INTRODUCTION TO MATLAB

Intensive Computation
2015-2016

Annalisa Massini

Matlab - 2015/2016

Introduction

e MATLAB stands for MATrix LABoratory
e MATLAB is a high-level interpreted language and interactive
environment for numerical computation, data analysis, visualisation and

algorithm development

* MATLAB enables you to perform computationally intensive tasks faster

than with traditional programming languages such as C, C++ and Fortran

Matlab - 2015/2016

Introduction

- MATLAB started its life in the late 1970s as an interactive calculator built
on top of LINPACK and EISPACK, which were then state-of-the-art
Fortran subroutine libraries for matrix computation

* In the 80s Cleve Moler write the first version of MATLAB to give his
students at the University of New Mexico easy access to these libraries
without writing Fortran

» Matlab has many specialized toolboxes

Matlab - 2015/2016

Matlab Screen

Command Window

e Current Directory a@@\m\
o View folders and m-files ~TSstzzror i
o Workspace Dh:F
° View progmes\ i
» Double click on a e S
variable to see itinthe ™ wse— "z
Array Editor | P,
+ Command History — | S
o view pastcommands | .
» save a whole session | :
using diary L2 T

Matlab - 2015/2016

Helpful commands

help lists all the help topic — the most important function to learn Matlab

e help name the help text for the functionality specified by name,
such as a function, method, class, or toolbox

who/whos show the current variables in the workspace

o dir list files in the current directory

e clear all delete all the variables present in the workspace
e clear var1 var2 clear variables var? and var2

e lookfor search for keyword in all help entries

* |ookfor fopic

Matlab - 2015/2016

Variables and expressions

e In the Command window, the command prompt is " >>" Examples:

 Two types of statement: 1> 842
e evaluation of an expression an1so-
“>> expression”
e assignment “>> variable = expression”) >>_a = Sans
e The evaluation of an expression generates a matrix : ;0
assigned to the specified variable . >>6.9

e |f you do not specify the name of the variable associated

. ans =
to the result, the system “ans” is used

6.9000

Matlab - 2015/2016 7

Variables and expressions

e |fan expression ends with symbol “;” its value is not Examples:
displayed on the screen

. b = 6+a;
e MATLAB names are case-sensitive ’
»b
e No need to declare variables b=
e No need for types 56

- Built-in variables. Don't use these names!
- i and j can be used to indicate complex numbers
- pi has the value 3.1415926...
- ans stores the last unassigned value (like on a calculator)
- Inf and —Inf are positive and negative infinity
- NaN represents ‘Not a Number’

Matlab - 2015/2016

Variables and expressions

e All variables are created with double precision
e The variables are 1x1 matrices with double precision

* Double precision values consist of 8 bytes

» The default display format for variables is 5-digit scaled, fixed-point
values

» We can ask for different display formats with command format

e The format function affects only how numbers display in the Command
Window, not how MATLAB computes or saves them

The command FORMAT

Command £ormat changes the display format to the specified style

Let us consider x =4/3

- format short 1.3333 0.0000 - 5-digit scaled, fixed-point default

- format long 1.33333333333333 - 15-digit fixed point

- format short e 1.3333e+000 - 5-digit floating point

- format long e 1.333333333333333e+000 - 15-digit floating point

- format short g 1.3333 - best between fixed point and floating point

- format long g 1.33333333333333 - best between fixed and floating pt
- format bank 1.33 — currency format (dollar or euro)

- format rat 4/3 - ratio of small integers

- format hex 3ff5555555555555 - hexadecimal (double-precision)

Matlab - 2015/2016

Double precision values

- Only a number of double precision values can be represented
- There is always a small gap between two consecutive values
- The command eps provides the floating-point relative accuracy

- eps returns the distance from 1.0 to the next largest double-precision
number, that is eps = 2*(-52)

- eps(x) is the positive distance from abs(X) to the next larger in magnitude
floating point number of the same precision as X

- realmin returns the smallest positive normalized floating-point number in
IEEE double precision about 2.2251e-308 that is 2*(-1022)

- realmax returns the largest finite floating-point number in IEEE double
precision, about 1.7976e+308 that is 21023

Matlab - 2015/2016

Matrices

» The simplest way to create a matrix is to use the matrix constructor
operator []

 Create a row in the matrix by entering elements within the brackets

o Separate row elements with a comma or space

e Foranew row, terminate the current row with a semicolon or return

yA=[7 889 7:9 8] »B=[12 3
45 6]
A=
7.0000 8.0000 B =

8.9000 7.0000
9.0000 8.0000

i NG
TN
o W

Matlab - 2015/2016

Matrices

- Examples of functions for creating different kinds of matrices

- zeros(n,m) matrix nxm of all zeros
- ones(n,m) matrix nxm of all ones

- eye(n,m) matrix with ones on the diagonal (zeros elsewhere)
* rand(n,m) matrix of uniformly distributed random numbers
- diag([a11, a22, a33, ..., aNN]) diagonal matrix

Matlab - 2015/2016

Matrices

- Increase matrices by adding a row or a column having the correct size

« Column
- GivenA=[12;3 4;5 6];
- Add the column of elements 7 8 9

A=[A[7;8;9]] oppure A=[A[789]])

12 127
34 2> 348
56 9569

Matlab - 2015/2016

Matrices

To access elements of a matrix => matrices’ name followed by round
brackets containing a reference to the row and column number

e »A=[7 8;89 7,9 §] - A(n,m) access element (n,m)
A = of matrix A
7.0000 8.0000
8.9000 7.0000 » A(1,2)
9.0000 8.0000 ans =
8

Note that elements of the matrix
are displayed as 5-digit values

Matlab - 2015/2016

Matrices

The colon operator

e The colon operator (Eirst:last) generates a 1-by-n matrix (or
vector) of sequential numbers from the first value to the last

 The default sequence is made up of values incrementing by 1
A=10:15 > A=10 11 12 13 14 15

e The numeric sequence can include negative and fractional numbers
A=-25:25 > A=-2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

Matlab - 2015/2016

Matrices

The colon operator

 You can also specify a step value with the colon operator in between the
starting and ending value (first:step:last).

 To generate a series of numbers from 10 to 50 incrementing by 5:

A=10:550 - A=101520 253035404550
 You can increment by noninteger values

A=3:02.38 = A =3.0000 3.2000 3.4000 3.6000 3.8000
Yo can decrement, specifying a negative step value:

A=9:-1:1 > A=987654321

Matlab - 2015/2016

Matrices

Accessing matrix rows or matrix columns

- A(n,:) extracts row n of matrix A(:,m) extracts column m of
A matrix A
» A(2,:) » A(:,1)
ans = ans =
8.9000 7.0000 7.0000
8.9000
9.0000

The colon notation®:” allows to specify a sequence of values

The whole row (column) is extracted because the interval is not specified

Matlab - 2015/2016

Matrices
diag(A)
 [fAis a square matrix, diag(A) returns the main diagonal of A
» A=[56 ;7 8] » diag(A)
A= ans =
56 5
78 8

* If Ais a vector with n components, returns an n-by-n diagonal matrix having A as its main
diagonal

» diag(ans)
ans =
50
08

Matlab - 2015/2016

Matrices

e sum(A)
e IfAis a vector, then sum(A) returns the sum of the elements
» sum(A)
ans =
36

e [fAis a matrix, then sum(A) treats the columns of A as vectors and
returns a row vector whose elements are the sums of each column

ZA=[O 12:345:678] 4 B=sum(A)
01 91215

2
345
678

Matlab - 2015/2016

Vectors

e A matrix with only one row or column (that is, a 1-by-n or n-by-1 array)
s a vector, such as:

C=[1,2, 3] row vector
D =[10; 20; 30] column vector

e An array can be created with the colon operator
x=1:6 > x=1 2 3 4 5 6
x =0.5:0.1:0.7 - x=0.5000 0.6000 0.7000

Matlab - 2015/2016

Vectors

- Avector can be created by using 1linspace (a,b) or
linspace (a,b,N) that generates vectors of (N) points linearly

spaced between and including a and b
x = linspace(-1,1) = -1 0 1
x = linspace(-1,14) - -1.0000 -0.3333 0.3333 1.0000

e The logspace functions - logspace (a,b) or
logspace (a, b, N) —generate logarithmically spaced vectors

e The logspace function is useful for creating frequency vectors
e It is a logarithmic equivalent of linspace and the ":" or colon operator

Matlab - 2015/2016

Vector Indexing

- IMPORTANT: MATLAB indexing starts with 1, not 0

- The index argument can be a vector

- In this case, each element is looked up individually, and returned as a
vector of the same size as the index vector

»x=[12 13 5 8];
»a=x(2:3); 2> a=[135];
»b=x(1:end-1); 2> b=[12135];

Matlab - 2015/2016

Matrix Indexing

- Matrices can be indexed in two ways
- using subscripts(row and column)
- using linear indices(as if matrix is a vector)

- Matrix indexing: subscripts or linear indices

/ \
b(11) — {14 32} «—Db(1,2) b(1) - {14 32} «—Db(3)

b(2,1) >|11 81 |« b(2,2) b(2) »>|11 81 |« b(4)
Picking submatrices
»A = rand(5) % shorthand for 5x5 matrix
»A(1:3,1:2) % specify contiguous submatrix

»A([15 3], [1 4]) % specify rows and columns143398

Matlab - 2015/2016

Matrix Indexing

- MATLAB contains functions to help you find desired values within a vector
or matrix

»wec=[53197]

- To get the minimum value and its index:
»[minVal,minind] = min(vec);

- Max works the same way

- To find any the indices of specific values or ranges
»ind = find(vec == 9);
»ind = find(vec > 2 & vec < 6);
- To convert between subscripts and indices, use ind2sub and sub2ind

Matlab - 2015/2016

Scalar operators and functions

e Mathematical operators on scalars
add +, subtract -, divide /, multiply *, power *

e Trigonometric function
* Sin, cOS
e tan
e asin, acos
e atan

The list of elementary math functions
- help elfun: trigonometric, esponential, complex, rounding and remainder

The list of specialized math functions
- help specfun: specialized, number theoretic, coordinate transforms

Matlab - 2015/2016

Scalar operators and functions

e Some mathematical operators on scalars:

e abs Absolute value and complex magnitude

* coNj Complex conjugate

e real,imag Real and Imaginary part of complex number
* exp Exponential

e log,log10 Natural and base 10 logarithm

o sqrt Square root

e ceil Round toward positive infinity

e floor Round toward negative infinity

e round Round to nearest integer

e Variables i and j are both functions denoting the imaginary unit and are
the square-root of -1

Matlab - 2015/2016

Matrix operations

Matrix operations:
e + addition of vectors or matrices (element-by-element)

* - subtraction of vectors or matrices (element-by-element)
e " multiplication of vectors or matrices (row-by-column)

Note that:

e addition / subtraction:; matrices with the same number of rows and columns

e addition / subtraction with a scalar: the scalar is added/subtracted to each
element of the matrix

o multiplication: the number of columns in the first matrix must be the same as
the number of rows in the second matrix

Matlab - 2015/2016

Matrix operations

Matlab has a set of dot operators, a dot and a normal algebraic
operator, performing element-wise algebraic operations on a matrix

* .* element-wise product
» ./ element-wise division
* .M element-wise power

\ and / operators for the solution of linear systems:
o x = B/A is the solution of the equation x*A=B
* x = A\B denote the solution to the equation A*x = B

Matlab - 2015/2016

Systems of Linear Equations

- Given a system of linear equations
x+2y-3z=5
-3X-y+z=-8
X-y+z=0

- Construct matrices so the system is described by Ax=b
»A=[12-3;-3 -1 1;1 -1 1];
»b=[5;-8;0];

- And solve with a single line of code!
»X=A\b;

- X is a 3x1 vector containing the values of x, y, and z

- The \ will work with square or rectangular systems
- Gives least squares solution for rectangular systems

Matlab - 2015/2016

Matrix functions

e Matrix functions:
e Transpose matrix A’

e Inverse matrix inv(A)
 Matrix determinant det(A)
e Eigenvalues eig(A)
e Rank of matrix rank(A)
e Dimensions size(A)

The list of elementary matrices and matrix manipulation

- help elmat: elementary matrices, basic array information, matrix manipulation,
special variables e costants, specialized matrices, ...

Matlab - 2015/2016

MATLAB Programming

Script and Function
- The simplest type of MATLAB program is called a script

- A script is a file that contains multiple sequential lines of MATLAB
commands and function calls

- You can run a script by typing its name at the command line

- Script and Function are M-files with a .m extension
- Scripts

- have no input or output arguments

- use workspace data
- Functions

- accept input arguments and produce output

- have their own workspace, separate from the base workspace
- function variables are local

Matlab - 2015/2016

MATLAB Programming

You can:
e Add comments to code using the percent symbol %.

e Create help text by inserting comments at the beginning of your
program.

 Help text appears in the Command Window when you use the help
function 2> help ProgramName

e [f your program includes a function, position the help text immediately
below the function definition line (the line with the function keyword)

Matlab - 2015/2016

MATLAB Programming

Function - The definition statement is the first executable line
Each function definition includes:
e function keyword (required) (lowercase characters)

e Qutput arguments (optional)
e function output= myfunction (x)
e function [one, two,three] = myfunction (x)
e function myfun (x) or function []=myfunction (x)

e Function name (required)

e Input arguments (optional)
e function y = myfunction (one, two, three)

Remark: use the same name for both the file and the function

Matlab - 2015/2016

MATLAB Programming

Example
% mean computes the function m=valmean (v)
mean of a random n=length (v)

values array and the m=sum (v) /n

mean among the | _
. . function mm=minmax (v)
minimum and maxXlimum o .
mini=min (v)
v=rand (50, 1) C
maxi=max (v)
mean=valmean (v) mm= (mini+maxi) /2

meanmm=minmax (v)

o°® o° o0©° o\©

Matlab - 2015/2016

Relational and logical operators

The relational operators are:

e &, > <= >=, == and ~=

Relational operators perform element-by-element comparisons between two
arrays

They return a logical array of the same size, with elements set to:

- logical 1(true) where the relation is true

- logical 0 (false) where the relation is false

The logical operators are:
- & (and), | (or), ~ (not)
- xor (xor), all (all true), any (any true)

Matlab - 2015/2016

Relational and logical operators

- Examples

>> a=10; b=3; c=25;

>> a==Db
ans=

0
>> a>b
ans=

1
>> a+b > ¢
ans=

0

Matlab - 2015/2016

Programming: loop control

With loop control statements, you can repeatedly execute a block of code

for statements loop a specific number of times, and keep track of each
iteration with an incrementing index variable
- for index=starting value:increment:final value

program statements
end

Remark indent the loops for readability, especially when they are nested

Matlab - 2015/2016

Programming: loop control

e Example
X = ones(1,10);
for n = 2:10
x(n) =2 * x(n - 1);
end

e Example
for i1i=1:m
for j=1:n
H(i,j)=1/(i+j-1);
end
end

Matlab - 2015/2016

Programming: loop control

while repeatedly executes one or more program statements in a loop as
long as an expression remains true

while expression
statements
end

e Expressions can include relational operators (such as < or ==) and
logical operators (such as &&, ||, or ~)

 To programmatically exit the loop, use a break statement

* To skip the rest of the instructions in the loop and begin the next iteration,
use a continue statement

Matlab - 2015/2016

Programming: loop control

Examples
X = 3.;
while x < 25
X =x + 2
end

- Fibonacci
a(l)=1l; a(2)=1; c=15;
n=2;
while a(n) < c¢
a(n+l) = a(n) + a(n-1);
n=n+1;
end

Matlab - 2015/2016

Programming: loop control

e 1f expression, statements, end

evaluates an expression, and executes the statements when the
expression Is true

* elseif and else are optional, and execute statements only when
previous expressions in the if block are false

* An if block can include multiple elsei £ statements

if expression
statements
elseif expression
statements
else
statements
end

Matlab - 2015/2016

Programming: loop control

Example
if x> 0
y = sqrt(x);
elseif x == 0
y = 0;
else
y = NaN;

disp(‘'y undefined’)
end

Matlab - 2015/2016

Programming: loop control

switch case otherwise

Switch among several cases based on expression

switch switch expr

case case expr
statements

case {case exprl,case expr2,case expr3,...}
statements

otherwise
statements

end

Matlab - 2015/2016

Programming: loop control
Example

name=’' rose’ ;
switch name
case ’'rose’

disp(’' the flower is a rose’)
case ’'tulip’

disp(’ the flower is a tulip’)
case ’'daisy’

disp(’the flower is a daisy’)
otherwise

disp('it’s a flower’)
end

Matlab - 2015/2016

Advanced Data Structures

- We have used 2D matrices
- Can have n-dimensions
- Every element must be the same type (ex. integers, doubles, characters...)
- Matrices are space-efficient and convenient for calculation

Sometimes, more complex data structures are more appropriate

- Cell array: it's like an array, but elements don't have to be the
same type

 Structs: can bundle variable names and values into one
structure

Matlab - 2015/2016

Cell

- Acellis just like a matrix, but each field can contain anything (even

other matrices):
3x3 Cell Array
Jolhin | 45 4 3
Mary | -7 43 &\[6]

- One cell can contain people's names, ages, and the ages of their
children

Matlab - 2015/2016

Cell

- To initialize a cell, specify the size
»a=cell(3,10);
- a will be a cell with 3 rows and 10 columns
- or do it manually, with curly braces {}
»c={"hello world",[1 5 6 2],rand(3,2)};
- cis a cell with 1 row and 3 columns
- Each element of a cell can be anything
- To access a cell element, use curly braces {}
»a{1,1}=[1 3 4 -10];
»a{2,1}="hello world 2';
»a{1,2}=c{3};

Matlab - 2015/2016

Structs

- Structs allow you to name and bundle relevant variables
- Like C-structs, which are objects with fields

- To initialize an empty struct:
»s=struct;
- size(s) will be 1x1
- Initialization is optional but is recommended when using large structs

- To add fields:
»s.name = 'Jack Bauer’;
»s.scores =[95 98 67];
»s.year = 'G3’;
- Fields can be anything: matrix, cell, even struct
- Useful for keeping variables together

Structs

Matlab - 2015/2016

- To initialize a struct array, give field, values pairs
»ppl=struct('name’,{'John’,'Mary','Leo'},...
‘age’,{32,27,18},'childAge’,{[2;4],1,[1});

- size(s2)=1x3
- every cell must have the same size

»person=ppl(2);

- person is now a struct with fields name, age, children
- the values of the fields are the second index into each cell

»person.name
- returns 'Mary'

»ppl(1).age

- returns 45

ppl

name —

age S

children age

ppl(1) ppl(2) ppl(3)

john

mary

leo

45

43

32

[9.7]

[6]

[]

Structs

Matlab - 2015/2016

- To access 1x1 struct fields, give name of the field

»stu=s.name;
»SCOI=S.SCOres;

- 1x1 structs are useful when passing many variables to a function. put them

all in a struct, and pass the struct

- To access nx1 struct arrays, use indices

»person=ppl(2);

- person is a struct with name, age, and child age

»personName=ppl(2).name;
- personName is 'Mary'

a=[ppl.age];

- ais a 1x3 vector of the ages

ppl

name —

age S

children age

ppl(1) ppl(2) ppl(3)

john

mary

leo

45

43

32

[9.7]

[6]

[]

Matlab - 2015/2016

Polynomial

- A polynomial is represented by an array containing the coefficients of
the polynom in descending powers of the polynomial decreasing order

- The polynomial 3x3+ 2x + 8 can be represented as:
» pol= [3 0 2 8]

- To evaluate a polynomial in x, where x can be a vector, you can use
polyval (p,x) Where pis the polynomial

» polyval (pol, 1)
ans =
13

Matlab - 2015/2016

Polynomial

* roots computes the roots of the polynomial

e r=roots (p) returns a column vector whose elements are the roots
of the polynomial p

e Row vector p contains the coefficients of the polynomial
e Example: the polynomial x3-6 x2 + 11 x - 6
» p= [1 -6 11 -6];, format long;
» roots (p)
ans =
3.00000000000000
3.00000000000000
3.00000000000000

Matlab - 2015/2016

Polynomial

Remark There are some complications with multiple roots

The polynomial r3+3r2 +3r+1 have just one root r = -1, but
roots([1 3 3 1])

returns three different (though close) values
ans =

-1.00000913968880

-0.99999543015560 + 0.000007915131861
-0.99999543015560 - 0.000007915131861

Even worse for p(x)=(x+1)" (coefficients [1 7 21 35 35 21 7 1))

Matlab - 2015/2016

Polynomial

Operations with polynomials

e p=conv (u,v) multiplication of the polynomials whose coefficients
are the elements of u and v

* [g,r]=deconv (u,v) polynomial division - the quotient is
returned in vector g and the remainder in vector r such that v =
conv(u,q)+r

e p=polyfit (x,y,n) finds the coefficients of a polynomial p (x)
of degree n that fits the data, p (x (1)) to y (i), inaleast
squares sense. The result p is a row vector of length n+1 containing
the polynomial coefficients in descending powers

Matlab - 2015/2016

Polynomial

e poly gives the polynomial with specified roots

» p=roots (r) where r is a vector, returns a row vector whose

elements are the coefficients of the polynomial whose roots are the
elements of r

e p=roots (A) Wwhere A s an n-by-n matrix, returns an n+1 element

row vector whose elements are the coefficients of the characteristic
polynomial, det(Al — A)

Remark poly (A) generates the characteristic polynomial of A, and

roots (poly (A)) finds the roots of that polynomial, which are the
eigenvalues of A

Plotting

The function plot creates a 2D line plot - it can be used in different ways

- Example
» n = 31
» x = linspace(0,2*pi,n)
» y = sin(x)

» plot(x,y)

X is a vector of linearly spaced values between 0 and 2m

y is the vector of values of sine function evaluated at the values in x

Matlab - 2015/2016

1

08

06

0.4r

02r

D_

N2+

04k

RER=R Y

08F

-1

a

Matlab - 2015/2016

Plotting

- Command plot is:
- plot(X, Y, options)
Where X is for abscissas and Y is for ordinates
options sets the line style, marker symbol, and color

- To plot multiple lines in the same windows, we can use two ways:

y2 = sin(x - .4);
y3 = sin(x - .8);
y4 = sin(x - 1.2);

° plOt(XIYley21x1y3’x’y4)
® plot(x,[y;y2;y3;y4])

Matlab - 2015/2016

Plotting

e Another way to plot multiple line in the same window is by using
commands hold on and hold off:

» X = linspace(0,2*pi)

» yl = cos (x) oer

» y2 sin (x) 04}
» plot(x,yl,’-") of
» hold on

» plot(x,y2,’'--")

» hold off !

Matlab - 2015/2016

Plotting

 You can add a title and and axis labels to the graph

» title(‘'title of the graph’)
» xlabel ('x axis’)
» ylabel (‘y axis’)

° axis - axis scaling and appearance
e legend -Qraph legend
e text - create text object in current axes

» text(x(70)+0.5,r(70),'r = -2x"')

e grid on add grid lines for 2D and 3D plots

Matlab - 2015/2016

Plotting

Other functions for graphs are:

- loglog Log-log scale plot

- semilogx Semilogarithmic plot (x logarithmic, y linear)
- semilogy Semilogarithmic plot (x linear, y logarithmic)
- errorbar Plot error bars along curve

- bar Bar graph

- stairs Stairstep graph

- scatter Scatter plot

Matlab - 2015/2016

Plotting

subplot divides the current figure into grid, it numbers the cells by rows

» subplot(m,n,p)

divides the current figure into an m-by-n grid and plots in the grid
position specified by p

Matlab - 2015/2016

Plotting

fplot (fun, lims) plots a function

e fun, that must be a string
 between the limits specified by 1ims, specifying the x-axis limits
([xmin xmax]), or the x- and y-axes limits, ([xmin xmax ymin ymax])
» fun=‘1/(1+x"2)’;
» lims=[-5,5];
» fplot(fun,lims);

or the equivalent
» fplot(‘l/(1+x*2)’, [-5,5]).

Matlab - 2015/2016

Plotting

e fplot(fun,limits, LineSpec) plots fun using the line
specification LineSpec

fplot(fun, lims, ‘- -=')
fplot (fun, lims, ‘r -')

e fplot can plot a vector of functions
fplot(‘[sin(t), sin(t-.25), sin(t-.5)]1’,[0,2%pi])

Matlab - 2015/2016

Plotting

e ezplot plots the expression fun(x) over the default domain -21 < x <
211, where fun(x) is an explicit function of only x

e ezplot (fun, [xmin,xmax]) plots fun(x) over the domain: xmin
< X < Xxmax

e Both for £plot and ezplot £un can be a function handle
fh = @tanh;
fplot (£fh, [-2,2])

Matlab - 2015/2016

Plotting

3D plot withmesh and surf

e mesh and surf plot a surface

e mesh and sur£ create 3D surface plots of matrix data generated by

the command meshgrid

»

»

»

»

»

»

n=30; m=n;
x=linspace(-2,2,n);
y=linspace(-2,2,n) ;

[X,Y]=meshgrid(x,y); % matrices X e Y for thg”grid

Z=(1l-Y) .*cos (X.*2)+ (X-1) . *cos (Y.
mesh (X,Y,2Z) ;

Matlab - 2015/2016

Data and file management

You can load variables from file into workspace with 1load

For example if you want analyze data coming from a program, like the
following, that are in the file data.dat

1 0.2000 -5
2 0.2500 -9
3 0.0740 -23
4 0.0310 -53
5 0.0160 -105
6 0.0090 -185
7 0.0050 -299
8 0.0030 -453
9 0.0020 -653
10 0.0020 -905

Matlab - 2015/2016

Data and file management

If you load these data with the function 1oad, a matrix is created of size
10x3

>> load data.dat

>> whos

Name Size Bytes Class

data 10x3 240 double array

Grand total is 30 elements using 240 bytes

load filename is the command form
load ' filename’ is the function form

Matlab - 2015/2016

Data and file management

>> M = load('data.dat')
M =

1.0000 2.0000 -5.0000
2.0000 0.2500 -9.0000
3.0000 0.0740 -23.0000
4.0000 0.0310 -53.0000
5.0000 0.0160 -105.0000
6.0000 0.0090 -185.0000
7.0000 0.0050 -299.0000
8.0000 0.0030 -453.0000
9.0000 0.0020 -653.0000
10.0000 0.0020 -905.0000

Matlab - 2015/2016

Data and file management

save Ssave workspace variables to file

e save (filename)

saves all variables from the current workspace in a formatted binary file (MAT-
file) called filename

if £ilename is not specified the file Matlab.mat is created

e save(filename,variables)
saves only the variables or fields of a structure array specified by variables

e save(filename,variables,h fmt)
saves in the file format specified by £fmt - variables is optional

Matlab - 2015/2016

Data and file management

Example

% mytable.m

n=input (‘Insert the number of wvalues n:');
x=linspace (0,pi,n);

s=sin (x) ;

c=cos (x) ;

v=(1l:n);

save mytable.dat v x s ¢ -ascii

Matlab - 2015/2016

Data and file management

Example

To visualize the table saved in the previous example with save we can load
the file and display the table

% viewtable.m
load mytable.dat

A=mytable;

disp('=—=—=—==—=———— e ') ;
fprintf ('k\t x(k)\t sin(x(k))\t cos(x(k))\n');
disp('—=——==—=———— - ') ;

fprintf ('%d\t %$3.2f\t %8.5f\t %8.5f\n',3);

Matlab - 2015/2016

Improving performance

Techniques for Improving Performance

e Preallocating Arrays

» for and while loops that incrementally increase the size of a data structure
each time through the loop can adversely affect performance and memory use

e resizing arrays often requires MATLAB to spend extra time looking for larger
contiguous blocks of memory, and then moving the array into those blocks

e you can improve code execution time by preallocating the maximum amount
of space required for the array

Matlab - 2015/2016

Improving performance

Techniques for Improving Performance

e Preallocating a Nondouble Matrix

» When you preallocate a block of memory to hold a matrix of some type other
than double, avoid using the method

A = int8(zeros(100))

* This statement preallocates a 100-by-100 matrix of int8, first by creating a
full matrix of double values, and then by converts each element to int8

e Creating the array as int8 values saves time and memory
A = zeros (100, 'int8')

Matlab - 2015/2016

Improving performance

Techniques for Improving Performance

e Vectorization
» MATLAB is optimized for operations involving matrices and vectors
» The process of revising loop-based, scalar-oriented code to use MATLAB
matrix and vector operations is called vectorization
 \lectorizing your code is worthwhile for several reasons:

* Appearance: Vectorized mathematical code appears more like the
mathematical expressions, making the code easier to understand

e Less Error Prone: Without loops, vectorized code is often shorter, and fewer
lines of code mean fewer programming errors

e Performance: Vectorized code often runs much faster

Matlab - 2015/2016

Improving performance

e Vectorizing Code for General Computing

» This code computes the sine of 1,001 values ranging from 0 to 10:

i=0;
for £t = 0:.01:10
i=1i+1;

y(i) = sin(t);
End

e This is a vectorized version of the same code:
t =0:.01:10;
y = sin(t);

Matlab - 2015/2016

Improving performance

e Vectorizing Code for Specific Tasks

e This code computes the cumulative sum of a vector at every fifth element:
x = 1:10000;
ylength = (length(x) - mod(length(x),5))/5;
y(l:ylength) = 0;
for n= 5:5:1length (x)
y (n/5)
end

sum(x(1l:n)) ;

e This code shows one way to accomplish the task:
x = 1:10000;
Xxsums = cumsum(x) ;
y = xsums (5:5:1ength(x)) ;

Matlab - 2015/2016

Improving performance

e Array Operations

* Array operators perform the same operation for all elements in the data set

e Example
e collect the volume (V) of various cones by recording their diameter (D) and height (H)
 The volume for that single cone: v = 1/12*pi* (D~2) *H
e Consider 10,000 cones

» The vectors D and H each contain 10,000 elements
for n = 1:10000
V(n) = 1/12*pi* (D(n)~2)*H(n));
end

e \/ectorized Calculation
V = 1/12%pi* (D.~2) .*H;

Matlab - 2015/2016

More examples

Use built-in Matlab functions

- find is a very important function
- Returns indices of nonzero values
- Can simplify code and help avoid loops

- Basic syntax: index=find(cond)
»x=rand(1,100);
»inds = find(x>0.4 & x<0.6);
- Inds will contain the indices at which x has values between 0.4 and 0.6.
- This is what happens:
- x>0.4returns a vector with 1 where true and 0 where false
» X<0.6returns a similar vector

- The & combines the two vectors using an and
- The find returns the indices of the 1's

Matlab - 2015/2016

More examples

- Given x= sin(linspace(0,10*pi,100)), how many of the entries are positive?

- Using a loop and if/else
count=0;
for n=1:length(x)
If x(n)>0
count=count+1;
end
end

- Being more clever
count=length(find(x>0));

- Avoid loops! Built-in functions will make it faster to write and execute

