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Methods for solving linear equations

• Direct methods: find the exact solution in a finite number 

of steps

• Iterative methods: produce a sequence of approximate 

solutions hopefully converging to the exact solution
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Cholesky Factorization Method

Cholesky factorization Method for solving  A x = b

• A direct method

• The idea is:
• every positive definite matrix A can be factored as A=LLT

2015/2016 3Intensive Computation - Linear Systems

A complex matrix A is called positive definite if 

for all nonzero complex vectors           , where        denotes the 

conjugate transpose 

If A is a real matrix then A is positive definite if 

where denotes       the transpose
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Cholesky Factorization Method

Cholesky factorization Method for solving  A x = b

• A direct method

• The idea is:
• every positive definite matrix A can be factored as A=LLT

• where L is lower triangular with positive diagonal elements

• L is called the Cholesky factor of A

• L can be interpreted as ‘square root’ of a positive define matrix

• The method:
• Provides an exact result (ignoring roundoff)

• Is computationally expensive  
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We partition matrix A as LLT as follows
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Cholesky Factorization Method
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We have the following steps:

• Step 1 - Determine       and       

• Step 2 - Compute       from

• This is a Cholesky factorization of order n−1
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Cholesky Factorization Method
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Proof that the algorithm works for positive definite A of order n

• if A is positive definite then a11 > 0

• if A is positive definite then

is positive definite

• Hence we can apply again the factorization on the 
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Cholesky Factorization Method
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Example
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Cholesky Factorization Method
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Example

First column of L
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Cholesky Factorization Method
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Example

Second column of L – Apply the same procedure to 
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Cholesky Factorization Method























































33

3222

313211

333231

2221

11

00

00

00

1105

01815

51525

l

ll

lll

lll

ll

l

 





















































33

3222

3332

22

212122
0

0
13

1

3

110

018

l

ll

ll

l
LLA T



























3333 0

13

1

03

103

39

ll

)( 2222

212122

T

T

LL

LLA





32222  al

32
22

32

1
A

l
L 



Example

Third column of L
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Cholesky Factorization Method
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Solve  A x = b A positive definite of order n

Step 1 A = LLT
 LLT factorization

Step 2 Ly = b  Solve by forward substitution

Step 3 LTx = y   Solve by backward substitution 
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Cholesky Factorization Method



LLT decomposition – Algorithm cost

We have:

• Multiplication and division operations for the factorization:  

O(n3)

• Multiplication and division operations for solving the 

triangular systems:  O(n2)

• Addition and subtraction operations: O(n3)

• Anyway usually we consider the number of floating point

operations FLOPs
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Inverse of a positive definite matrix

Suppose A is positive definite with Cholesky factorization LLT

• L is invertible (its diagonal elements are nonzero)

• X = L−TL−1 is a right inverse of A:

AX = LLTL−TL−1 = LL−1 = I

• X = L−TL−1 is a left inverse of A:

XA = L−TL−1LLT = L−TLT = I

• hence A is invertible with inverse:

A−1 = L−TL−1
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Cholesky for sparse matrices

• If A is very sparse, then L is often (but not always) sparse

• If L is sparse, the cost of the factorization is less than 

(1/3)n3

• Exact cost depends on:

• n

• #nonzero elements

• sparsity pattern

• Very large sets of equations (n ∼ 106) are solved by 

exploiting sparsity
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Cholesky for sparse matrices

• Consider a sparse systems

• Factorization
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Cholesky for sparse matrices

• Fill-in effect

• Factorization can produce a 100% fill-in
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Cholesky for sparse matrices

• We can reorder the equations of the systems

• Factorization
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Cholesky for sparse matrices

• We can reorder the equation of the systems

• Factorization with zero fill-in
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Permutation matrix - identity matrix with rows reordered

The vector Ax is a permutation of x

ATx is the inverse permutation applied to x

ATA=A AT=I  then A is invertible and A-1=AT
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Permutation matrices















100

001

010















010

100

001












































1

3

2

3

2

1

100

001

010

x

x

x

x

x

x












































2

1

3

3

2

1

010

001

100

x

x

x

x

x

x



Solving Ax=b when A is a permutation matrix

The solution of Ax=b is vector x= ATb

Example

The solution is x=[8.0, 3.5,-3.2]T
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• If A is sparse and positive definite, it is usually factored as

A = PLLTPT

• where P is a permutation matrix and L is lower triangular 

with positive diagonal elements

• Interpretation: we permute the rows and columns of A and 

factor

PTAP = LLT

• Note that:

• choice of P greatly affects the sparsity L

• many heuristic methods exist for selecting good permutation 

matrices P
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Sparse Cholesky factorization



• If A is sparse and positive definite, we solve Ax = b via 

factorization

A = PLLTPT

• Algorithm

• b' = PT b

• solve Lz =b' by forward substitution

• solve LT y = z by backward substitution

• 4. x = Py: 

• That is we solve (PTAP)y = b' using the Clolesky

factorization of PTAP
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Solving sparse positive definite eqs



Example

• Example of a sparse system

• Consider an electric circuit with only resistors
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Example

To solve an electric circuit with only resistors, we can write the 

equations describing the circuit where:

• Unknowns are

• B branch currents (i)

• N node voltages (e)

• B branch voltages (v)

• Equations are

• N+B Conservation Laws 

• B Constitutive Equations

For our circuit

• v1, v2, v3, v4, v5, v6, v7 branch voltages

• î1, i2, i3, i4, i5, i6, i7 branch currents

• ê1, e2, e3, e4 node voltages with voltage of node 5 equal to 0
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Example

Branch Constitutive Equations 

• -v1 = V 1

• v2 - R1 x i2 = 0 

• v3 - R2 x i3 = 0

• v4 - R3 x i4 = 0

• v5 - R4 x i5 = 0

• v6 - R5 x i6 = 0

• v7 - R6 x i7 = 0

Kirchhoff’s Current Law (KCL)

• -i1 + i2 = 0 (node 1)

• -i2 + i3 + i4 = 0 (node 2)

• -i3 + i5 + i6 = 0 (node 3)

• -i4 - i5 + i7 = 0 (node 4)
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Kirchhoff’s Voltage Law (KVL) 

• v1 + e1 = 0

• v2 - e1 + e2 = 0 

• v3 - e2 + e3 = 0 

• v4 - e2 + e4 = 0 

• v5 - e3 + e4 = 0 

• v6 - e3 = 0 

• v7 - e4 = 0



Example

• In matrix form
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Iterative methods

Iterative methods for solving Ax = b 

• Begin with an approximation to the solution x0

• Then provide a series of improved approximations x1, x2, … 

• That converge to the exact solution
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Iterative methods

• The method can be stopped as soon as the approximations 

xi have converged to an acceptable precision (which might 

also be something as 10−3)

• With a direct method, the process of elimination and back-

substitution has to be carried right through to completion, or 

else abandoned altogether
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Iterative methods

• The main attraction of iterative methods is that for certain 

problems (particularly those where the matrix A is large and 

sparse) they are much faster than direct methods

• On the other hand, iterative methods can be unreliable: 

for some problems they may exhibit very slow 

convergence, or they may not converge at all
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The Jacobi Method

• Consider the system
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The Jacobi Method

• Rewrite the system in the form:

2015/2016 Intensive Computation - Linear Systems 32

nnnnnnn

nn

nn

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa







    

 

    

    

332211

22323222121

11313212111









nn

n
n

nn

nn

nn

n

nn

n
n

n
n

n
n

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

a
x










1
1

2
3

1
1

22

2

22

2
3

22

23
1

22

21
2

11

1

11

1
3

11

13
2

11

12
1

    

 

     

    











The Jacobi Method

• Consider                                                  as an initial 

approximation of the solution and substitute in the eqs
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The Jacobi Method

• Iterate the substitution of                                            such 

that at each step a new solution approximation is obtained
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The Jacobi Method

Example

• Consider the system
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The Jacobi Method

Example

• Rewrite the system
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The Jacobi Method

Example

• Start iterations with 
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The Jacobi Method

Example

• Continuing with iterations, we obtain the sequence of 

approximations shown in the Table 
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The Jacobi Method in Matrix Form

• Consider the system Ax=b

• We split A into 

• That is Ax=b is transformed in (D-(-L-U))x=b
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The Jacobi Method in Matrix Form

• Assume D-1 exists   

• Then

• The matrix form of Jacobi iterative method is 
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The Jacobi Method

• We need a stopping criterion

• We are interested in the error e at each iteration between 

the true solution x and the approximation x(k): e(k) = x − x(k)

• Obviously, we don't usually know the true solution x

• To better understand the behavior of an iterative method, we 

can consider a system Ax = b for which we do know the true 

solution and analyze how quickly the approximations are 

converging to the true solution
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The Jacobi Method

• We can consider different ways of measuring the error:

•

• where x is the exact solution

•

•

• We use one of the previous measures asking that it is 
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We consider norm l2, that is:
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The Jacobi Method

• Theorem The Jacobi method converges if the coefficient 

matrix A is a strictly diagonally dominant matrix

• An nxn matrix A is strictly diagonally dominant if the absolute 

value of each entry on the main diagonal is greater than the 

sum of the absolute values of the other entries in the same 

row: 
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Jacobi method – Algorithm cost

• Multiplication operations for each iteration:  n(n-1)  O(n2)

• If we do k iteration the cost is: kn(n-1)

• We also have the divisions with aii during the first iteration

the cost is kn2

• To decide between Gauss and Jacobi methods we evaluate:

Hence when using the Jacobi method we need to evaluate 

how many iterations are needed before stopping
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