Linear Systems – Part 1

Intensive Computation

Annalisa Massini - 2015/2016

The linear system

$$a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 \dots + a_{nn}x_n = b_n$$

for unknown $x_1,...,x_n$; and a_{ij},b_i constants for i,j=1,2,...,n

- In matrix form A x = b
- Given Ax = b:
 - Is there a solution?
 - Is the solution unique?

The linear system

$$a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 \dots + a_{nn}x_n = b_n$$

for unknown $x_1,...,x_n$; and a_{ij},b_i constants for i,j=1,2,...,n

- In matrix form A x = b
- Given Ax = b:
 - Is there a solution?
 - Is the solution unique?

Yes, if A square and nonsingular (determinant ≠ 0)

- We consider A square and nonsingular
- If the matrix A is diagonal

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ & & & & & \\ & & & & & \\ 0 & 0 & \dots & 0 & a_{nn} \end{bmatrix}$$

• The solution is $\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} = x$ where $x_i = \frac{b_i}{a_{ii}}$

If A is an upper triangular matrix

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & a_{nn} \end{bmatrix}$$

• The solution is $\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} = x$ where

$$x_{n} = \frac{b_{n}}{a_{nn}}$$

$$x_{i} = \frac{1}{a_{ii}} (b_{i} - \sum_{k=i+1}^{n} a_{ik} x_{k}) \quad i = n-1,...,1$$

Backward substitution

If A is a lower triangular matrix

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ & & & & & \\ & & & & & \\ a_{n1} & \dots & \dots & a_{nn} \end{bmatrix}$$

• The solution is $\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} = x$ where

$$x_{1} = \frac{b_{1}}{a_{11}}$$

$$x_{i} = \frac{1}{a_{ii}} (b_{i} - \sum_{k=1}^{i-1} a_{ik} x_{k}) \quad i = 2, ..., n$$

Forward substitution

- If A is ortogonal, that is $A=A^{T}$, the solution is $x=A^{T}b$
- Let us consider

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \mathbf{A} \qquad \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \mathbf{b}$$

Then
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} : b_1 \\ a_{21} & a_{22} & \dots & a_{2n} : b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} : b_n \end{bmatrix} = [\mathbf{A}, \mathbf{b}] \text{ is the augmented matrix}$$

Methods for solving linear equations

- Direct methods: find the exact solution in a finite number of steps
- Iterative methods: produce a sequence of approximate solutions hopefully converging to the exact solution

Gaussian Elimination Method

Gaussian Elimination Method for solving Ax = b

- A direct method
- The idea is:
 - To transform the system such that the matrix A is transformed in a triangular matrix
 - The system can be solved by a backward substitution process
- The method:
 - Provides an exact result (ignoring roundoff)
 - Is computationally expensive

Gaussian Elimination Method

Gaussian Elimination Method for solving Ax = b

To transform the matrix A, three **row operations** can be performed on the rows of a matrix **without altering the considered system**:

- Operation 1: Swap the positions of two rows
- Operation 2: Multiply a row by a nonzero scalar
- Operation 3: Add to one row a scalar multiple of another

Consider a 3x3 example

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \begin{bmatrix} 6 & 10 & 4 \\ 5 & 9 & 6 \\ 17 & 26 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 11 \\ 49 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 10 & 4 \\ 5 & 9 & 6 \\ 17 & 26 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 11 \\ 49 \end{bmatrix}$$

Use Equation 1 to eliminate x₁ from Equation 2 and 3

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

This is done by **subtracting from Equation i** Equation 1

multiplied for $m_{i1} = \frac{a_{i1}}{a_1}$ that are the *multipliers*

That is:
$$(a_{22} - \frac{a_{21}}{a_{11}}a_{12})x_2 + (a_{23} - \frac{a_{21}}{a_{11}}a_{13})x_3 = b_2 - \frac{a_{21}}{a_{11}}b_1$$

$$(a_{32} - \frac{a_{31}}{a_{11}}a_{12})x_2 + (a_{33} - \frac{a_{31}}{a_{11}}a_{13})x_3 = b_3 - \frac{a_{31}}{a_{11}}b_1$$

Use Equation 1 to eliminate x₁ from Equation 2 and 3

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

This is done by *subtracting from Equation i* Equation 1

multiplied for
$$m_{i1} = \frac{a_{i1}}{a_{11}}$$
 that are the *multipliers*

That is:

$$(a_{22} - m_{21}a_{12})x_2 + (a_{23} - m_{21}a_{13})x_3 = b_2 - m_{21}b_1$$

$$(a_{32} - m_{31}a_{12})x_2 + (a_{33} - m_{31}a_{13})x_3 = b_3 - m_{31}b_1$$

Eliminate x₁ from Equation 2 and 3 Matrix form

Eliminate x₁ from Equation 2 and 3 Matrix form

Eliminate x₁ from Equation 2 and 3

Pivot a_{11}

Multipliers

$$n_{21} = \frac{a_{21}}{a_{11}}$$

$$m_{31} = \frac{a_{31}}{a_{11}}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ b_3^{(1)} \end{bmatrix}$$

$$A^{(1)}x = b^{(1)}$$

Eliminate x₁ from Equation 2 and 3

Pivot a_{11}

Multipliers

$$m_{21} = \frac{a_{21}}{a_{11}}$$

$$m_{31} = \frac{a_{31}}{a_{11}}$$

$$\begin{bmatrix} 6 & 10 & 4 \\ 0 & \frac{2}{3} & \frac{8}{3} \\ 0 & -\frac{7}{3} & \frac{29}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ \frac{28}{3} \\ \frac{130}{3} \end{bmatrix}$$

Eliminate x₂ from Equation 3 Matrix form

GE yields triangular system

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ b_3^{(2)} \end{bmatrix}$$
Altered During GE

GE yields triangular system

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ b_3^{(2)} \end{bmatrix}$$
Altered During GE

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$x_3 = \frac{y_3}{u_{33}}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Backward substitution

$$x_{2} = \frac{y_{2} - u_{23}x_{3}}{u_{22}}$$

$$x_{1} = \frac{y_{1} - u_{12}x_{2} - u_{13}x_{3}}{u_{11}}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 - (\frac{a_{21}}{a_{11}}) b_1 \\ b_3 - (\frac{a_{31}}{a_{11}}) b_1 - (\frac{a_{32}}{a_{22}^{(1)}}) b_2^{(1)} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

In general

• The kth stage of the elimination zeros the elements below the pivot element $a_{kk}^{(k)}$ in the kth column of $A^{(k)}$ according to the operations

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)} \quad i, j = k+1:n$$

$$b_i^{(k+1)} = b_i^{(k)} - m_{ik} b_k^{(k)} \quad i = k+1:n$$

• where the quantities $m_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$ i = k+1:n are called

the multipliers and $a_{kk}^{(k)}$ is called the pivot

- Ax = b → LUx = b → LU factorization
- Ly = b
 L: lower triangular
 multipliers and 1s on diagonal
- Ux = y U: upper triangular

Solve Ax = b

Step 1 $A = LU \rightarrow LU$ factorization

Step 2 $Ly = b \rightarrow$ Solve by forward substitution

Step 3 $Ux = y \rightarrow Solve$ by backward substitution

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{a_{21}}{a_{11}} & 1 & 0 \\ \frac{a_{21}}{a_{11}} & \frac{a_{32}^{(1)}}{a_{22}^{(1)}} & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix}$$

$$L = \begin{bmatrix} a_{21} & 0 & 0 \\ a_{11} & 1 & 0 \\ \frac{a_{21}}{a_{11}} & \frac{a_{32}^{(1)}}{a_{22}^{(1)}} & 1 \end{bmatrix}$$

LU decomposition - Algorithm

For k = 1 to n-1

Consider the augmented matrix Ab

$$(m(k+1:n,k)) = a(k+1:n,k)$$

$$(a(k,k))$$
Pivot

Multiplier

$$a(k+1:n,k+1:n+1) = a(k+1:n,k+1:n+1) +$$
$$-m(k+1:n,k) * a(k,k+1:n+1)$$

Note that:

- Elements of matrix A are not zeroed
- Multipliers can be stored in matrix A (instead of zeroing the elements of A)

(n-k)(n-k+1) multiplications

LU decomposition – Algorithm cost

For k = 1 to n-1

Consider the augmented matrix Ab

$$m(k+1:n,k) = \frac{a(k+1:n,k)}{a(k,k)}$$
 (n-k) divisions

$$a(k+1:n,k+1:n+1) = a(k+1:n,k+1:n+1) + -m(k+1:n,k) * a(k,k+1:n+1)$$

Cost:

• (n-k)(n-k+2) multiplication and division operations

(n-k)(n-k+1) multiplications

LU decomposition – Algorithm cost

For k = 1 to n-1 Consider the augmented matrix Ab

$$m(k+1:n,k) = \frac{a(k+1:n,k)}{a(k,k)}$$
 (n-k) divisions

$$a(k+1:n,k+1:n+1) = a(k+1:n,k+1:n+1) +$$

$$-m(k+1:n,k) * a(k,k+1:n+1)$$

Cost:

• (n-k)(n-k+2) multiplication and division operations

• n-1 iterations
$$> \sum_{k=1}^{n-1} (n-k)(n-k+2) = O(n^3)$$

LU decomposition – Algorithm cost

Further we have:

- Multiplication and division operations for solving the triangular systems: $O(n^2)$
- Addition and subtraction operations: $O(n^3)$
- Note that addition/subtraction operations have a lower cost with respect to multiplication/division operations, that is O(I) vs O(P) where I is the length of operands
- Anyway usually we consider the number of floating point operations FLOPs

Gaussian Elimination method may fail:

 Null pivots: we have a division by zero during formation of the multipliers if a

Small pivots (Round-off error)

Both can be solved with partial pivoting

• If at iteration k $a_{kk}^{(k)} = 0$ we cannot form the multipliers

$$m_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$$
 $i = k+1:n$

A simple way to overcome this problem is the following:

If
$$a_{kk}^{(k)} = 0$$

Find $a_{ik}^{(k)} \neq 0$ with $i > k$

Swap row i with row k

Two Important Theorems

- Partial pivoting (swapping rows) <u>always</u> succeeds if M is non singular
- LU factorization applied to a diagonally dominant matrix will <u>never</u> produce a zero pivot

- In practical computation, also small pivots can give problems
- Small pivots can lead to large multipliers m_{ik}
- If m_{ik} is large then there is a possible loss of significance in the subtraction $a_{ij}^{(k)} m_{ik} a_{kj}^{(k)}$, with low-order digits of $a_{ij}^{(k)}$ being lost
- Losing these digits could correspond to making a relatively large change to the original matrix A

- Three different pivoting strategies to avoid instability
- All three strategies ensure that the multipliers are nicely bounded: $\left|m_{ik}\right| < 1$ i = k+1:n

Partial pivoting

At kth stage, the kth and th rows are interchanged, where

$$\left| a_{rk}^{(k)} \right| = \max_{k \le i \le n} \left| a_{ik}^{(k)} \right|$$

 Pivot of maximal magnitude over the the pivot column is selected as pivot

Complete pivoting

At kth stage rows k and r and columns k and s are swapped

$$\left| a_{rs}^{(k)} \right| = \max_{k \le i, j \le n} \left| a_{ij}^{(k)} \right|$$

Pivot of maximal magnitude over the whole submatrix

Rook pivoting

At *k*th stage, rows *k* and *r* and columns *k* and *s* are swapped

$$|a_{rs}^{(k)}| = \max_{k \le i \le n} |a_{is}^{(k)}| = \max_{k \le j \le n} |a_{rj}^{(k)}|$$

 Pivot of maximal magnitude in both its column and its row

Consider the system

$$\begin{bmatrix} 1.25 \cdot 10^{-4} \\ 12.5 \end{bmatrix}$$

$$\begin{bmatrix} 1.25 & x_1 \\ 12.5 & x_2 \end{bmatrix} = \begin{bmatrix} 6.25 \\ 75 \end{bmatrix}$$

$$\begin{bmatrix} 1.25 \cdot 10^{-4} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1.25 \cdot 10^{-4} & 1.25 \\ 12.5 & 12.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.25 \\ 75 \end{bmatrix}$$
After GE
$$\begin{bmatrix} 1.25 \cdot 10^{-4} & 1.25 \\ 0 & 12.5 - (1.25 \cdot 10^5) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.25 \\ 75 - (6.25 \cdot 10^5) \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{5 \text{ digits}} = \begin{bmatrix} 1.0001 \\ 4.9999 \end{bmatrix}$$

Consider the system

$$\begin{bmatrix} 1.25 \cdot 10^{-4} & 1.25 \\ 12.5 & 12.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.25 \\ 75 \end{bmatrix}$$

$$\begin{bmatrix} 1.25 \cdot 10^{-4} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1.25 \cdot 10^{-4} & 1.25 \\ 12.5 & 12.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.25 \\ 75 \end{bmatrix}$$
After GE
$$\begin{bmatrix} 1.25 \cdot 10^{-4} & 1.25 \\ 0 & 12.5 - (1.25 \cdot 10^5) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.25 \\ 75 - (6.25 \cdot 10^5) \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{5 \text{ digits}} = \begin{bmatrix} 1.0001 \\ 4.9999 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{3 \text{ digits}} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{3 \text{ digits}} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$

Swap rows
$$\begin{bmatrix}
1.25 \cdot 10^{-4} & 1.25 \\
12.5 & 12.5
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
6.25 \\
75
\end{bmatrix}$$

$$\begin{bmatrix}
12.5 & 12.5 \\
1.25 \cdot 10^{-4} & 1.25
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
75 \\
6.25
\end{bmatrix}$$

GE
$$\begin{bmatrix}
12.5 & 12.5 \\
0 & 1.25 - 12.5 \cdot 10^{-5}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
75 \\
6.25 - 75 \cdot 10^{-5}
\end{bmatrix}$$
Rounded to 5 digits

Rounded to 5 digits
$$\begin{bmatrix} 12.5 & 12.5 \\ 0 & 1.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 75 \\ 6.25 \end{bmatrix}$$

$$\begin{bmatrix}
1.25 \cdot 10^{-4} & 1.25 \\
12.5 & 12.5
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
6.25 \\
75
\end{bmatrix}$$

$$\begin{bmatrix}
12.5 & 12.5 \\
1.25 \cdot 10^{-4} & 1.25
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
75 \\
6.25
\end{bmatrix}$$

GE
$$\begin{bmatrix}
12.5 & 12.5 \\
0 & 1.25 - 12.5 \cdot 10^{-5}
\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 75 \\ 6.25 - 75 \cdot 10^{-5} \end{bmatrix}$$

Rounded to 3 digits
$$\begin{bmatrix} 12.5 & 12.5 \\ 0 & 1.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 75 \\ 6.25 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{3 digits} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{5 \text{ digits}} = \begin{bmatrix} 1.0001 \\ 4.9999 \end{bmatrix}$$

- If we have a sparse matrix, Gaussian elimination could destroy its sparsity
- Consider the matrix

$$A = \begin{bmatrix} 1 & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & 1 & 0 & 0 & 0 \\ \frac{1}{10} & 0 & 1 & 0 & 0 \\ \frac{1}{10} & 0 & 0 & 1 & 0 \\ \frac{1}{10} & 0 & 0 & 0 & 1 \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 1 & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & 1 & 0 & 0 & 0 \\ \frac{1}{10} & 0 & 1 & 0 & 0 \\ \frac{1}{10} & 0 & 0 & 1 & 0 \\ \frac{1}{10} & 0 & 0 & 0 & 1 \end{bmatrix}$$

First step of Gaussian Elimination

Example

$$A = \begin{bmatrix} 1 & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & 1 & 0 & 0 & 0 \\ \frac{1}{10} & 0 & 1 & 0 & 0 \\ \frac{1}{10} & 0 & 0 & 1 & 0 \\ \frac{1}{10} & 0 & 0 & 0 & 1 \end{bmatrix}$$

LU factorization

 Reorder the matrix by swapping the first and last row and then the first and last column

$$Pr = Pc = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad PrAPc = \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{10} \\ 0 & 1 & 0 & 0 & \frac{1}{10} \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{10} \\ 0 & 0 & 1 & 0 & \frac{1}{10} \\ 0 & 0 & 0 & 1 & \frac{1}{10} \\ 1 & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \end{bmatrix}$$

After the LU factorization there is not fill-in

$$PrAPc = \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{10} \\ 0 & 1 & 0 & 0 & \frac{1}{10} \\ 0 & 0 & 1 & 0 & \frac{1}{10} \\ 0 & 0 & 0 & 1 & \frac{1}{10} \\ 1 & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{10} \\ 0 & 1 & 0 & 0 & \frac{1}{10} \\ 0 & 0 & 1 & 0 & \frac{1}{10} \\ 0 & 0 & 0 & 1 & \frac{1}{10} \\ 1 & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & -\frac{3}{100} \end{bmatrix}$$