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OVERVIEW
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Sources of Approximation

• Before computation

• modeling

• empirical measurements

• previous computations

• During computation

• truncation or discretization

• rounding

• Accuracy of final result reflects all these

• Uncertainty in input may be amplified by problem

• Perturbations during computation may be amplified by 

algorithm

Intensive Computation - 2017/2018 4



Approximations: Example

• Computing surface area of Earth using formula A = 4πr2

involves several approximations
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Approximations: Example

• Computing surface area of Earth using formula A = 4πr2

involves several approximations

• Earth is modeled as sphere, idealizing its true shape

• Value for radius is based on empirical measurements and 

previous computations

• Value for π requires truncating infinite process

• Values for input data and results of arithmetic operations are 

rounded in computer
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Sources of Error

• Scientific computing usually gives inexact answers

Example

• the code x = sqrt(2) produces something that is not the 

mathematical 2

• x differs from 2 by an amount that we call the error
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Sources of Error

• The goal of a scientific computation is rarely the exact 

answer, but a result that is as accurate as needed 

• An accurate result has a small error

• We use 

• A to denote the exact answer to some problem 

• ෡𝑨 to denote the computed approximation to A

• The error is ෡𝑨 − 𝑨
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Sources of Error

• There are four primary ways in which error is introduced into 

a computation:

• Roundoff error from inexact computer arithmetic

• Truncation error from approximate formulas

• Termination of iterations

• Statistical error in Monte Carlo
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Sources of Error

• It is important:

• To understand the likely relative sizes of the various kinds of 
error

• To focus our efforts on reducing the largest sources of error

• This will help:

• To better design computational algorithms

• To understand the various sources of error and to debug 
scientific computing software

• Finally, if a result is supposed to be 𝐴 and instead is መ𝐴, it is 
important to understand if:

• The difference between 𝐴 and መ𝐴 is the result of a programming mistake

• Or, the way of calculating something is simply not accurate enough
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Error propagation

• A typical computation has several stages, with the results of 

one stage being the inputs to the next

• Errors in the output of one stage most likely mean that the 

output of the next would be inexact even if the second stage 

computations were done exactly

• It is unlikely that the second stage would produce the 

exact output from inexact inputs

• On the contrary, it is possible to have error amplification 

due to error propagation
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Error propagation

• If the second stage output is very sensitive to its input, small 

errors in the input could result in large errors in the output 

that is, the error will be amplified

• A method with large error amplification is unstable

• The condition number of a problem measures the 

sensitivity of the answer to small changes in its input data

• The condition number is determined by the problem, not 

the method used to solve it

• The accuracy of a solution is limited by the condition number 

of the problem
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Error propagation

• A problem is called ill-conditioned if the condition number is 

so large that it is hardimpossible to solve it accurately enough

• A computational strategy is likely to be unstable if it has an 

ill-conditioned subproblem

Example 

• Suppose we solve a system of linear differential equations using the 

eigenvector basis of the corresponding matrix

• Finding eigenvectors of a matrix can be ill-conditioned

• This makes the eigenvector approach to solving linear differential 

equations potentially unstable, even when the differential equations 

themselves are well-conditioned
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COMPUTATIONAL

ERRORS
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Absolute Error and Relative Error

• Absolute error: approximate value - true value

• Relative error:
absolute error

true value

• Equivalently:    approx value = (true value) x (1 + rel error)

• True value is usually unknown, so we estimate or bound

error rather than to compute it exactly

• Relative error is often taken relative to approximate value, 

rather than (unknown) true value
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Data Error and Computational Error

Typical problem: compute value of function 𝑓: 𝑅 → 𝑅 for given
argument

• 𝑥 = true value of input

• 𝑓(𝑥) = desired result

• ො𝑥 = approximate (inexact) input

• መ𝑓 = approximate function actually computed

• Total error: መ𝑓 ො𝑥 − 𝑓 𝑥 =

መ𝑓 ො𝑥 − 𝑓 ො𝑥 + 𝑓 ො𝑥 − 𝑓 𝑥

computational error + propagated data error

• Algorithm has no effect on propagated data error
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Example

• We need to compute value of 𝐬𝐢𝐧( Τ𝝅 𝟖) without a calculator

• We could approximate:

• 𝝅 with 22/7, but it is easier to use 𝝅 = 𝟑

• Also, we can approximate

• sine function by truncating Taylor series after first term 

(we are considering a small value of the argument), that 

is 𝐬𝐢𝐧 𝒙 = 𝒙
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Example

• Computational error is obtained by 

መ𝑓 ො𝑥 ≈ sin( Τ3 8) ≈ Τ3 8 ≈ 0.3750

𝑓 ො𝑥 = 0.3662 (obtained by using a calculator)

• Hence the computational error is

መ𝑓 ො𝑥 − 𝑓 ො𝑥 = 0.3750 − 0.3662 = 0.0088

• Propagated data error is obtained by 

𝑓 ො𝑥 = 0.3826 (obtained by using a calculator)

• Hence the Propagated data error is

𝑓 ො𝑥 − 𝑓 𝑥 = 0.3662 − 0.3826 = −0.0164

• Computational error and propagated data error balance each other
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Truncation Error and Rounding Error

• Truncation error: difference between true result (for actual 

input) and result produced by given algorithm using exact 

arithmetic

• Due to approximations such as truncating infinite series or terminating 

iterative sequence before convergence

• Rounding error: difference between result produced by 

given algorithm using exact arithmetic and result produced 

by same algorithm using limited precision arithmetic

• Due to inexact representation of real numbers and arithmetic 

operations upon them

• Computational error is sum of truncation error and 

rounding error, but one of these usually dominates
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Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by Mh/2, where M bounds

𝑓′′(𝑡) for t near x
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Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by 
𝑀ℎ

2
, where M bounds

𝑓′′(𝑡) for t near x

• Rounding error bounded by
2ε

ℎ
, where error in function

values bounded by ε
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Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by 
𝑀ℎ

2

• Rounding error bounded by 
2ε

ℎ

• Computational error is:  
𝑀ℎ

2
+ 

2ε

ℎ
• It increases for smaller h because of rounding error

• It increases for larger h because of truncation error
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Example: Finite Difference Approximation

• Error in finite difference approximation

𝑓′ 𝑥 ≈
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
exhibits tradeoff between rounding error and truncation error

• Truncation error bounded by 
𝑀ℎ

2

• Rounding error bounded by 
2ε

ℎ

• Computational error is:  
𝑀ℎ

2
+ 

2ε

ℎ

• Total error minimized when ℎ ≈ 2 ε/𝑀
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FORWARD ERRORS AND 

BACKWARD ERRORS
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Forward and Backward Error

• Suppose we want to compute y = f(x) , where f : R → R

• Instead we obtain the approximate value ෝ𝒚

• Forward error: Δ𝑦 = ො𝑦 − 𝑦

• Backward error: Δ𝑥 = ො𝑥 − 𝑥, where 𝑓 ො𝑥 = ො𝑦

x

ො𝑥

መ𝑓

f

f

y=f(x)

ො𝑦 = መ𝑓 𝑥 = 𝑓(ො𝑥)

Forward errorBackward error
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Example: Forward and Backward Error

• As approximation to 𝑦 = 2, the value ො𝑦 = 1.4 has

absolute forward error

Δ𝑦 = ො𝑦 − 𝑦 = 1.4 − 1.41421… ≈ 0.0142

or relative forward error of about 1 percent

• Since 1.96 = 1.4, absolute backward error is

Δ𝑥 = ො𝑥 − 𝑥 = 1.96 − 2 = 0.04

or relative backward error of 2 percent
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Backward Error Analysis

• Idea: approximate solution is 

exact solution to modified problem

• Questions are:
• How much must original problem change to give result actually

obtained?

• How much data error in input would explain all error in computed
result?

• Approximate solution is good if it is exact solution to nearby

problem

• Backward error is often easier to estimate than forward error
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Example: Backward Error Analysis

• Approximating cosine function 𝑓 𝑥 = cos 𝑥, by truncating

Taylor series after two terms gives 

ො𝑦 = መ𝑓 𝑥 = 1 − 𝑥2/2

• Forward error is given by

Δ 𝑦 = ො𝑦 − 𝑦 = መ𝑓 𝑥 − 𝑓 𝑥 = 1 − Τ𝑥2 2 − cos 𝑥

• To determine backward error, we need value ො𝑥 such that 

𝑓 ො𝑥 = መ𝑓 𝑥

• For cosine function, ො𝑥 = arccos መ𝑓 𝑥 = arccos( ො𝑦)
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Example continued

• For 𝑥 = 1

𝑦 = 𝑓 1 = cos 1 ≈ 0.5403

ො𝑦 = መ𝑓 1 = 1 −
12

2
= 0.5

ො𝑥 = arccos ො𝑦 = arccos 0.5 = 1.0472

• Forward error: Δ𝑦 = ො𝑦 − 𝑦 ≈ 0.5 − 0.5403 = −0.0403

• Backward error: Δ 𝑥 = ො𝑥 − 𝑥 ≈ 1.0472 − 1 = 0.0472
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SENSITIVITY AND 

CONDITIONING
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Well-Posed Problems

• Problem is well-posed if solution

• exists

• is unique

• depends continuously on problem data

Otherwise, problem is ill-posed

• Even if problem is well posed, solution may still be sensitive

to input data

• Computational algorithm should not make sensitivity worse
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Sensitivity and Conditioning

• Problem is insensitive, or well-conditioned, if relative 

change in input causes similar relative change in solution

• Problem is sensitive, or ill-conditioned, if relative change in 
solution can be much larger than that in input data

• Condition number : 

cond =
relative change in solution

relative change in input data

=
(𝑓 ො𝑥 − 𝑓 𝑥 )/𝑓(𝑥)

( ො𝑥 − 𝑥)/𝑥
=

Δ𝑦/𝑦

Δ𝑥/𝑥

• Problem is sensitive, or ill-conditioned, if cond ≫ 𝟏
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Condition number

• Condition number is amplification factor relating relative 

forward error to relative backward error

relative forward error = cond × relative backward error

• Condition number usually is not known exactly and may vary 

with input, so rough estimate or upper bound is used for 

cond, yielding

relative forward error < cond × relative backward error
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Example: Evaluating Function

• Evaluating function f for approximate input ො𝑥 = 𝑥 + Δ𝑥 instead of 

true input x gives

• Absolute forward error: ො𝑥 = 𝑓 𝑥 + Δ𝑥 − 𝑓(𝑥) ≈ 𝑓′(𝑥)Δ𝑥

• Relative forward error:
𝑓 𝑥+Δ𝑥 −𝑓(𝑥)

𝑓(𝑥)
≈

𝑓′(𝑥)Δ𝑥

𝑓(𝑥)

• Condition number: cond ≈

𝑓′ 𝑥 Δ𝑥

𝑓 𝑥
Δ𝑥

𝑥

=
𝑥𝑓′(𝑥)

𝑓(𝑥)

• Relative error in function value can be much larger or smaller than 

that in input, depending on particular f and x
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Example: Sensitivity

• Tangent function is sensitive for arguments near 𝜋/2

• tan(1.57079) ≈ 1.58058 × 105

• tan(1.57078) ≈ 6.12490 × 104

• Relative change in output is quarter million times greater 

than relative change in input

• For 𝑥 = 1.57079, 𝑐𝑜𝑛𝑑 ≈ 2.48275 × 105
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Stability

• Algorithm is stable if result produced is relatively insensitive 

to perturbations during computation

• Stability of algorithms is analogous to conditioning of 

problems

• From point of view of backward error analysis, algorithm is 

stable if result produced is exact solution to nearby problem

• For stable algorithm, effect of computational error is no 

worse than effect of small data error in input
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Accuracy

• Accuracy: closeness of computed solution to true solution of 
problem

• Stability alone does not guarantee accurate results

• Accuracy depends on conditioning of problem as well as 
stability of algorithm

• Inaccuracy can result from applying:
• stable algorithm to ill-conditioned problem or 

• unstable algorithm to well-conditioned problem

• Applying stable algorithm to well-conditioned problems yields
accurate solution
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Condition Number for Linear Systems

• Consider the system

• It has solution 

• The perturbed system

has the solution

7.075

1 107





yx

yx

1.0       0  yx

69.0ˆ7ˆ5

01.1 ˆ10ˆ7





yx

yx

22.0ˆ       17.0ˆ  yx
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Condition Number for Linear Systems

• In solving a linear system Ax = b, we need to know the 

sensitivity of the solution x to changes in the right side b

• Consider the two linear systems 

• What is              ?

• We simply solve for 

rbxAbAx  ~       

x

xx ~

xx ~

rAbArbAxx 111 ][~   rArAxx 11~  

xA

r
AA

x

rA

x

xx
1

1~






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Condition Number for Linear Systems

• Since Ax = b, we have                  , and then

• The number                                  is the condition number

for the matrix A and for the linear system

xAb 

b

r
AA

x

xx
1

~




AAA 1)(cond 

b

r
A

x

xx
)(cond

~




Intensive Computation - 2017/2018 40



Condition Number for Linear Systems

• We can also prove a lower inequality, obtaining

• In addition, given any nonsingular A, there are vectors b and 

r for which either of the above inequalities are actually an 

equalities

b

r
A

x

xx

b

r

A
)(cond

~

)(cond

1




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Condition Number for Linear Systems

• With

we see that

• if cond(A) ≈ 1, then small ‘relative’ changes in b are 

guaranteed to lead to equally small ‘relative’ changes in x

• if cond(A) is very large, then there are values of b and r

for which        is small and             is large

• In practice, it is very difficult to know whether your choice 

of b and r is good or bad

x

xx ~

b

r
A

x

xx

b

r

A
)(cond

~

)(cond

1





b

r
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Floating-Point Numbers

• Floating-point numbers are designated as follows

• Sign

• Exponent

• Mantissa 

• Sign, exponent, and mantissa are stored in separate fixed-

width fields of each floating-point word

• IEEE floating-point systems are now almost universal in 

digital computers
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Floating-Point Numbers

• Not all real numbers exactly representable

• Real numbers that are represented are called machine 

numbers

• At sufficiently high magnification, all normalized floating-point 

systems look grainy and unequally spaced

• If real number x is not exactly representable, then it is 

approximated by “nearby” floating-point number (x)

• This process is called rounding, and error introduced is 

called rounding error
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Floating-Point Numbers

• Two commonly used rounding rules:

• chop: truncate x after (p - 1)st digit - also called round 

toward zero

• round to nearest: fl(x) is nearest floating-point number to 

x, using floating-point number whose last stored digit is 

even in case of tie; also called round to even

• Round to nearest is most accurate, and is default rounding 

rule in IEEE systems
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Floating-Point Numbers

• Accuracy of floating-point system characterized by unit 

roundoff (or machine precision or machine epsilon) εmach

• Maximum relative error in representing real number x 

within range of floating-point system is given by
𝑓𝑙 𝑥 − 𝑥

𝑥
≤ εmach

• For IEEE floating-point systems

• εmach = 2-24 ≈ 10-7 in single precision

• εmach = 2-53 ≈ 10-16

• So IEEE single and double precision systems have about 

7and 16 decimal digits of precision, respectively
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Floating-Point Arithmetic

• Addition or subtraction: Shifting of mantissa to make 

exponents match may cause loss of some digits of 

smallernumber, possibly all of them

• Multiplication: Product of two p-digit mantissas contains up 

to 2p digits, so result may not be representable

• Division: Quotient of two p-digit mantissas may contain 

more than p digits

• Result of floating-point arithmetic operation may differ from 

result of corresponding real arithmetic operation on same 

operands
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Floating-Point Arithmetic

Example: cancellation

• Subtraction between two p-digit numbers having same sign 

and similar magnitudes yields result with fewer than p digits

• Reason is that leading digits of two numbers cancel 

• Example: 1.92403x102 – 1.92275x102 = 1.28000x10-1

• Result is correct, and exactly representable but has only 

three significant digits

• Despite exactness of result, cancellation often implies 

serious loss of information
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Floating-Point Arithmetic

Cancellation

• Operands are often uncertain due to rounding or other 

previous errors, so relative uncertainty in difference may be 

large

• Example

• if ε is positive floating-point number slightly smaller than εmach, then (1 

+ ε ) - (1 - ε ) = 1 - 1 = 0 in floating-point arithmetic

• it is correct for actual operands of final subtraction, but true result of 

overall computation, 2 ε, has been completely lost

• Subtraction itself is not at fault: it merely signals loss of 

information that had already occurred
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Floating-Point Arithmetic

Cancellation

• Digits lost to cancellation are most significant, leading digits, 

whereas digits lost in rounding are least significant

• Because of this effect, it is generally bad idea to compute 

any small quantity as difference of large quantities, since 

rounding error is likely to dominate result

• For example, summing alternating series, such as

ex = 1 + x + x2/2! + x3/3! + …  

for x < 0, may give disastrous results due to catastrophic    

cancellation
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MEASUREMENT ERRORS
Optional part – Not covered in class

Averaging, Errors and Uncertainty - Upenn - Lab Manual - Physics & Astronomy Dept

https://www.physics.upenn.edu/sites/www.physics.upenn.edu/files/Managing%20Err
ors%20and%20Uncertainty.pdf
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Measurements Errors

There are three types of limitations to measurements:

1) Instrumental limitations

• Any measuring device can only be used to measure to with 

a certain degree of fineness

• Our measurements are no better than the instruments we 

use to make them
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Measurements Errors

There are three types of limitations to measurements:

2) Systematic errors and blunders

• These are caused by a mistake which does not change 
during the measurement. 

• For example, if the platform balance you used to weigh 
something was not correctly set to zero with no weight on 
the pan, all your subsequent measurements of mass 
would be too large. 

• Systematic errors do not enter into the uncertainty. 
They are either identified and eliminated or lurk in the 
background producing a shift from the true value.
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Measurements Errors

There are three types of limitations to measurements:

3) Random errors

• These arise from unnoticed variations in measurement 

technique, tiny changes in the experimental environment, 

etc. 

• Random variations affect precision. Truly random effects 

average out if the results of a large number of trials are 

combined.

54Intensive Computation - 2017/2018



Precision and Accuracy

• A precise measurement is one where independent 

measurements of the same quantity closely cluster about a 

single value that may or may not be the correct value

• An accurate measurement is one where independent 

measurements cluster about the true value of the measured 

quantity

Systematic errors:

• are not random and therefore can never cancel out

• affect the accuracy but not the precision of a measurement
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Precision and Accuracy

• A. Low‐precision, Low‐accuracy:

The average (the X) is not close to the center

• B. Low‐precision, High‐accuracy:

The average is close to the true value

• C. High‐precision, Low‐accuracy:

The average is not close to the true value
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Uncertainty of Measurements

• Errors are quantified by associating an uncertainty with 

each measurement 

• Example

• The best estimate of a length L is 2.59 cm, 

• Due to uncertainty, the length might be:

• as small as 2.57cm 

• or as large as 2.61cm
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Uncertainty of Measurements

• Length L can be expressed with its uncertainty in two 

different ways:

1. Absolute Uncertainty

Expressed in the units of the measured quantity:

2. Percentage Uncertainty

Expressed as a percentage independent of the units

above, since  

we would write 
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Significant Digits

Experimental numbers must be written in a way consistent 

with the precision to which they are known: significant digits 

(or figures) that have physical meaning

1. All definite digits and the first doubtful digit are considered 

significant

2. Leading zeros are not significant digits

Example: L=2.31 cm has 3 significant figures. 

For L=0.0231 m, the zeros serve to move the decimal point to 

the correct position

3. Trailing zeros are significant digits: they indicate the number’s 

precision

4. One significant digit should be used to report the uncertainty or 

occasionally two, especially if the second digit is a five
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Rounding Numbers

• To keep the correct number of significant figures, numbers 

must be rounded off

• The discarded digit is called the remainder

• There are three rules for rounding:

• Rule 1: If the remainder is less than 5, drop the last digits

Rounding to one decimal place: 5.346 → 5.3

• Rule 2: If the remainder is greater than 5, increase the final digit by 1

Rounding to one decimal place: 5.798 → 5.8

• Rule 3: If the remainder is exactly 5 then round the last digit to the 

closest even number

This is to prevent rounding bias. Remainders from 1 to 5 are rounded 

down half the time and remainders from 6 to 10 are rounded up the 

other half.

Rounding to one decimal place: 3.55 → 3.6, also 3.65 → 3.6
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Examples

Example The period of a pendulum is given by 

Here,                  is the pendulum length and                       is 

the acceleration due to gravity

WRONG:

 RIGHT:

Note You can obtain the first number by a calculator but there 

is no way you know T to that level of precision

When no uncertainties are given, report your value with the 

same number of significant digits as the value with the 

smallest number of significant digits 
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Examples

Example The mass of an object was found to be            with an 

uncertainty of  

WRONG:

 RIGHT:

Note The first way is wrong because the uncertainty should be 

reported with one significant digit

Example The length of an object was found to be                  with 

an uncertainty of  

WRONG:

 RIGHT:

Note The first way is wrong because it is impossible for the third 

decimal point to be meaningful
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g032.0

g 0.0356.3 m

g 0.03256.3 m

g56.3

cm 593.2
cm 03.0

0.03cm 59.2 L

0.03cm 593.2 L



Examples

Example The velocity was found to be                with an uncertainty 

of  

WRONG:

 RIGHT:

Note The first way is wrong because the first discarded digit is a 5 

In this case, the final digit is rounded to the closest even number, 4

Example The distance was found to be 45600 m with an uncertainty 

of  1m

WRONG:

 RIGHT:

Note The first way is wrong because it tells us nothing about the 

uncertainty. Scientific notation shows we know the value to within 1m
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m/s 6.0

m/s 0.64.2 v

m/s 0.65.2 v

m/s .452

mx105600.4 4d

m 45600d



Statistical Analysis of Small Data Sets

Repeated measurements allow you:

• To obtain a better idea of the actual value

• To characterize the uncertainty of your measurement 

There are a number of quantities that are very useful in data 

analysis, that exploits:

• The value obtained from a particular measurement, x

• The times a measurement is repeated, N
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Statistical Analysis of Small Data Sets

Oftentimes (e.g. in lab) N is small, usually no more than 5 to 10

For small data sets we use the following formulas:

• Mean - xavg The average of all values of x (the “best” value of x)

• Range - R The “spread” of the data set. This is the difference between the 

maximum and minimum values of x
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Statistical Analysis of Small Data Sets

• Uncertainty in a measurement - Δx

Determine this uncertainty by making multiple measurements. 

From data you know that x lies somewhere between xmax and xmin

• Uncertainty in the Mean - Δ xavg

The actual value of x will be somewhere in a neighborhood around xavg. 

This neighborhood of values is the uncertainty in the mean. 

• Measured value - xm The final reported value of a measurement of x 

contains both the average value and the uncertainty in the mean
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Statistical Analysis of Large Data Sets

• If only random errors affect a measurement, it can be shown 

mathematically that in the limit of an infinite number of 

measurements (            ), the distribution of values follows a 

normal distribution (i.e. the bell curve) 

• This distribution has a peak at the mean value and a 

width given by the standard deviation σ
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Statistical Analysis of Large Data Sets

• We never take an infinite number of measurements

• However, for a large number of measurements, N~10-102

or more, measurements may be approximately normally 

distributed
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Statistical Analysis of Large Data Sets

For large data sets we use the following formulas:

• Mean - xavg The average of all values of x (the “best” value of x) 

This is the same as for small data sets

• Uncertainty in a measurement - Δx The vast majority of your data lies in 

the range
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Statistical Analysis of Large Data Sets

For large data sets we use the following formulas:

• Uncertainty in the Mean - Δxavg The actual value of x will be somewhere 

in a neighborhood around xavg. This neighborhood of values is the 

uncertainty in the mean

• Measured Value - xm The final reported value of a measurement of x 

contains both the average value and the uncertainty in the mean
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Propagation of Uncertainties

• Oftentimes we combine multiple values, each of which has an 

uncertainty, into a single equation

• The way these uncertainties combine depends on how the 

measured quantity is related to each value

• Rules for how uncertainties propagate are:

• Addition/Subtraction

• Multiplication

• Division
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Examples

• Addition The sides of a fence are measured with a tape measure 

to be 124.2cm, 222.5cm, 151.1cm and 164.2cm

• Each measurement has an uncertainty of 0.07cm

• Calculate the measured perimeter Pm including its uncertainty

0.14cm )07.0()07.0()07.0()07.0( 2222 P

cm1.00662m  . P

662.0cm  164.2cm 151.1cm 222.5cm cm2124  . P
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Examples

• Multiplication The sides of a rectangle are measured to be 

15.3cm and 9.6cm 

• Each length has an uncertainty of 0.07cm

• Calculate the measured area Am including its uncertainty

2

m cm 1147  A

2146.88cm  9.6cm cm3.15   A

2

22

1.3cm
6.9

07.0

3.15

07.0
9.6cm cm3.15 

















A
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