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Methods for solving linear equations

- Direct methods: find the exact solution in a finite number
of steps

- lterative methods: produce a sequence of approximate
solutions hopefully converging to the exact solution
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Cholesky Factorization Method

Cholesky factorization Method for solving Ax=Db

- Adirect method

- The idea Is:
- every positive definite matrix A can be factored as A=LLT

A complex matrix Ais called positive definite if R[X* AX] >0
for all nonzero complex vectors X € C, where X™* denotes the
conjugate transpose

If Ais areal matrTix then Ais positive definite if x' Ax>0
where denotes X the transpose
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Cholesky Factorization Method

Cholesky factorization Method for solving Ax=Db

- Adirect method

- The idea Is:
- every positive definite matrix A can be factored as A=LLT
- where L is lower triangular with positive diagonal elements
- L is called the Cholesky factor of A
- L can be interpreted as ‘square root’ of a positive define matrix

- The method:

- Provides an exact result (ignoring roundoff)
- Is computationally expensive
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Cholesky Factorization Method

We partition matrix A as LLT as follows

a, A, L, 0|1, L

Av Aul (L Lp] 0 Ly

2 T
Ill I11|‘21

T T
I11L21 I‘21L21 + I‘22L22_
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Cholesky Factorization Method

We have the following steps: ay Al [l O h Ly

L, L.J|0 L
- Step 1 - Determine 1, and L,; L P] L Bl 22 ]

1
Ly =+ay, L,, = 1 Ay
11

- Step 2 - Compute Ly, from

Ay — Lol =Lyl

- This is a Cholesky factorization of order n—1
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Cholesky Factorization Method

Proof that the algorithm works for positive definite A of order n
* if Alis positive definite then a,, > 0

* if Alis positive definite then

=Ll = A= AR

11

IS positive definite

« Hence we can apply again the factorization on the
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Cholesky Factorization Method

Example

25 15 -5] L, 0O Ol L, I
15 18 0 |=(l,, I, 00 1, I,

-5 0 1 L, |, ;|0 O I,
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Cholesky Factorization Method

Example

25 15 -5] L, 0O Ol L, I
15 18 0 |=(l,, I, 00 1, I,

-5 0 1 L, |, ;|0 O I,

First columnofL |,=4a,=5 L21:iA21

25 15 -5| [5 0 05 3 -1
15 18 0 |=[3 1, 00 L, I,
-5 0 11| [-1 1, Il,[0 0 I,
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Cholesky Factorization Method

Example

25 15 -5 L, 0O Ol L, I
15 18 0 |=(l,, I, 00 1, I,

-5 0 1 L, |, ;|0 O I,

Second column of L — Apply the same procedure to Ay, —Ly,L;

L, L
_ 18 0] [3 L, 0T, 1,] ©het)
Azz — I—21'—21 = - [3 _1] —

l2=v82=3 9 37 13 03 1
1 —
Lso =1 a2 {3 10} 1 1,10 1,

I22 - |- —
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Cholesky Factorization Method

Example
25 15 -5 _Ill 0 0|l L, I

15 18 0 |=[l,, I,, 00 L, I,
-5 0 11| |ly by b, 0 0 I

Third columnof L 12, =10-1 l,, =3
25 15 -5] [5 0 0|5 3 -1
15 18 0 |={3 3 00 3 1
5 0 11| |-1 1 3]0 0 3
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Cholesky Factorization Method

Solve Ax=D A positive definite of order n
Step 1 A=LL" = LLT factorization
Step 2 Ly=b = Solve by forward substitution

Step 3 L' =y =» Solve by backward substitution
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LL" decomposition — Algorithm cost

We have:

« Multiplication and division operations for the factorization:
O(n?3)

« Multiplication and division operations for solving the
triangular systems: O(n?)

 Addition and subtraction operations: O(n?)

* Anyway usually we consider the number of floating point
operations FLOPs
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Inverse of a positive definite matrix

Suppose A is positive definite with Cholesky factorization LL"

* L is invertible (its diagonal elements are nonzero)

« X =L "L "isaright inverse of A:
AX = LLTL-"L-T = LL "= |
« X =L L7 is aleft inverse of A:
XA=LTL7LLT = LT = |
* hence A is invertible with inverse:

A-1 = | -T| -1
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Cholesky for sparse matrices

If Alis very sparse, then L is often (but not always) sparse

If L Is sparse, the cost of the factorization is less than
(1/3)n3

Exact cost depends on:
°n

« #nonzero elements
« Sparsity pattern

Very large sets of equations (n ~ 10°) are solved by
exploiting sparsity
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Cholesky for sparse matrices

« Consider a sparse systems

RiBEH

 Factorization
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Cholesky for sparse matrices

* Fill-in effect

* ok ok ok ok ok ok

%k * k ok sk ok ok ok ok ok
k ok % % sk $ sk ok ok ok
E % k k% * ok ok ok ok
* * * % % % % %k ok ok %
* * ol P X % %k % %
* * ok ok sk ok % * k%
* * % % sk %k %k %k 3k % sk
o * sk ok ok ok ok ok ok *

 Factorization can produce a 100% fill-in
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Cholesky for sparse matrices

« We can reorder the equations of the systems

BRI EHEH

 Factorization

| a| | 0 | a
a' 1|7 |a \/1—aTa 0 \/1—aTa
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Cholesky for sparse matrices

* We can reorder the equation of the systems

1 a'
a |

|

u
V

|

* % X X X *

* Xk
*k sk sk %k ok ok ok ok

|

b
C

|

:

a
1

|

*k sk sk ok ok ok ok ok

Factorization with zero fill-in

V
u

|

|

C
b

|

* X X X X X X X
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Permutation matrices

Permutation matrix - identity matrix with rows reordered

1 0 0] 0 1 0

0 0 1 1 00

010 0 0 1
The vector Ax is a permutation of x

0 1 Ofx | [x
1 0 O X,|=]X,
0 0 1| x| | X%
A'X Is the inverse permutation applied to x
0 0 1x ]| [x]
0 O X, |=|X
1 0]

1
0

ATA=A A'=| then A is invertible and A1=AT
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Permutation matrices

Solving Ax=b when A is a permutation matrix

The solution of Ax=Db is vector x= ATb

Example
0 1 0fx] [35] 0
0 0 1x,|=|-32 1
1 0 0fx]| |80 0

The solution is x=[8.0, 3.5,-3.2]"

— O O

o o

3.5
—-3.2
8.0

8.0
3.5
—-3.2
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Sparse Cholesky factorization

- If A Is sparse and positive definite, it is usually factored as
A =PLL"PT
- where P is a permutation matrix and L is lower triangular
with positive diagonal elements

- Interpretation: we permute the rows and columns of A and
factor
PTAP = LLT
- Note that:
- choice of P greatly affects the sparsity L

- many heuristic methods exist for selecting good permutation
matrices P
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Solving sparse positive definite egs

- If A Is sparse and positive definite, we solve Ax = b via
factorization

A=PLLTPT

- Algorithm
-b'=PTh
- solve Lz =b' by forward substitution
- solve LT y = z by backward substitution
- 4. X = Py:

- That is we solve (PTAP)y = b' using the Clolesky
factorization of PTAP
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Example

- Example of a sparse system
- Consider an electric circuit with only resistors
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Example

To solve an electric circuit with only resistors, we can write the

equations describing the circuit where:

- Unknowns are
- B branch currents (i)
- N node voltages (e)
- B branch voltages (v)

- Equations are | N \l, o
- N+B Conservation Laws B | lER”"”“ | [‘]':‘:‘_ o

- B Constitutive Equations T
For our circuit
- vl1, v2,v3, v4, v5, v6, v7 branch voltages
- 11, 12,13, 14, 15, 16, i7 branch currents
- el, e2, e3, e4 node voltages with voltage of node 5 equal to 0




2015/2016

Example

Branch Constitutive Equations
- -vl=V1

- v2-R1xi2=0

- v3-R2xi3=0

- v4-R3xi4=0

- v56-R4xi5=0

- V6-R5xi6=0

- V7 -R6XI17=0

Kirchhoff’s Current Law (KCL)
- -i1 +i2=0 (node 1)

- -i2+1i3+i4 =0 (node 2)

- -i3+15+16 =0 (node 3)

« -i4-15+17 =0 (node 4)

Intensive Computation - Linear Systems

L 4 I 3
o R I <
'\L J, .| R=3 kOhm
vio 4w o
=u=sv | ... R& 1
A R A R=1kOhm
oy s * 1 Py
.............. . '[ﬁs,is] o
O Bre o1 S et I
.............. TR?’ kOhm . . I:‘.:IR:1 kOhm

Kirchhoff’s Voltage Law (KVL)
-vli+el=0
cv2-el+e2=0
-v3-e2+e3=0
cv4-e2+e4=0
-vb-e3+e4=0

- v6-e3=0

- Vv/i-e4=0
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Example

- In matrix form

Intensive Computation - Linear Systems
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lterative methods

lterative methods for solving AXx = Db
- Begin with an approximation to the solution x,
- Then provide a series of improved approximations Xy, X, ...

- That converge to the exact solution
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lterative methods

- The method can be stopped as soon as the approximations
X; have converged to an acceptable precision (which might

also be something as 1079)

- With a direct method, the process of elimination and back-
substitution has to be carried right through to completion, or

else abandoned altogether
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lterative methods

- The main attraction of iterative methods is that for certain
problems (particularly those where the matrix A is large and

sparse) they are much faster than direct methods

- On the other hand, iterative methods can be unreliable:
for some problems they may exhibit very slow

convergence, or they may not converge at all
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The Jacobi Method

- Consider the system

A Xy +a X, + A gXy +---+ay, n:bl
8, X, +8,,X, + 8y5X, ++-- 4+ 3, X, =D,

2n’*n

a. X +a,X,+a.X, +---+a X =b
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The Jacobi Method — ERFaksaksrax=h

8y X+ 8,50X, + 8yaXg +oo 4+ 8, X, =D,

20" n

- Rewrite the system In the form:
a, X +a,X, +a.X +---+a X =b

Xl — —E X a13 3 et e e e e — % X _|_ _+
A C ! 311
a21 a23 a2n b2

X2=——X1——X3— ....... "

a'22 a22 a22 a22

Xn — an1 Xl_%)(z e a‘nn—l Xn—1+ bn
ann ann ann a‘nn
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The Jacobi Method

- Consider x© = (x1<°>,xg°>,x§°> xﬁo)) as an initial

approximation of the solution and substitute Xi(o)in the eqgs

b
X = _ 22 0 _ 3 XO An x© 4
dp, A, dp, dy;
a a a b
x® = S0 3@ _Z23y0 .. Fon O 4 22
a22 a22 a22 a22
a a a b
Xr(ll) —__nl Xl(O) _ _n2 Xéo) —ev._ _Nn-1 Xr(l(z)l 4N
ann ann ann ann
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- Iterate the substitution of x™ = (x,x{9, x{¥ ..., x&)y such

that at each step a new solution approximation is obtained

k) _ o o) Q3 LK)
X = A2 - A8

X

(k+1) __
5 —

Intensive Computation - Linear Systems

The Jacobi Method

dy dy,
a a
221 Xl(k) _ 23 Xék)
a22 a22
a a
nl Xl(k) n2 Xék)
dn, d,,




2015/2016 Intensive Computation - Linear Systems

The Jacobi Method

Example

- Consider the system

10X, — X, + 2X, =6

—X, + 11X, — X; + 3X, = 25

2% — X, +10x, - X, =-11
3X, — X;+ 8X,= 15
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The Jacobi Method

Example

- Rewrite the system

X, = ix2 1x3 + 3
10 5 5

Xy = i 1 iX3 - > 4 §
11 11 11 11
S S IV IO
5 10 10 10

X, = —§x2 +1x3 + 1>
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The Jacobi Method

Example

. Start iterations with  X'” = (0, 0, 0, 0)

X = 1 X5 — 1 XS +3 - 0.6000
10 S| S

X5 = 1 X" L1 X3 — 3 X{) + 2 _ o727
11 11 11 11

X =— 1 x4+ 1 X el X\% — 1 _ 11000
S| 10 10 10

XY = 3 X"+ = XS + % = 1.8750
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The Jacobi Method

Example

- Continuing with iterations, we obtain the sequence of

approximations shown in the Table

K 0 1 2 3 4 5 6 I 8 9
x¥) 0.0000 0.6000 1.0473 0.9326 1.0152 0.9890 1.0032 0.9981 1.0006 0.9997

X)) 0.0000 2.2727 1.7159 2.0533 1.9537 2.0114 1.9922 20023 1.9987 2.0004
x{ 0.0000 —1.1000 —0.8852 —1.0493 —0.9681 —1.0103 —0.9945 —1.0020 —0.9990 —1.0004
x\) 0.0000 1.8750 0.8852 1.1309 0.9739 1.0214 0.9944 1.0036 0.9989 1.0006
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The Jacobi Method in Matrix Form

- Consider the system Ax=Db

- We split A into

a, 0 0
0 a, 0
i 0 0 A

- That is Ax=Db Is transformed in (D-(-L-U))x=b

o anl

—d

Ay Sy o
D1 & T

nn-1

O_

=D-(-L-U)
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The Jacobi Method in Matrix Form

- Assume D! exists 1 5 0 |
a
I R
- 422 .
0o 0 -- 1
| ann_

- Then X = D_l(—L -U )X+ Db
- The matrix form of Jacobi iterative method is

xXV=D*'(-L-U)xY+D™ k=012,...
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The Jacobi Method

- We need a stopping criterion

- We are interested In the error e at each iteration between

the true solution x and the approximation x®: etk = x — x&)
- Obviously, we don't usually know the true solution x

- To better understand the behavior of an iterative method, we
can consider a system Ax = b for which we do know the true
solution and analyze how quickly the approximations are

converging to the true solution
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The Jacobi Method

- We can consider different ways of measuring the error:
oy (kD) g ()

(k) _ (k)
. €7 =X—X where X Is the exact solution

e(k)H
We consider norm 12, that is:
Xt _x®| X, = X2+ X2+ 4 X
Hx(k+1) ‘

- We use one of the previous measures asking thatitis <&
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- Theorem The Jacobi method converges if the coefficient

matrix A is a strictly diagonally dominant matrix

- An nxn matrix A is strictly diagonally dominant if the absolute
value of each entry on the main diagonal is greater than the
sum of the absolute values of the other entries in the same

ay4| > [8y,|+|ag|+- - +[a,

&,,| > [ay] + a5+ + [0

row.

Intensive Computation - Linear Systems

The Jacobi Method

3| > 8| +[Bns| o+

a

n,n-1
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Jacobl method — Algorithm cost

 Multiplication operations for each iteration: n(n-1) - O(n?)
* If we do k iteration the cost is: kn(n-1)

* We also have the divisions with a; during the first iteration -
the cost is kn?

* To decide between Gauss and Jacobil methods we evaluate:

kn2<£n3 = k<}n
3 3

Hence when using the Jacobi method we need to evaluate
how many iterations are needed before stopping



