W

• Imagine F is obtained from imagine I using W:

• Where W and the submatrix of I are:

 
 


a

as

b

bt

tysxItsWyxF],[],[],[

W[-1,-1] W[-1,0] W[-1,1]

W[0,-1] W[0,0] W[0,1]

W[1,-1] W[1,0] W[1,1]

I[x-1,y-1] I[x-1,y] I[x-1,y+1]

I[x,y-1] I[x,y] I[x,y+1]

I[x+1,y-1] I[x+1,y] I[x+1,y+1]

Matlab - 2017/2018 100

Image filtering

• Convolution Same as cross-correlation, except that the kernel is

flipped (horizontally and vertically)

• The prescription for the linear combination - W - is called the kernel

(or mask, or filter) of the cross-correlation/convolution

 
 


a

as

b

bt

tysxItsWyxF],[],[],[

Matlab - 2017/2018 101

Image filtering

• Smoothing filters: mean filter,

gaussian filter, median filter

• Sharpening filters

Matlab - 2017/2018 102

Smoothing filter

• Mean filter






















111

111

111

1









ba
Wmedio

Matlab - 2017/2018 103

Smoothing filter

• Gaussian filter: weights of filter follow a gaussian distribution

• Example

2

22

2

2

1
),(




yx

eyxG






























14741

41626164

72641267

41626164

14741

273

1
G

Matlab - 2017/2018 104

Gaussian filter

• Removes high-frequency components from the image (low-pass filter)

Matlab - 2017/2018 105

Median filter

The median filter selects a sample from the window, does not average

Matlab - 2017/2018 106

Median filter

Best suited for salt and pepper noise

Matlab - 2017/2018 107

Sharpening filter

• Sharpening filters emphasize fine details in the image, exactly
the opposite of the low-pass filter such as Gaussian filter  it
just uses a different convolution kernel

• A high-pass filter can be used to make an image appear
sharper.

• Usually the central pixel is positive, whereas adjacent pixels
are negative

Matlab - 2017/2018 108

Sharpening filter

• First, I is modified by using a gaussian filter

• Then Is cis obtained as a linaera combination among image I and the

Gauss filtered image, with a suitable value of k usually equal to 1

],[],[],[

],)[(],[],[

yxIkyxIyxI

yxIGyxIyxI

s 

 

Matlab - 2017/2018 109

