
Linear Systems – Part 2

Intensive Computation
Annalisa Massini - 2015/2016

Methods for solving linear equations

• Direct methods: find the exact solution in a finite number

of steps

• Iterative methods: produce a sequence of approximate

solutions hopefully converging to the exact solution

2015/2016 2Intensive Computation - Linear Systems

Cholesky Factorization Method

Cholesky factorization Method for solving A x = b

• A direct method

• The idea is:
• every positive definite matrix A can be factored as A=LLT

2015/2016 3Intensive Computation - Linear Systems

A complex matrix A is called positive definite if

for all nonzero complex vectors , where denotes the

conjugate transpose

If A is a real matrix then A is positive definite if

where denotes the transpose

0]*[ Axx
Cx *x

0AxxT

Tx

Cholesky Factorization Method

Cholesky factorization Method for solving A x = b

• A direct method

• The idea is:
• every positive definite matrix A can be factored as A=LLT

• where L is lower triangular with positive diagonal elements

• L is called the Cholesky factor of A

• L can be interpreted as ‘square root’ of a positive define matrix

• The method:
• Provides an exact result (ignoring roundoff)

• Is computationally expensive

2015/2016 4Intensive Computation - Linear Systems

We partition matrix A as LLT as follows

2015/2016 5Intensive Computation - Linear Systems

Cholesky Factorization Method



















































T

TT

L

Ll

LL

l

AA

Aa

22

2111

2221

11

2221

1211

0

0




















TT

T

LLLLLl

Lll

222221212111

2111

2

11

We have the following steps:

• Step 1 - Determine and

• Step 2 - Compute from

• This is a Cholesky factorization of order n−1

2015/2016 6Intensive Computation - Linear Systems

Cholesky Factorization Method

TT LLLLA 2222212122 

11l 21L

1111 al 
21

11

21

1
A

l
L 

22L



















































T

TT

L

Ll

LL

l

AA

Aa

22

2111

2221

11

2221

1211

0

0

Proof that the algorithm works for positive definite A of order n

• if A is positive definite then a11 > 0

• if A is positive definite then

is positive definite

• Hence we can apply again the factorization on the

2015/2016 7Intensive Computation - Linear Systems

Cholesky Factorization Method

TT AA
l

ALLA 2121

11

22212122

1


Example

2015/2016 8Intensive Computation - Linear Systems

Cholesky Factorization Method























































33

3222

313211

333231

2221

11

00

00

00

1105

01815

51525

l

ll

lll

lll

ll

l

Example

First column of L

2015/2016 9Intensive Computation - Linear Systems

Cholesky Factorization Method























































33

3222

313211

333231

2221

11

00

00

00

1105

01815

51525

l

ll

lll

lll

ll

l















 









































33

3222

3332

22

00

0

135

1

03

005

1105

01815

51525

l

ll

ll

l

51111  al 21
11

21

1
A

l
L 

Example

Second column of L – Apply the same procedure to

2015/2016 10Intensive Computation - Linear Systems

Cholesky Factorization Method























































33

3222

313211

333231

2221

11

00

00

00

1105

01815

51525

l

ll

lll

lll

ll

l

 





















































33

3222

3332

22

212122
0

0
13

1

3

110

018

l

ll

ll

l
LLA T



























3333 0

13

1

03

103

39

ll

)(2222

212122

T

T

LL

LLA





32222  al

32
22

32

1
A

l
L 

Example

Third column of L

2015/2016 11Intensive Computation - Linear Systems

Cholesky Factorization Method























































33

3222

313211

333231

2221

11

00

00

00

1105

01815

51525

l

ll

lll

lll

ll

l

1102

33 l 333 l















 









































300

130

135

311

033

005

1105

01815

51525

Solve A x = b A positive definite of order n

Step 1 A = LLT
 LLT factorization

Step 2 Ly = b  Solve by forward substitution

Step 3 LTx = y  Solve by backward substitution

2015/2016 12Intensive Computation - Linear Systems

Cholesky Factorization Method

LLT decomposition – Algorithm cost

We have:

• Multiplication and division operations for the factorization:

O(n3)

• Multiplication and division operations for solving the

triangular systems: O(n2)

• Addition and subtraction operations: O(n3)

• Anyway usually we consider the number of floating point

operations FLOPs

2015/2016 13Intensive Computation - Linear Systems

Inverse of a positive definite matrix

Suppose A is positive definite with Cholesky factorization LLT

• L is invertible (its diagonal elements are nonzero)

• X = L−TL−1 is a right inverse of A:

AX = LLTL−TL−1 = LL−1 = I

• X = L−TL−1 is a left inverse of A:

XA = L−TL−1LLT = L−TLT = I

• hence A is invertible with inverse:

A−1 = L−TL−1

2015/2016 14Intensive Computation - Linear Systems

Cholesky for sparse matrices

• If A is very sparse, then L is often (but not always) sparse

• If L is sparse, the cost of the factorization is less than

(1/3)n3

• Exact cost depends on:

• n

• #nonzero elements

• sparsity pattern

• Very large sets of equations (n ∼ 106) are solved by

exploiting sparsity

2015/2016 15Intensive Computation - Linear Systems

Cholesky for sparse matrices

• Consider a sparse systems

• Factorization

2015/2016 16Intensive Computation - Linear Systems




















c
b

v
u

Ia

aT1



















































T

TT

L

a

LaIa

a

2222 0

1011

Cholesky for sparse matrices

• Fill-in effect

• Factorization can produce a 100% fill-in

2015/2016 17Intensive Computation - Linear Systems

































































































































Cholesky for sparse matrices

• We can reorder the equations of the systems

• Factorization

2015/2016 18Intensive Computation - Linear Systems




















c
b

v
u

Ia

aT1


























aa

aI

aaa

I

a
aI

TTTT
101

0

1


















b
c

u
v

a
aI

T 1


Cholesky for sparse matrices

• We can reorder the equation of the systems

• Factorization with zero fill-in

2015/2016 19Intensive Computation - Linear Systems




















c
b

v
u

Ia

aT1

















b
c

u
v

a
aI

T 1




































































































































Permutation matrix - identity matrix with rows reordered

The vector Ax is a permutation of x

ATx is the inverse permutation applied to x

ATA=A AT=I then A is invertible and A-1=AT

2015/2016 20Intensive Computation - Linear Systems

Permutation matrices















100

001

010















010

100

001












































1

3

2

3

2

1

100

001

010

x

x

x

x

x

x












































2

1

3

3

2

1

010

001

100

x

x

x

x

x

x

Solving Ax=b when A is a permutation matrix

The solution of Ax=b is vector x= ATb

Example

The solution is x=[8.0, 3.5,-3.2]T

2015/2016 21Intensive Computation - Linear Systems

Permutation matrices












































0.8

2.3

5.3

001

100

010

3

2

1

x

x

x















































2.3

5.3

0.8

0.8

2.3

5.3

010

001

100

• If A is sparse and positive definite, it is usually factored as

A = PLLTPT

• where P is a permutation matrix and L is lower triangular

with positive diagonal elements

• Interpretation: we permute the rows and columns of A and

factor

PTAP = LLT

• Note that:

• choice of P greatly affects the sparsity L

• many heuristic methods exist for selecting good permutation

matrices P

2015/2016 Intensive Computation - Linear Systems 22

Sparse Cholesky factorization

• If A is sparse and positive definite, we solve Ax = b via

factorization

A = PLLTPT

• Algorithm

• b' = PT b

• solve Lz =b' by forward substitution

• solve LT y = z by backward substitution

• 4. x = Py:

• That is we solve (PTAP)y = b' using the Clolesky

factorization of PTAP

2015/2016 Intensive Computation - Linear Systems 23

Solving sparse positive definite eqs

Example

• Example of a sparse system

• Consider an electric circuit with only resistors

2015/2016 Intensive Computation - Linear Systems 24

Example

To solve an electric circuit with only resistors, we can write the

equations describing the circuit where:

• Unknowns are

• B branch currents (i)

• N node voltages (e)

• B branch voltages (v)

• Equations are

• N+B Conservation Laws

• B Constitutive Equations

For our circuit

• v1, v2, v3, v4, v5, v6, v7 branch voltages

• î1, i2, i3, i4, i5, i6, i7 branch currents

• ê1, e2, e3, e4 node voltages with voltage of node 5 equal to 0

2015/2016 Intensive Computation - Linear Systems 25

Example

Branch Constitutive Equations

• -v1 = V 1

• v2 - R1 x i2 = 0

• v3 - R2 x i3 = 0

• v4 - R3 x i4 = 0

• v5 - R4 x i5 = 0

• v6 - R5 x i6 = 0

• v7 - R6 x i7 = 0

Kirchhoff’s Current Law (KCL)

• -i1 + i2 = 0 (node 1)

• -i2 + i3 + i4 = 0 (node 2)

• -i3 + i5 + i6 = 0 (node 3)

• -i4 - i5 + i7 = 0 (node 4)

2015/2016 Intensive Computation - Linear Systems 26

Kirchhoff’s Voltage Law (KVL)

• v1 + e1 = 0

• v2 - e1 + e2 = 0

• v3 - e2 + e3 = 0

• v4 - e2 + e4 = 0

• v5 - e3 + e4 = 0

• v6 - e3 = 0

• v7 - e4 = 0

Example

• In matrix form

2015/2016 Intensive Computation - Linear Systems 27

































































































































































































0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

11

11

111

111

111

111

11

111

111

111

11

1

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

6

5

4

3

2

1

V

e

e

e

e

v

v

v

v

v

v

v

i

i

i

i

i

i

i

R

R

R

R

R

R

Iterative methods

Iterative methods for solving Ax = b

• Begin with an approximation to the solution x0

• Then provide a series of improved approximations x1, x2, …

• That converge to the exact solution

2015/2016 Intensive Computation - Linear Systems 28

Iterative methods

• The method can be stopped as soon as the approximations

xi have converged to an acceptable precision (which might

also be something as 10−3)

• With a direct method, the process of elimination and back-

substitution has to be carried right through to completion, or

else abandoned altogether

2015/2016 Intensive Computation - Linear Systems 29

Iterative methods

• The main attraction of iterative methods is that for certain

problems (particularly those where the matrix A is large and

sparse) they are much faster than direct methods

• On the other hand, iterative methods can be unreliable:

for some problems they may exhibit very slow

convergence, or they may not converge at all

2015/2016 Intensive Computation - Linear Systems 30

The Jacobi Method

• Consider the system

2015/2016 Intensive Computation - Linear Systems 31

nnnnnnn

nn

nn

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa







332211

22323222121

11313212111









The Jacobi Method

• Rewrite the system in the form:

2015/2016 Intensive Computation - Linear Systems 32

nnnnnnn

nn

nn

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa







332211

22323222121

11313212111









nn

n
n

nn

nn

nn

n

nn

n
n

n
n

n
n

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x










1
1

2
3

1
1

22

2

22

2
3

22

23
1

22

21
2

11

1

11

1
3

11

13
2

11

12
1









The Jacobi Method

• Consider as an initial

approximation of the solution and substitute in the eqs

2015/2016 Intensive Computation - Linear Systems 33

nn

n
n

nn

nn

nn

n

nn

n
n

n
n

n
n

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x








)0(

1
1)0(

2
2)0(

1
1)1(

22

2)0(

22

2)0(

3

22

23)0(

1

22

21)1(

2

11

1)0(

11

1)0(

3

11

13)0(

2

11

12)1(

1









),,,()0()0(
3

)0(
2

)0(
1

)0(
nxxxxx , 

)0(

ix

The Jacobi Method

• Iterate the substitution of such

that at each step a new solution approximation is obtained

2015/2016 Intensive Computation - Linear Systems 34

nn

nk

n

nn

nnk

nn

nk

nn

nk

n

k

n
nkkk

k

n
nkkk

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x














)(

1
1)(

2
2)(

1
1)1(

22

2)(

22

2)(

3

22

23)(

1

22

21)1(

2

11

1)(

11

1)(

3

11

13)(

2

11

12)1(

1









),,,()()(
3

)(
2

)(
1

)(k
n

kkkk
xxxxx , 

The Jacobi Method

Example

• Consider the system

2015/2016 Intensive Computation - Linear Systems 35

51 8 3

11 10 2

52 3 11

6 2 10

432

4321

4321

321









xxx

xxxx

xxxx

xxx

The Jacobi Method

Example

• Rewrite the system

2015/2016 Intensive Computation - Linear Systems 36

8

51

8

1

8

3

10

11

10

1

10

1

5

1

11

52

11

3

11

1

11

1

5

3

5

1

10

1

324

4213

4312

321









xxx

xxxx

xxxx

xxx

The Jacobi Method

Example

• Start iterations with

2015/2016 Intensive Computation - Linear Systems 37

1.8750
8

51

8

1

8

3

1000.1
10

11

10

1

10

1

5

1

2727.2
11

52

11

3

11

1

11

1

6000.0
5

3

5

1

10

1

)0(

3

)0(

2

)1(

4

)0(

4

)0(

2

)0(

1

)1(

3

)0(

4

)0(

3

)0(

1

)1(

2

)0(

3

)0(

2

)1(

1









xxx

xxxx

xxxx

xxx

)0 ,0 ,0 ,0()0(x

The Jacobi Method

Example

• Continuing with iterations, we obtain the sequence of

approximations shown in the Table

2015/2016 Intensive Computation - Linear Systems 38

0006.19989.00036.19944.00214.19739.01309.18852.08750.10000.0

0004.19990.00020.19945.00103.19681.00493.18852.01000.10000.0

0004.29987.10023.29922.10114.29537.10533.27159.12727.20000.0

9997.00006.19981.00032.19890.00152.19326.00473.16000.00000.0

9876543210

)(

4

)(

3

)(

2

)(

1

k

k

k

k

x

x

x

x

k



The Jacobi Method in Matrix Form

• Consider the system Ax=b

• We split A into

• That is Ax=b is transformed in (D-(-L-U))x=b

2015/2016 Intensive Computation - Linear Systems 39



















































4

3

2

1

4

3

2

1

21

22221

11211

b

b

b

b

x

x

x

x

aaa

aaa

aaa

nnnn

n

n







)(

000

00

0

0

0

00

00

00

00

1

112

11

2122

11

ULD
a

aa

aa

a

a

a

a

A
nn

n

nnnnn





































































 























The Jacobi Method in Matrix Form

• Assume D-1 exists

• Then

• The matrix form of Jacobi iterative method is

2015/2016 Intensive Computation - Linear Systems 40

bDxULDx 11)( 





























nna

a

a

D

1
00

0
1

0

00
1

22

11

1









,2,1,0)(1)(1)1(  kbDxULDx kk

The Jacobi Method

• We need a stopping criterion

• We are interested in the error e at each iteration between

the true solution x and the approximation x(k): e(k) = x − x(k)

• Obviously, we don't usually know the true solution x

• To better understand the behavior of an iterative method, we

can consider a system Ax = b for which we do know the true

solution and analyze how quickly the approximations are

converging to the true solution

2015/2016 Intensive Computation - Linear Systems 41

The Jacobi Method

• We can consider different ways of measuring the error:

•

• where x is the exact solution

•

•

• We use one of the previous measures asking that it is

2015/2016 Intensive Computation - Linear Systems 42

)1(

)()1(



 

k

kk

x

xx

)()1(kk xx 

)()(kk xxe 
)(ke



We consider norm l2, that is:

22

2

2

12 nxxxx  

The Jacobi Method

• Theorem The Jacobi method converges if the coefficient

matrix A is a strictly diagonally dominant matrix

• An nxn matrix A is strictly diagonally dominant if the absolute

value of each entry on the main diagonal is greater than the

sum of the absolute values of the other entries in the same

row:

2015/2016 Intensive Computation - Linear Systems 43

1,31

2232122

1131211







nnnnnn

n

n

aaaa

aaaa

aaaa









Jacobi method – Algorithm cost

• Multiplication operations for each iteration: n(n-1)  O(n2)

• If we do k iteration the cost is: kn(n-1)

• We also have the divisions with aii during the first iteration

the cost is kn2

• To decide between Gauss and Jacobi methods we evaluate:

Hence when using the Jacobi method we need to evaluate

how many iterations are needed before stopping

2015/2016 44Intensive Computation - Linear Systems

nknkn
3

1

3

1 32 

